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Abstract Many software testing �elds, like white-box testing, test case gener-
ation, test prioritization and fault localization, depend on code coverage mea-
surement. If used as an overall completeness measure, the minor inaccuracies of
coverage data reported by a tool do not matter that much; however, in certain
situations they can lead to serious confusion. For example, a code element that is
falsely reported as covered can introduce false con�dence in the test. This work in-
vestigates code coverage measurement issues for the Java programming language.
For Java, the prevalent approach to code coverage measurement is using bytecode
instrumentation due to its various bene�ts over source code instrumentation. As
we have experienced, bytecode instrumentation-based code coverage tools produce
di�erent results than source code instrumentation-based ones in terms of the re-
ported items as covered. We report on an empirical study to compare the code
coverage results provided by tools using the di�erent instrumentation types for
Java coverage measurement on the method level. In particular, we want to �nd
out how much a bytecode instrumentation approach is inaccurate compared to a
source code instrumentation method. The di�erences are systematically investi-
gated both in quantitative (how much the outputs di�er) and in qualitative terms
(what the causes for the di�erences are). In addition, the impact on test prioriti-
zation and test suite reduction � a possible application of coverage measurement
� is investigated in more detail as well.
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1 Introduction

In software development and evolution, di�erent processes are used to keep the
required quality level of the software, while the requirements and the code are con-
stantly changing. Several activities aiding these processes require reliable measure-
ment of code coverage, a test completeness measure. As any other test complete-
ness measure, it does not necessarily have a direct relationship to fault detection
rate (Inozemtseva and Holmes, 2014), however code coverage is widely used and
relied upon in several applications. This includes white-box test design, regression
testing, selective retesting, e�cient fault detection, fault localization and debug-
ging, as well as maintaining the e�ciency and e�ectiveness of the test assets on a
long term (Pinto et al, 2012). Essentially, code coverage indicates which code parts
are exercised during the execution of a set of test cases on the system under test.
The knowledge about the (non-)covered elements will underpin various decisions
during these testing activities, so any inaccuracies in the measured data might be
critical.

Software testers have long established the theory and practice of code cover-
age measurement: various types of coverage criteria like statement, branch and
others (Black et al, 2012), as well as technical solutions including various kinds
of instrumentation methods (Yang et al, 2009). This work was motivated by our
experience in using code coverage measurement tools for the Java programming
language. Even in a relatively simple setting (a method level analysis of medium
size software with popular and stable tools), we found signi�cant di�erences in the
outputs of di�erent tools applied for the same task. The di�erences in the com-
puted coverages might have serious impacts in di�erent applications, such as false
con�dence in white-box testing, di�culties in coverage-driven test case generation,
and ine�cient test prioritization, just to name a few.

Various reasons might exist for such di�erences and surely there are pecu-
liar issues which tool builders have to face, but we have found that in the Java
environment, the most notable issue is how code instrumentation is done. Code in-
strumentation technique is used to place �probes� into the program, which will be
activated upon runtime to collect the necessary information about code coverage.
In Java, there are two fundamentally di�erent instrumentation approaches: source
code level and bytecode level. Both approaches have bene�ts and drawbacks, but
many researchers and practitioners prefer to use bytecode instrumentation due
to its various technical bene�ts (Yang et al, 2009). However, in most cases the
application of code coverage is on the source code, hence it is worthwhile to in-
vestigate and compare the two approaches. In earlier work (Tengeri et al, 2016),
we investigated these two types of code coverage measurement approaches via
two representative tools on a set of open source Java programs. We found that
there were many deviations in the raw coverage results due to the various techni-
cal and conceptual di�erences of the instrumentation methods. In this work, we
have �ne-tuned our measurements based on the previous results, examined and de-
scribed the deviations in the coverage in more detail, and performed experiments
and quantitative analysis on the e�ect of the di�erences. Similar studies exist in
relation to branches and statements (Li et al, 2013).

Extending the earlier experiment, this work reports on an empirical study to
compare the code coverage results provided by tools using the di�erent instru-
mentation types for Java coverage measurement on the method level. We initially
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considered a relatively large set of candidate tools referenced in literature and used
by practitioners, and then we started the experiments with �ve popular tools which
seemed mature enough and actively used and developed. Overall coverage results
are compared using these tools, but eventually we selected one representative for
each instrumentation approach to perform the in-depth analysis of the di�erences
(JaCoCo1 and Clover

2). The measurements are made on a set of 8 benchmark pro-
grams from the open source domain which are actively developed real size systems
with large test suites. The di�erences are systematically investigated both quanti-
tatively (how much the outputs di�er) and qualitatively (what the causes for the
di�erences are). Not only do we compare the coverages directly, but investigate
the impact on a possible application of coverage measurement in more detail as
well. The chosen application is test prioritization/test suite reduction based on
code coverage information.

We believe that the two selected tools are good representatives of the two
approaches and being the most widely used ones, many would bene�t from our
results. A big initial question was, however, if we could use the tools as the �ground
truth� in the comparison. Since most of the applications of code coverage operate
on the source code, the source code instrumentation tool Clover was the candidate
for this role. Thus, we performed a manual veri�cation of the code coverage re-
sults provided by this tool by randomly selecting the outputs for investigation
while maintaining a good overall functional coverage of the subject systems. We
interpreted the results in terms of the actual test executions and program behav-
ior on the level of source code. During this veri�cation we did not �nd any issues,
which made it possible to use this tool as a ground truth for source code coverage
results.

To perform the actual comparison of the tools, various technical modi�cations
had to be done on the tools and the measurement environment; for instance, to be
able to perform per-test case measurements and calculate not only overall coverage
ratios. This enabled a more detailed investigation of the possible causes for the
di�erence.

Our results indicate that the di�erences between the coverage measurements
can vary in a large range, and that it is di�cult to predict in what situations
will be the risk of measurement inaccuracy higher for a particular application. In
summary, we make the following contributions:

1. The majority of earlier work in the topic dealt with lower level analyses such
as statements and branches. Instead, we performed the experiments on the
granularity of Java methods in real size Java systems with realistic test suites.
We found that � contrary to our preliminary expectations � even at this level
there might be signi�cant di�erences between bytecode instrumentation and
source code instrumentation approaches. Method level granularity is often the
viable solution due to the large system size. Furthermore, if we can demonstrate
the weaknesses of the tools at this level, they are expected to be present at the
lower levels of granularity as well.

2. We found that the overall coverage di�erences between the tools can vary in
both directions, and in seven out of the eight subject programs they are at most

1 http://eclemma.org/jacoco/
2 https://www.atlassian.com/software/clover/

http://eclemma.org/jacoco/
https://www.atlassian.com/software/clover/
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1.5%. However, for the last program we measured an extremely large di�erence
of 40% (this was then attributed to the di�erent handling of generated code).

3. We looked at more detailed di�erences as well with respect to individual test
cases and program elements. In many applications of code coverage (in debug-
ging, for instance) subtle di�erences at this level may lead to serious confusion.
We measured di�erences of up to 14% between the individual test cases, and
di�erences of over 20% between the methods. In a di�erent analysis of the re-
sults, we found that a substantial portion of the methods in the subjects were
a�ected by this inaccuracy (up to 30% of the methods in one of the subject
programs).

4. We systematically investigated the reasons for the di�erences and found that
some of them were tool speci�c, while the others would be attributed to the
instrumentation approach. This list of reasons may be used as a guideline for
the users of coverage tools on how to avoid or workaround the issues when
bytecode instrumentation based approach is used.

5. We also measured the e�ect of the di�erences on the application of code cover-
age to test prioritization. We found that the prioritized lists produced by the
tools di�ered signi�cantly (with correlations below 0.5), which means that the
impact of the inaccuracies might be signi�cant. We think that this low corre-
lation is a great risk: in other words, it is not possible to predict the potential
ampli�cation of a given coverage inaccuracy in a particular application. This
also a�ects any related research which is based on bytecode instrumentation
coverage measurement to a large extent.

The paper is organized as follows. Section 2 gives the background of code
coverage and its usability in di�erent applications. We also list the risks of coverage
measurement for Java and the relation to similar works in this section. We state our
research aims in more detail in Section 3. Section 4 describes the basic setup for the
experiments, the tools, and the subject systems, while Section 5 presents the results
of the empirical study. This section is organized according to our research agenda:
�rst, we concentrate on the quantitative and qualitative di�erences, and then, we
investigate the e�ect on the test case prioritization application. In Section 6, we
summarize our �ndings and provide a more general discussion before concluding
in Section 7.

2 Background

The term code coverage in software testing denotes the amount of program code
which is exercised during the execution of a set of test cases on the system under
test. This indicator may simply be used as an overall coverage percentage, a proxy
for test completeness, but typically more detailed data is also available about
individual program elements or test cases. Code coverage measurement is the basis
of several software testing and quality assurance practices including white-box
testing (Ostrand, 2002), test suite reduction (Rothermel et al, 2002), or fault
localization (Harrold et al, 1998).
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2.1 Di�erent Types and Levels of Code Coverage

Code coverage criteria are often used as goals to be achieved in white-box testing:
test cases are to be designed until the required coverage level has been reached ac-
cording to the selected criteria. However, many possible ways exist to de�ne these
criteria. They include various granularity levels of the analysis (such as component,
method, or statement) and di�erent types of �exercised parts of program code� (for
instance, individual instructions, blocks, control paths, data paths, etc). The term
code coverage without further speci�cation usually refers to statement level analy-
sis and denotes statement coverage. Statement coverage shows which instructions
of the program are executed during the tests and which are not touched. Even
at this level, there may be di�erences in what constitutes an instruction, which
complicates the uniform interpretation of the results. In Java, for instance, a single
source code statement is implemented with a sequence of bytecode instructions,
and the mapping between these two levels is not always straightforward due to
various reasons such as compiler optimization.

Another common coverage criterion is decision coverage, where the question
is whether both outcomes of a decision (such as an if statement) are tested, or if
a loop is tested with entering and skipping the body. Since this level of analysis
deals with not only individual instructions but control �ow as well, coverage mea-
surement at this level imposes more issues. For instance, Li et al. (Li et al, 2013)
showed that decision coverage at statement level for the Java language is prone to
di�erences between the source code and the bytecode measurements; they found
that practically the two results were hardly comparable. The main reasons for this
besides the di�erent optimizations were the actual shortcuts built in the imple-
mentation of the logical expressions: what seems to be a single logical expression
in the source code can be a very complex control structure in the bytecode.

These examples show that even within a speci�c language di�culties might
occur in de�ning and interpreting code coverage criteria. This may be even more
emphasized at more sophisticated levels such as control path or data-�ow based
coverages (Ntafos, 1988).

Coarser granularity level coverage criteria (such as methods, classes, or compo-
nents) are also common, for instance, when the system size and complexity do not
enable a �ne-grained analysis. Also, often it is more useful to start the coverage
analysis in a �top-down� fashion by starting from the components that are not
executed at all, extend the tests to cover that component at least once, and then
continue the analysis with lower levels. In particular, procedure level coverage is a
good compromise between analysis precision and the ability to handle big systems.

In our research, we primarily deal with this granularity, that is, we treat proce-
dures (Java methods in particular) as atomic code elements that can be covered.
At this level �covered� means that the method has been executed at least once
during the tests but we do not care about what instructions, paths, or data have
been exercised in particular. Contrary to what would be expected, this granularity
level also involves di�culties in the interpretation of code coverage, which was the
main motivation for our research. In particular, we found signi�cant di�erences be-
tween di�erent code coverage measurement tools for Java con�gured for method
level analysis (Tengeri et al, 2016).
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2.2 Applications of Code Coverage and Risks

Uncertainties in code coverage measurement may impose various risks. Here, we
overview the notable applications of code coverage measurement and how they
may be impacted by the uncertainties.

The most important application of code coverage measurement is white-box
testing (often referred to as structure-based testing). It is a dynamic test design
technique relying on code coverage to systematically verify the amount of tests
needed to achieve a completeness goal, a coverage criterion. This goal is sometimes
expected to be a complete (that is, 100%) coverage, however in practice, this high
level is rarely attainable due to various reasons. As white-box testing directly
uses coverage data, it is obvious that inaccuracies in the coverage results directly
in�uence the testing activity. On the one hand, a small di�erence of one or two
percentages in the overall coverage value is usually irrelevant if that value is used
to assess the completeness. On the other hand, an item inaccurately reported
to be covered provides false con�dence in the code during a detailed evaluation,
and it may result in unnecessary testing costs if an item is falsely reported to be
uncovered.

Other applications of code coverage measurement include general software
quality assessment3, automatic test case generation (Rayadurgam and Heimdahl,
2001; Fraser and Arcuri, 2011), code coverage-based fault localization (Jones and
Harrold, 2005; Yoo et al, 2013), test selection and prioritization (O�utt et al,
1995; Graves et al, 2001; Vidács et al, 2014), mutation testing (Usaola and Mateo,
2010; Jia and Harman, 2011), and in general, program and test comprehension
with traceability analysis (Perez and Abreu, 2014). As in the case of white-box
testing, the inaccuracy of code coverage measurement may a�ect these activities
in di�erent ways.

Certain applications do not su�er that much if the coverage data is not pre-
cise. This includes overall quality assessment, where the coverage ratio is typically
used as part of a more complex set of metrics for software assessment. Here, a
di�erence of a few percentages usually does not a�ect the overall score. Program
comprehension (and general project traceability) is supported by knowing which
program code is executed by which test case. Depending on the usage scenario of
this information, inaccurate results may lead to either false decisions or simply an
increased e�ort to interpret the data.

The other mentioned applications have high signi�cance in academic research,
and the accuracy and validity of the published results may be a�ected by the
issues with the code coverage data. In coverage-driven test case generation, for
instance, the generation engine can be confused by an imprecise coverage tool
because a falsely reported non-coverage will keep the generation algorithm trying
to generate test cases for the program element.

As another example, in code coverage-based fault localization the program
elements are ranked according to how suspicious they are to contain the fault based
on test case coverage and pass/fail status. Wrong coverage data may in�uence the
fault localization process because if the faulty element is erroneously reported
as not covered by a failing test case, the suspicion will move to other (possibly
non-defective) program elements.

3 http://www.sonarqube.org/

http://www.sonarqube.org/
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2.3 Code Coverage Measurement for Java

This paper deals with the applications of code coverage measurement for Java
programs. Java itself is a popular language, and due to its language and runtime
design, it can be more easily handled as the subject of code coverage measurement
than other languages directly compiled for native code (like C++).

In addition, the increased demand for code coverage measurement in agile
projects � where continuous integration requires the constant monitoring of the
code quality and regression testing � has led to the appearance of a large set of
tools for this purpose, many of which are free of charge and open source. However,
it seems that the working principles, bene�ts, drawbacks, and any associated risks
with these tools are not well understood by practitioners and researchers yet.

In Java, two conceptually di�erent approaches are used for coverage measure-
ment. In both approaches, the system under test and/or the runtime engine is
instrumented, meaning that �measurement probes� are placed within the system
at speci�c points, which enables the collection of runtime data but do not alter the
behavior of the system. The �rst approach is to instrument the source code, which
means that the original code is modi�ed by inserting the probes, then this version
is built and executed during testing. The second method is to instrument the com-
piled version of the system, i.e., the bytecode. Here, two further approaches exist.
First, the probes may be inserted right after the build, which e�ectively produces
modi�ed versions of the bytecode �les. Second, the instrumentation may take place
during runtime upon loading a class for execution. In the following, we will refer to
these two approaches as o�ine and online bytecode instrumentation, respectively.
Some example tools for the three approaches are Clover

2 (source code), Cobertura4

(o�ine bytecode) and JaCoCo
1 (online bytecode).

Di�erent possible features are available in tools employing these approaches,
and they also have various bene�ts and drawbacks. In Table 1, we overview the
most important di�erences. Of course, many of these aspects depend on the ap-
plication context; here, we list our subjective assessment. One bene�t of bytecode
instrumentation is that it does not require the source code, thus it can be used e.g.,
on third party code as well. On the other hand, it is dependent on the bytecode
version and the Java VM, thus it is not as universal as source code instrumen-
tation. In turn, implementing bytecode instrumentation is usually easier than in-
serting proper and syntactically correct measurement probe elements in the source
code. Source code instrumentation requires a separate build for the instrumented
sources, while bytecode instrumentation uses the compiled class �les. However,
the latter requires the modi�cation of the VM in the online version. Source code
instrumentation also allows full control over what is instrumented, while bytecode
instrumentation is usually class-based (whole classes are instrumented at once).
Online bytecode instrumentation will not a�ect compile time, but its runtime
overhead includes not only the extra code execution time, but (usually a one-time
per class load) instrumentation costs too. Finally, the bytecode based results are
sometimes di�cult to be tracked back to source code, while source code instru-
mentation results are directly assigned to the parts of the source code (Yang et al,
2009; Lingampally et al, 2007).

4 http://cobertura.github.io/cobertura/

http://cobertura.github.io/cobertura/
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Table 1: Code Coverage Approaches for Java

O�ine Online
Property Source code bytecode bytecode

Source code Needed Not needed Not needed
Special runtime Not needed Not needed Needed
Bytecode and VM Not dependent Dependent Dependent
Filtering control Complete Partial Partial
Separate build Yes No No
Results in source Yes Partially Partially
Compile time Impacted Impacted Not impacted
Runtime Impacted Impacted Highly impacted
Implementation Di�cult Easy Easy

These numerous bene�ts of bytecode instrumentation (e.g., easier implemen-
tation, no need for source code and separate build) are so attractive that tools
employing this technique are far more popular than source code instrumentation-
based tools (Yang et al, 2009). Furthermore, most users do not take the trouble to
investigate the drawbacks of this approach and the potential impact on their task
at hand. Interestingly, scienti�c literature is also very poor in this respect, namely
systematically investigating the negative e�ects of bytecode instrumentation on
the presentation of results in source code (see Section 2.4).

The important bene�ts of source code instrumentation might overweight byte-
code instrumentation in some situations, which are visible from Table 1. The most
important bene�t is that in the situations when the results are to be investigated
on the source code level (in most of the cases!), mapping needs to be done from the
computations made on the bytecode level. Due to the fact that perfect one-to-one
mapping is generally not possible, this might impose various risks.

2.4 Related Work

There is a large body of literature on comparing various software analysis tools, for
instance, code smell detection (Fontana et al, 2011), static analysis (Emanuelsson
and Nilsson, 2008), test automation (Raulamo-Jurvanen, 2017), just to name a
few.

Most of the works that compare bytecode and source code instrumentation
techniques focus on the usability, operability, and the features of certain tools,
e.g., (Yang et al, 2009; Lingampally et al, 2007), but the accuracy of the results
they provide is less often investigated � despite the importance and the possible
risks overviewed above.

Li and O�utt (Li et al, 2013) examined the di�erence between source code
and bytecode instrumentation in relation to branches and statements. Their con-
clusion was that due to several di�erences between the two methods, source code
instrumentation is more appropriate for branch coverage computation. We verify
the di�erences on coarser granularity (on method level), and how these di�erences
impact the results of the further applications of the coverage.

Kajo-Mece and Tartari (Kajo-Mece and Tartari, 2012) evaluated two coverage
tools (source code and bytecode instrumentation based ones) on small programs
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and concluded that the source code based one was more reliable for the use in
determining the quality of their tests. We also used Java source code and bytecode
instrumentation tools in our experiments, but on a much bigger data set in a more
comprehensive analysis.

Alemerien and Magel (Alemerien and Magel, 2014) conducted an experiment
in order to investigate how the results of code coverage tools are consistent in
terms of line, statement, branch, and method coverage. They compared the tools
using the overall coverage as the base metric. Their �ndings show that branch
and method coverage metrics are signi�cantly di�erent, but statement and line
coverage metrics are only slightly di�erent. They also found that program size
signi�cantly a�ected the e�ectiveness of code coverage tools with large programs.
They did not evaluate the impact of the di�erence on the applications of code
coverage. We investigated only method level coverages, but we did not only use an
overall coverage but analyzed detailed coverage information as well. Namely, we
computed coverage information for each test case and method individually, and
analyzed the di�erences using this data.

Kessis et al. (Kessis et al, 2005) presented a paper in which they investigated
the usability of coverage analysis from the practical point of view. They con-
ducted an empirical study on a large Java middleware application, and found that
although some of the coverage measurement tools were not mature enough to han-
dle large scale programs properly, using the adequate measurement policies would
radically decrease the cost of coverage analysis, and together with di�erent test
techniques it could ensure a better software quality. Although we are not exam-
ining the coverage tools themselves, we rely on their produced results and cannot
exclude all of their individual features from the experiments.

This work is a followup of our previous work in the topic (Tengeri et al, 2016),
in which we investigated bytecode and source code coverage measurement on the
same Java systems we used in this work. We found that there were many deviations
in the raw coverage results due to the various technical and conceptual di�erences
of the instrumentation methods, but we did not investigate the reasons in detail
and how these di�erences could in�uence the applications where coverage data
was used.

There are many code coverage measurement tools for Java (e.g., Semantic
Designs Test Coverage5, Cobertura4, EMMA6, FERRARI (Binder et al, 2007), and
others). In Section 4.2, we discuss how we selected the tools for our measurements.

In this work, we consider test suite reduction and test prioritization, as the
application of code coverage. Yoo and Harman conducted a survey (Yoo and Har-
man, 2012) on di�erent test suite reduction and prioritization methods among
which coverage-based methods can also be found. The most basic coverage-based
prioritization methods, which were studied by Rothermel et al. (Rothermel et al,
2001), are the stmt-total and stmt-addtl coverages. In our experiments, we applied
these concepts on the method level, and referred to them as general, additional,
and additional with resets. One of the test prioritization algorithms we used in
our experiments was optimized for fault localization, which is based on the pre-
vious work by Vidács et al. (Vidács et al, 2014). Fault localization aware test

5 http://www.semdesigns.com/Products/TestCoverage
6 http://emma.sourceforge.net/

http://www.semdesigns.com/Products/TestCoverage
http://emma.sourceforge.net/
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suite reduction turned out to produce di�erent results than fault detection aware
reduction, which optimizes for code coverage.

3 Research Goals

Following earlier research on the drawbacks of bytecode instrumentation for Java
code coverage on lower granularity levels (Li et al, 2013), and addressing chal-
lenges listed in the previous sections, the aim of our research is the following. We
investigate in quantitative and qualitative terms in what situations and to what
extent Java method-level code coverage based on bytecode instrumentation is dif-
ferent than coverage based on source code? We investigate the di�erences between
the actual coverage information on a detailed level and determine the root causes
of these di�erences after a manual investigation of the source code of the a�ected
methods. In addition, we evaluate the impact of the inaccuracies on an application
of code coverage measurement, namely test prioritization/reduction. We assume
that a certain degree of the di�erences in the coverages may be re�ected in a
di�erent degree of inaccuracies of the application.

To achieve our goal, we consider several candidate tools and then conduct an
empirical study involving two representative tools, one with source code instru-
mentation and one with online bytecode instrumentation. We then measure the
code coverage results on a set of benchmark programs and elaborate on the possible
causes and impacts.

More precisely, our research questions are:

RQ1 How big is the di�erence between the code coverage obtained by an unmod-
i�ed bytecode-instrumentation based tool and a source code-instrumentation
based tool on the benchmark programs?

RQ2 What are the typical causes for the di�erences?
RQ3 Can we eliminate tool-speci�c di�erences, and if we can, how big the di�er-

ence, � which can be possibly attributed to the di�erences in the fundamental
approach, that is, bytecode vs. source code instrumentation � remains?

RQ4 How big is the impact of code coverage inaccuracies on the application in
test prioritization/test suite reduction?

In this paper, we calculate and analyze coverage results on the method level.
More precisely, the basic element of a coverage information is whether a speci�c
Java method is invoked by the tests or not, regardless of what statements or
branches are taken in that method. At �rst, this might seem too coarse a granu-
larity, but we believe that the results will be actionable due to the following.

In many realistic scenarios, coverage analysis is done hierarchically starting
from the higher level code components like classes and methods. If the coverage
result is wrong at this level, it will be wrong at the lower levels too. Also, in the case
of di�erent applications, unreliable results at the method level will probably mean
similar (if not worse) results at the level of statements or branches as well. Previous
works have shown that notable di�erences exist between the detailed results of
bytecode and source code coverage measurements at statement and branch level (Li
et al, 2013), and that at method and branch level the overall coverage values show
signi�cant di�erences (Alemerien and Magel, 2014). So, this leaves the question
whether there are notable di�erences in method level coverage results as well open.
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4 Description of the Experiment and Initial Measurements

To answer the research questions set forth in the previous section, we conducted an
empirical study on eight open source systems (introduced in Section 4.1) with code
coverage tools for Java employing both instrumentation approaches. Initially, we
involved more tools, but as Section 4.2 discusses, we continued the measurements
with two representative tools. In Section 4.3, we overview the measurement process
and discuss some technical adjustments we performed on the tools and subjects.

Apart from the coverage measurement tools, our measurement framework con-
sisted of some additional utility tools. The main tool we relied on was the SoDA

7

framework (Tengeri et al, 2014). For the representation of the coverage data in
SoDA, the data generated in di�erent forms by the coverage tools were converted
into the common SoDA representation, the coverage matrix. Later, this represen-
tation was used to perform the additional analyses. This framework also contains
tools to calculate statistics, produce graphical results, etc. SoDA includes the im-
plementation of the test case prioritization and the test suite reduction algorithms,
which we used for our Research Question 4. Apart from this, only general helping
shell scripts and spreadsheet editors have been used.

4.1 Benchmark Programs

For setting up our set of benchmark programs, we followed these criteria. As we
wanted to compare bytecode and source code instrumentation, the source code had
to be available. Hence, we used open source projects, which also enables the repli-
cation of our experiments. We used the Maven infrastructure in which the code
coverage measurement tools easily integrate, so the projects needed to be com-
pilable with this framework. Finally, it was important that the subject programs
had a usable set of test cases of realistic size, which are based on the JUnit frame-
work8 (preferably version 4). The reason for the last restriction was that the use of
this framework was the most straightforward for measuring per-test case method
coverage.

We searched for candidate projects on GitHub9 preferring those that had been
used in the experiments of previous works. We ended up with eight subject pro-
grams which belonged to di�erent domains and were non-trivial in size (see Ta-
ble 2). The proportion of the tests in these systems as well as their overall coverage
is varying, which makes our benchmark even more diversi�ed. Columns �All tests�
and �Ex. tests� show the size of the test suites and the number of testcases that
were excluded (we discuss the technical modi�cations that we performed in Sec-
tion 4.3 in detail).

4.2 Selection of Coverage Tools

Our goal in this research was to compare the code coverage results produced by
tools employing the two instrumentation approaches. Hence, we wanted to make

7 http://soda.sed.hu
8 http://junit.org/
9 https://github.com/

http://soda.sed.hu
http://junit.org/
https://github.com/
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Table 2: Subject programs. Metrics were calculated from the source code (gener-
ated code was excluded).

Program version LOC Methods All tests Ex. tests Domain

checkstyle 6.11.1 114K 2 655 1 589 104 static analysis
commons-lang #00fafe77 69K 2 796 3 683 358 java library
commons-math #2aa4681c 177K 7 167 5 842 902 java library
joda-time 2.9 85K 3 898 4 177 162 java library
mapdb 1.0.8 53K 1 608 1 786 68 database
netty 4.0.29 140K 8 230 4 066 247 networking
orientdb 2.0.10 229K 13 118 950 153 database
oryx 1.1.0 31K 1 562 208 0 mach. learning

sure that the tools selected for the analysis are good representatives of the instru-
mentation methods and that our results are less sensitive to tool speci�cities. The
comprehensive list of tools we initially found as candidates for our experimentation
is presented in Table 3.

We ended up with this initial list after reading the related works (some of
them are mentioned in Section 2), and searching for code coverage tools on the
internet. We learned that the area of code coverage maeasurement for Java was
most intensively investigated in the early 2000's. At that time there were several
di�erent tools available, but the support for most of these tools has long ended.
There were tools referred by related literature and some webpages which we could
not even found, so we did not include them in the table.

In the next step, this list was reduced to �ve tools, which are shown in the �rst
�ve rows of the table and marked boldface. For making this shortlist, we established
the following criteria. First, we aimed at actively developed and maintained tools
that were popular among users. We measured the popularity of the tool candidates
by reviewing technical papers, open source projects, and utilizing our experiences
from previous projects. The tools had to handle older and current Java versions
including new language constructs (support for at least Java 1.7 but preferably 1.8
was needed). Finally, we wanted the tool to easily integrate into the Maven build
system10, as today this seems to be a popular build system used in many open
source projects. In addition, the ability of smooth integration reduces the chances
of unwanted changes in the behavior of the system and in the tests used in the
experiments. Finally, among the more technical requirements for the tools was the
ability to perform coverage measurement on a per test basis.

We ended up with �ve tools to be used for our measurements meeting these
criteria. Three of them use bytecode instrumentation, and two are based on source
code instrumentation. In Section 2.3, we discussed three fundamental code cover-
age calculation approaches for Java. However, in the case of bytecode instrumen-
tation, there are no fundamental di�erences in how and which program elements
are instrumented, only the �timing� of the instrumentation is di�erent. Hence, we
include source code instrumentation as one category, but we do not consider both
types of bytecode instrumentation separately in the following.

In the following, we discuss brie�y the selected tools.

10 https://maven.apache.org/

https://maven.apache.org/
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Table 3: Tools for Java code coverage measurement

Supported
Java/JRE

Tool Approach version Active Licence

Clover source 1.3+ present commercial/free
Cobertura bytecode 1.5�1.7 2015 free
JaCoCo bytecode 1.5+ present free
Jcov bytecode 1.0+ present free
SD Test Coverage tools source 1.1+ present commercial

Agitar(One) bytecode 1.6+ present commercial
CodeCover source 1.5�1.7 2014 free
Coverlipse bytecode 1.5 2009 free
EclEmma (JaCoCo-based) bytecode 1.5+ present free
Ecobertura (Cobertura-based) bytecode 1.5�1.7 2010 free
Emma bytecode 1.5 2005 free
Gretel (by Univ. of Oregon) bytecode 1.3+ 2003 free
GroboUtils bytecode 1.4 2004 free
Hansel (Gretel-based) bytecode 1.5 2006 free
InsECTJ bytecode 1.5 2003 free
Jcover both 1.2 � 1.4 2009 commercial
Jtest (by Parasoft) bytecode ? present commercial
JVMDI bytecode 1.4+ 2002 free
Koalog bytecode ? 2004 commercial
NetBeans Code Coverage Plugin bytecode 1.6 2010 free
NoUnit bytecode 1.5 2003 free
PurifyPlus bytecode 1.5+ present commercial
Quilt bytecode 1.4 2003 free
TestWorks bytecode 1.2+ present commercial

4.2.1 Source code-based instrumentation tools

As mentioned earlier, there are comparably much less coverage tools employing this
method. Essentially, we could �nd only two active tools that are mature enough
and meet our other criteria to serve the purposes of our experiment. The tools
selected for the source code instrumentation approach were Clover by Attlassian2

(version 4.0.6), and Test Coverage
11 by Semantic Designs (version 1.1.32).

Clover is the product of Atlassian, and it was a commerical product for a long
time but, recently, it became open source. It handles Java 8 constructs, easily
integrates with the Maven build system, and can measure per-test coverage.

Test Coverage is a commercial coverage tool from Semantic Designs. Native, it
works on Windows, handles most Java 8 code and can be integrated into the Maven
build process as an external tool. Per-test coverage measurement is not feasible by
this tool, because it could only be solved by the individual execution of test cases.

We performed some initial experiments to compare these two tools. The details
and results of this investigation can be found in Appendix A. Results showed that
there were only minimal di�erences in the outputs produced by the two tools, their
accuracy is almost the same.

Finally, we chose Clover to be used in our detailed bytecode-source code mea-
surements because it has better Maven and per-test coverage measurement sup-

11 http://www.semdesigns.com/Products/TestCoverage/JavaTestCoverage.html

http://www.semdesigns.com/Products/TestCoverage/JavaTestCoverage.html
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port, which made it easier to integrate it into our experiments. Also, Test Coverage
had di�culties in handling some parts of our code base, which would have required
their exclusion from the experimentaion.

To be able to use the source code instrumentation results as the baseline in our
experiments, we did a manual veri�cation of the results of Clover by performing
a selective manual instrumentation. A subset of the methods was selected for
each of our subject systems, up to 300 methods per system. Then, we manually
instrumented these methods and ran the test suite. We interpreted the results
in terms of actual test executions and program behavior on the level of source
code. When the results were checked, we found no deviations between the covered
methods reported by the manual instrumentation and by Clover. Thus, we treat
Clover as a �ground truth� for source code coverage measurement from this point
onward.

4.2.2 Bytecode-based instrumentation tools

We found three candidate tools in this category that met the mentioned criteria:
JaCoCo

1 (version 0.7.5.201505241946), Cobertura4 (version 2.1.1) and JCov
12 (version

c7a7c279c3a6). Contrary to the two previous ones, all three tools in this category
are open source. We performed similar experiments to compare the results of these
three tools, and investigated their di�erences. These experiments and the results
are detailed in Appendix B. Our conclusion was that the main cause of the dif-
ferences was mostly due to the slightly di�erent handling of compiler generated
methods in the bytecode by the three tools (such as for nested classes). Since the
quantitative di�erences were at most 4% and they were concerned mostly gener-
ated methods, which are less important for code coverage analysis, we concluded
that one representative tool of the three should be su�cient for further experi-
ments.

We ended up using JaCoCo
1 for the bytecode instrumentation approach thanks

to its popularity and slightly higher visibility and easier integration for use in our
experiments than the other two. This is a free Java code coverage library devel-
oped by the EclEmma team, which can easily be integrated into a Maven-based
build system. JaCoCo has plug-ins for most of the popular IDEs i.e., Eclipse13,
NetBeans14, IntelliJ15, for CI- and build systems e.g., Jenkins16, Maven10, Gra-
dle17 and also for quality assessment tools e.g., SonarQube3. These plug-ins have
about 20k installations/downloads per month in total. In addition, several popu-
lar projects, e.g., Eclipse Collections18, Spring Framework19, and Checkstyle20 are
utilizing JaCoCo actively. JaCoCo has up-to-date releases and an active community.

12 https://wiki.openjdk.java.net/display/CodeTools/jcov/
13 https://www.eclipse.org/
14 https://netbeans.org/
15 https://www.jetbrains.com/idea/
16 https://jenkins.io/
17 https://gradle.org/
18 https://www.eclipse.org/collections/
19 http://projects.spring.io/spring-framework/
20 http://checkstyle.sourceforge.net/

https://wiki.openjdk.java.net/display/CodeTools/jcov/
https://www.eclipse.org/
https://netbeans.org/
https://www.jetbrains.com/idea/
https://jenkins.io/
https://gradle.org/
https://www.eclipse.org/collections/
http://projects.spring.io/spring-framework/
http://checkstyle.sourceforge.net/
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4.3 Measurement Process

In order to be able to compare the code coverage results and investigate the dif-
ferences in detail, we had to calculate the coverages with the di�erent settings
and variations of the tools. In particular, we wanted the data from the two tools
to be comparable to each other, and we wanted to eliminate tool-speci�c di�er-
ences. Hence, we essentially calculated di�erent sets of coverage data, which we
will denote by JaCoCo

glob , JaCoCo, JaCoCosync , Cloverglob , Clover, and Clover
sync , with

explanations following shortly.
The experiment itself was conducted as follows. First, we modi�ed the build

and test systems of each subject program to integrate the necessary tasks for
collecting the coverage data using the two coverage tools. This task included a
small modi�cation to ignore the test failures of a module that would normally
prevent the compilation of the dependent modules and the whole project. This was
necessary when some tests of the project failed on the measured version, and in a
few cases when the instrumentation itself caused some tests to fail. Furthermore,
to avoid any bias induced by �random� tests, we executed each test case three times
and excluded from further analysis the ones that did not yield the same coverage
consistently every time. Eventually, we managed to arrive at a set of �ltered test
cases that was common for both tools. Column �Excluded tests� of Table 2 gives
the number of excluded tests for each subject.

Since we planned a detailed study on the di�erences between the tools, we
wanted to make sure that we could gather per-test case and per-method coverage
results from the tools as well (i.e., which test cases covered each method and the
opposite). Clover could be easily integrated in the Maven build process and there
were no problems in producing the per-test case coverage information we needed.
JaCoCo measurements could also be integrated into a Maven-based build system,
but originally it could not perform coverage measurements for individual test cases.
So, to be able to gather the per-test case coverage information, we implemented a
special listener at �rst. Then, we con�gured the test execution environment of each
program to communicate with this listener. As a result, we were able to detect the
start and the end of the execution of a test case (tools and examples are available
at21). From the per-test case coverage, we then produced a coverage matrix for
each program, which is essentially a binary matrix with test cases in its rows,
methods in the columns and 1s in the cells if the given method is reached when
executing the given test case. From this matrix, we could easily compute di�erent
kinds of coverage statistics including per-test case and per-method coverage.

Due to the mentioned extension of the JaCoCo measurements, we essentially
started with two di�erent kinds of JaCoCo results: the original one without test
case separation, which we will denote by JaCoCo

glob , and the one with the special
listener denoted by JaCoCo. Theoretically, there should be no di�erences between
the two types of measurements, but since we noticed some, we investigated their
amount and causes. Table 4 shows the two overall coverage values for each program
in columns two and three, with the di�erences shown in the fourth column. It can
be observed that JaCoCo results are always somewhat smaller than the JaCoCo

glob

measurements. The di�erence is caused by executing and covering some general
utility functions (such as the preparation of the test execution) in the unseparated

21 https://github.com/sed-szeged/soda-jacoco-maven-plugin

https://github.com/sed-szeged/soda-jacoco-maven-plugin
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version during the overall testing, but these cannot be associated to any of the
test cases. Since these methods have no covering test cases assigned, when we
summarize the coverage of all test cases, the methods remain uncovered. Note,
that Clover does not su�er from this issue as it originally produces per-test case
results.

Table 4: E�ect of technical setup on overall coverage values.

Program JaCoCoglob JaCoCo di�erence Cloverglob Clover di�erence

checkstyle 53.85% 53.77% -0.08% 93.82% 93.82% 0.00%
commons-lang 93.29% 92.92% -0.37% 93.28% 93.28% 0.00%
commons-math 85.59% 84.92% -0.67% 84.65% 84.65% 0.00%
joda-time 91.36% 89.52% -1.84% 89.94% 89.94% 0.00%
mapdb 79.65% 74.64% -5.01% 76.06% 76.06% 0.00%
netty 47.41% 40.92% -6.49% 46.66% 40.18% -6.48%
orientdb 38.40% 27.01% -11.39% 39.84% 28.01% -11.83%
oryx 29.62% 29.51% -0.11% 27.51% 28.75% +1.24%

Another technicality with the Clover tool had to be addressed before moving
to the experiments themselves. Namely, for handling multiple modules in projects
we had two choices with this tool: either to integrate the measurement on a global
level for the whole project, or to integrate it individually in the separate sub-
modules (this con�guration can be performed in the Maven build system). Since
JaCoCo follows the second approach, we decided to con�gure Clover individually for
the sub-modules as well. These measurements will be denoted simply by Clover,
and will be used subsequently.

Three of the eight subject systems (netty, orientdb and oryx) include more than
one sub-module, so this decision a�ected the measurement in these systems. To
assess how such a handling of sub-modules di�ers from the other approach, we
performed global measurements as well (denoted by Clover

glob), whose results can
be seen in the last three columns of Table 4. Clover

glob measurements typically
include a smaller number of covered elements than Clover, but it may happen
that the coverage itself is bigger, which is due to the di�erent number of overall
recognized methods. We will elaborate on the di�erences caused by sub-module
handling in detail in Section 5.2.

5 Results

The experiment results presented in this section follow our RQs from Section 3. As
discussed in Sections 2.3 and 4.2, we treat source code-based instrumentation as
more suitable for source code applications and Clover results as the ground truth,
hence JaCoCo results will be compared to Clover, serving as the reference.

5.1 Di�erences in Unmodi�ed Coverage Values � RQ1

Our �rst research question dealt with the amount of di�erences we can observe in
the overall coverage values calculated by the two tools. In this phase, we wanted
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to compare the raw, unmodi�ed data from the tools �o� the shelf,� because this
could re�ect the situations users would experience in reality as well. However, as
explained in Section 4.3, we needed to perform a modi�cation of the tool execution
environment to enable per-test case measurements, which caused slight changes in
the overall coverages. In this section, we rely on this modi�ed set of measurements,
which is denoted simply by JaCoCo and Clover.

5.1.1 Total coverage

First, we compared the overall method-level coverage values obtained for our sub-
ject programs, which are shown in Table 5. JaCoCo and Clover results are shown
for each program, along with the di�erence of the coverage percentages. Coverage
ratios are given in percentages of the number of covered methods from all methods
recognized by the corresponding tool.

Table 5: Overall coverage values for the unmodi�ed tools

Program JaCoCo Clover di�erence

checkstyle 53.77% 93.82% -40.05%
commons-lang 92.92% 93.28% -0.36%
commons-math 84.92% 84.65% +0.27%
joda-time 89.52% 89.94% -0.42%
mapdb 74.64% 76.06% -1.42%
netty 40.92% 40.18% +0.74%
orientdb 27.01% 28.01% -1.00%
oryx 29.51% 28.75% +0.76%

average 61.65% 66.84% -5.19%

Excluding the outlier program checkstyle, the di�erences between the tools range
in a relatively small interval, from -1.42% to 0.76%. In the following sections, we
seek for the reasons of the di�erences, and we will explain the outlier as well (in
Section 5.2.4).

5.1.2 Per-test case coverage

While Table 5 presents the overall coverage values produced by the whole test
suite, the coverage ratios attained by the individual test cases might show another
range of speci�c di�erences. Table 6a contains statistics about the coverages for
the individual test cases for JaCoCo, and Table 6b shows similar results for Clover.
(Coverage is again the number of covered methods relative to all methods). This
includes minimum, maximum, median, and average values with standard devia-
tion. In Table 6c the di�erence in the average values between the two tools is
shown (positive values denote bigger average coverage values for Clover). It can be
observed that checkstyle re�ects the high global di�erence of Clover and JaCoCo in
the per-test case results too, although not as emphasized as in the global case.
Interestingly, in the case of mapdb, netty, and oryx the average individual di�erences
between Clover and JaCoCo have the opposite sign than the global di�erences.
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Table 6: Per-test case coverages

(a) JaCoCo results

Program min max med avg dev

checkstyle 0.00% 15.87% 4.11% 3.02% 2.36%
commons-lang 0.00% 3.10% 0.20% 0.61% 0.74%
commons-math 0.00% 4.34% 0.26% 0.47% 0.54%
joda-time 0.00% 8.84% 1.24% 1.62% 1.37%
mapdb 0.00% 20.86% 6.28% 7.67% 5.39%
netty 0.00% 3.43% 0.24% 0.32% 0.29%
orientdb 0.00% 9.40% 0.22% 0.58% 1.20%
oryx 0.00% 2.05% 0.33% 0.45% 0.40%

(b) Clover results

Program min max med avg dev

checkstyle 0.00% 30.13% 6.21% 4.66% 3.65%
commons-lang 0.00% 2.93% 0.21% 0.64% 0.76%
commons-math 0.00% 4.34% 0.25% 0.47% 0.55%
joda-time 0.00% 9.93% 1.23% 1.64% 1.39%
mapdb 0.00% 22.08% 6.09% 7.19% 6.08%
netty 0.00% 3.69% 0.26% 0.37% 0.33%
orientdb 0.00% 9.88% 0.24% 0.62% 1.28%
oryx 0.00% 1.79% 0.38% 0.48% 0.40%

(c) JaCoCo to Clover average di�erence

Program avg di�

checkstyle +1.64%
commons-lang +0.03%
commons-math 0.00%
joda-time +0.02%
mapdb -0.48%
netty +0.05%
orientdb +0.04%
oryx +0.03%

Note, that it is not obvious how individual coverage di�erences imply global
coverage di�erence and vice versa. It might happen that individual coverages di�er
greatly but the overall coverage is not changed. For example, one test case is enough
for a method to be reported as covered, and if one instrumentation technique
reports a hundred covering test cases while the other technique reports only one,
the global coverage will not change only the individual ones. Similarly, low average
individual di�erences might result in a high global di�erence; if many test cases
have only one method which is reported di�erently, and these methods are uniquely
covered by those test cases, the small individual di�erences will sum up in a high
global coverage di�erence.

An even more detailed way to compare the per-test case coverages is inves-
tigating not only the overall coverage ratios but the whole coverage vector (it is
the row vector of binary values from the coverage matrix for the corresponding
test case). Figure 1 shows the analysis of the di�erence between the corresponding
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coverage vectors produced by the two tools. The di�erence was computed as the
Hamming distance normalized to the vector lengths. Note, that the two tools may
recognize a di�erent number of methods (more on this in the next section), so
in these cases the vectors were padded with no-coverage marks for the missing
methods. Then, the distribution of the obtained di�erences was calculated and
shown as a histogram. The X axis of the graphs shows the ranges of di�erences
(size ranges are 1%) and the Y axis the number of cases (relative to all cases)
for the given di�erence range. As expected, a lot of small di�erences occurred. In
particular, a signi�cant portion of the vectors had 0 di�erence. On the other end,
none of the programs had vectors with Hamming distance values larger than 20%.
Hence, to ease readability, we omit the values that were 0 or larger than 20% from
the diagrams and show the corresponding numbers instead in the top right corner
of the graphs.

There are two interesting results here. The Hamming distances of mapdb have a
di�erent distribution than that of the other programs (the di�erences go up to 14%
with this program), and not surprisingly, it is also re�ected in the higher average
per-test case di�erences. This shows that while di�erences would occur in either
direction, in most of the cases the JaCoCo coverage turns out to be higher than
the Clover result (in contrast to the others, where on average Clover reports higher
coverage). The second interesting observation is that checkstyle behaves di�erently
than the other programs: the high average per-test case di�erence measured for
this program (1.64%) is not observable from the Hamming distances (more than
90% of the test cases show no di�erence and the others are below 1%). This seems
to be inconsistent at the �rst sight. However, as we will explain it in Section 5.2.4,
checkstyle shows a signi�cant di�erence in the number of methods detected by the
two instrumentation techniques. Thus, the average coverage values for JaCoCo and
Clover used signi�cantly di�erent denominators, while during Hamming distance
computation a common denominator was used and this caused the observed dif-
ference.

5.1.3 Per-method coverage

In the previous experiment, we investigated the coverage from the test case di-
mension. In the next one, we did the same from the method dimension. The
distributions of the Hamming distances were calculated similarly to the per-test
case analysis. The results in Figure 2 show a similar overall picture to the per test-
case analysis. Therefore, we used the same method to exclude and emphasize the
di�erences larger than 20% or equal to 0. The distribution of the distances and
the average per-test case coverage values seem to be unrelated. However, check-

style and mapdb behave di�erently than the other programs in this case, too. The
high average per-test case di�erence measured for checkstyle is not observable from
the Hamming distances, while the high distances in the case of mapdb result in a
relatively high average di�erence.

In this case, we performed another, slightly di�erent analysis. For each method,
we recorded how many of the test cases cover that method according to the two
tools. Then, we counted the number of the methods for which the number of the
covering test cases was equal, and how many times one or the other tool reported
this di�erently. This kind of analysis is useful because it helps to �nd out the



20 F. Horváth, T. Gergely, Á. Beszédes et al.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  5  10  15  20

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

te
s
tc

a
s
e
s

Relative Hamming-distance (% of vector length)

checkstyle

0: 90.17%
>20:   0.00%

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

te
s
tc

a
s
e
s

Relative Hamming-distance (% of vector length)

commons-lang

0: 68.99%
>20:   0.00%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

te
s
tc

a
s
e
s

Relative Hamming-distance (% of vector length)

commons-math

0: 63.85%
>20:   0.00%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

te
s
tc

a
s
e
s

Relative Hamming-distance (% of vector length)

joda-time

0: 19.53%
>20:   0.00%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

te
s
tc

a
s
e
s

Relative Hamming-distance (% of vector length)

mapdb

0:  0.64%
>20:   0.00%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5  10  15  20

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

te
s
tc

a
s
e
s

Relative Hamming-distance (% of vector length)

netty

0: 13.01%
>20:   0.00%

 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

te
s
tc

a
s
e
s

Relative Hamming-distance (% of vector length)

orientdb

0: 46.55%
>20:   0.00%

 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 

te
s
tc

a
s
e
s

Relative Hamming-distance (% of vector length)

oryx

0: 40.87%
>20:   0.00%

Fig. 1: Relative Hamming distances of test case vectors (JaCoCo vs. Clover)

number of situations when the methods are found falsely (not) covered, which
may lead to confusion in certain applications.

When we compared the �number of covering test cases,� we identi�ed three
kinds of di�erences. First, JaCoCo and Clover recognized di�erent sets of methods,
for which the reasons will be explained in Section 5.2.4. Second, for some of the
methods recognized by both approaches, Clover reported at least one covering test
case but JaCoCo did not, and vice versa. The third kind of di�erence is when both
tools reported that a method was covered, but by a di�erent number of test cases.
Figure 3 shows the associated results. In particular, the percentage of the methods
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Fig. 2: Relative Hamming distances of code-element vectors (JaCoCo vs. Clover)

is shown for each program (with respect to the total number of methods recognized
by any of the tools) for the following cases: there is no di�erence in the covering
sets of test cases, and either Clover or JaCoCo reports more covering test cases. In
the latter category, all three kinds of di�erences from above are counted together.

An ideal case would be if only Equals is present, which would mean that the
two tools completely agree in the coverages. However, we can observe that the
situation is quite di�erent. First, many methods are not recognized by the Clover

tool, which can be attributed to various reasons but mostly to the generated code.
A notable outlier is checkstyle with 55% of such methods, the others are below 15%.
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Fig. 3: Summary of di�erences in the per-method coverage

Next, as can be seen in Table 7, there are only a few methods for which Clover

and JaCoCo do not agree in the coverage fact (covered by at least one test case) while
both recognize the method (Czero and Jzero columns). We investigated all these
220 methods manually to �nd out the reasons for the di�erence (see Section 5.2.4).
The other two columns report on the cases when the number of covering test cases
was not zero but di�erent. Column CltJ means �Clover reports less than JaCoCo,�
while JltC is �JaCoCo reports less than Clover�. A signi�cant portion of the methods
in the subjects were a�ected by the inaccuracy to some extent (nearly 30% for
mapdb and over 11% for joda-time, for instance).

Table 7: Di�erences in per-method coverages of code elements of JaCoCo and Clover

Program Czero CltJ JltC Jzero

checkstyle 1 9 16 0
commons-lang 0 21 131 5
commons-math 19 297 239 7
joda-time 0 358 86 2
mapdb 7 450 25 2
netty 91 300 466 76
orientdb 1 104 32 5
oryx 4 8 1 0

As a summary answer to RQ1, the detailed per-test case and per-method mea-
surements, when compared to the overall coverage ratios, may show quite di�erent
trends. In some cases, the overall ratios are re�ected in the detailed data, but not
necessarily: a high overall di�erence is often caused by a little di�erence on a de-
tailed level, and the opposite. In other words, by observing a certain overall level
of inaccuracies, we cannot predict the di�erences on the more detailed levels, and
consequently, the e�ect on possible applications.
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5.2 Causes of Di�erences � RQ2

In this section, we address the possible causes for the di�erences we observed and
presented in the previous section. We used manual inspection, and carefully ex-
amined the di�erences between the coverage results reported by JaCoCo and Clover.
Due to their large number, we could not look into each individual di�erence, in-
stead we manually selected the typical cases making sure that each system and
module was su�ciently covered by our investigation. We also made sure to in-
vestigate all of the most problematic cases shown in columns Czero and Jzero of
Table 7. We involved the original and instrumented versions of the source code and
the bytecode as well. In addition, we examined other artifacts like build con�gu-
ration �les to reveal additional factors that could be the cause of di�erences. The
work was performed by three authors of the paper, �rst by dividing the di�erence
cases equally and performing the inspection individually. Then, each result was
cross-validated by at least one of the other authors to ensure consistency of the
results. Altogether, we manually investigated several hundred individual methods
and test cases one by one during this work. Finally, we were able to identify a set
of common reasons, which we overview in the following.

5.2.1 Cross-submodule coverage

In the case of the projects consisting of multiple sub-modules, Clover and JaCoCo

work di�erently. Clover �rst instruments the whole source, thus, it is able to report
a cross-module coverage. On the other hand, JaCoCo concentrates on the tested
module and does not instrument other modules when it is tested, thus it cannot
report a cross-module coverage. Consider Figure 4 for illustration. Let the system
have three sub-modulesA, B, and C, which de�ne their own dependencies and build
processes including unit tests. In the example, modules A and C include test cases,
while module B does not. The arrows on the �gure indicate the possible calls from
tests to non-test methods and between non-test methods. During the build (and
test phase) of module C, module A is treated as an �external� dependency, which
prevents JaCoCo from instrumenting and measuring the coverage of the methods
of A (along the gray edges starting from module C ). Thus, it only considers a
method of module A covered if the method is invoked from the tests of module A
(along the black edges). On the other hand, Clover aggregates the coverage among
all modules, so if a method from A is used in a test in C (through some gray
edges), Clover considers the method as covered. These di�erent behaviors can lead
to di�erences in the global coverage of the projects. Our subjects netty, orientdb,
and oryx are examples of multiple module projects. The other �ve programs are
single module projects.

Note, that although we investigated only Maven based projects in our exper-
iments, we think that similar problems may occur in other build con�guration
systems as well.

5.2.2 Untested sub-modules

In the case of JaCoCo, if a module does not have any tests its methods will not
be recognized. Consider again Figure 4, where module B does not have any tests,
thus JaCoCo will not be executed for it (grayed in the �gure). Consequently, the
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Fig. 4: Illustration of problems with sub-modules

methods of B will not be recognized and they will be missed from the set of all
methods of the project. Clover, on the other hand, correctly determines the set of
all methods across all sub-modules, and will include methods of modules A, B,
and C.

5.2.3 Test case preparation and cleanup

Some test cases might need a preparation or cleanup, and this is common in some
of the programs. Technically, this is usually implemented as setup and teardown

methods (annotated by @Before, @BeforeClass, @After or @AfterClass in JUnit)
associated to a test class or a set of test methods. These are executed before/after
a set of test cases or before/after each test case that requires them. In the JaCoCo

measurement architecture, these are counted as part of the test cases, i.e., all the
methods executed during these setup/teardown phases are reported as covered
by the corresponding test cases. On the contrary, Clover does not treat setup and
teardown as an integral part of the test case, and as a consequence, if a method
is covered only during the setup or teardown phase of a test case, it will not be
assigned to the test case.

5.2.4 Recognized method sets

In addition to the previous three cases, a further inaccuracy exists between the
JaCoCo and Clover results regarding the method sets, which is due to the fact that
the set of methods detected from the source code and the bytecode can be dif-
ferent. There are many reasons for this; some of them are the inherent problems
of the measurement and some of them are tool speci�c. Table 8 introduces our
measurements in this regard (also see Figure 3). The second column shows how
many methods are recognized by both tools, and how many are recognized only
by Clover or JaCoCo which are given in the third and fourth columns, respectively.
The last column contains the sum of these three values, i.e., the total number of
methods recognized by Clover and JaCoCo together.

Observe that several methods are recognized only by Clover or JaCoCo. The sec-
ond group is not really surprising because we expected in advance a relatively
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Table 8: Number of all methods

Program Both Clover only JaCoCo only Total

checkstyle 2 653 2 3 263 5 918
commons-lang 2 783 13 154 2 950
commons-math 7 080 87 221 7 388
joda-time 3 884 14 76 3 974
mapdb 1 585 23 150 1 758
netty 8 195 35 1 297 9 527
orientdb 13 097 21 1 306 14 424
oryx 1 560 2 244 1 806

large number of generated methods in the bytecode (due to the necessary mecha-
nisms of the Java language, which will be elaborated shortly). However, we were
somewhat surprised to see that some methods were recognized only by Clover. This
section also investigates the reasons for this di�erence. In any case, the impact of
the di�erence in the recognized method sets can be signi�cant. The results from
section 5.1 were all produced for the two tools which were based on a di�erent
total number of methods. This makes di�cult, for instance, the comparison of
the overall coverage ratios because they involve di�erent denominators for the two
tools.

The actual causes of the di�erent method sets are overviewed below.

Test methods Unit tests themselves should not be investigated for coverage, hence
all methods of unit test classes needed to be excluded from further analysis. JaCoCo
relies on the project description to determine the test methods. On the other hand,
Clover tries to determine test methods by checking the class and method names, and
in most cases this is reliable. However, in some cases when the test class names
did not follow the naming conventions, Clover misclassi�ed the tests as regular
methods.

Compiler generated code The di�erence in favor of JaCoCo consisted of various
methods generated by the Java compiler, e.g., default constructors (if they were
not given in the source), �<clinit>� methods, and access methods in the case of
some nested class operations. Generated methods are considered for the coverage
analysis by most bytecode instrumentation tools � including JaCoCo, however a
source code-based tool like Clover may not include them. This issue results in
additional methods appearing in bytecode coverage results, which can increase or
decrease the overall coverage value.

Generated code All programs we investigated included code constructs that re-
sult in compiler generated methods, which are not visible in source code, only
in bytecode (e.g., default constructors and initializers). On the other hand, some
projects generate a portion of the source code of the application on-the-�y using
some external tools like ANTLR, or a con�guration setting. In particular, most
of the big di�erences between JaCoCo and Clover results of checkstyle were caused
by this reason (see Table 5). The two tools handle this kind of code di�erently:
while JaCoCo includes them in the same manner as any other regular code, Clover
excludes them from the analysis. Since the tests of checkstyle do not cover any of
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the generated code, the result is that JaCoCo uses a larger denominator than the
other tool with a similar amount of covered elements in the nominators. In general,
instrumentation tools may handle this situation di�erently, but usually they can
be con�gured to consider the generated section of the source code as part of the
code base.

5.2.5 Instrumentation

We found that in some cases the instrumentation itself modi�ed the behavior of the
tests, which might have in�uenced the list of executed methods. An example is in
the joda-time program, where two speci�c test cases failed after being instrumented
by Clover. This is because the tests utilize Java re�ection to query the number of
subclasses of the tested class, and � as Clover implements coverage measurements
and test case detection by inserting subclasses into the examined class � these two
tests failed on assertions right at the beginning of the test case. Similar failures
occurred in the checkstyle project as well, where two of the test cases check if the
classes they test have a �xed number of �elds. However, with the additional �elds
that Clover inserts in the classes, these assertions fail.

5.2.6 Exception handling during coverage measurement

When JaCoCo instruments the bytecode, it inserts probes into strategic locations by
analyzing the control �ow of all methods of a class. If the control �ow is interrupted
by an exception between two probes, JaCoCo will not consider the instructions
between the probes to be covered. The reason is that if a method throws an
exception at the beginning of the caller method, JaCoCo marks the caller method
as not covered because it misses the instrumentation probe on the exit point of
the method. However, the instrumentation strategy of Clover is able to handle this
situation and it will mark the caller method as covered because it simply considers
the probe at the entry point of the method. Another reason for this issue was
that JaCoCo computes lower coverage for tests that are expected to throw some
exceptions (i.e., annotated as @Test(expected=SomeException). It is related to
the above mentioned exception handling, and it is a known issue of JaCoCo.

5.2.7 Name encoding

A common reason for the di�erences was related to enums, anonymous and nested
classes. The problem is that in some cases a method of such a class may get
additional parameters when compiled to bytecode to access the members of its
enclosing class. In other cases, the methods even lost some of their source code
parameters. This resulted in di�erent signatures of the source code and bytecode
instance of the same method.

For example, a constructor like MyEnum(String name) of an enum type in the
pack package will have the signature pack/MyEnum/MyEnum(LString;)V in the
source code, while � due to technical requirements � the bytecode-based tools will
see it as pack/MyEnum/MyEnum(LString;ILString;)V. Another example is when
there is a private static class named Bar with a private constructor Bar(final Foo

f) nested in a �nal class named Foo. The source code based tools recognize the
constructor as Foo$Bar(LFoo;)V, while bytecode-based ones will see Foo$Bar()V.
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Such missing or extra parameters in the bytecode make the signatures of these
methods di�erent in JaCoCo and Clover measurements. This di�erence prevented
the automatic assignment of the methods of the two measurements and caused
the reduction of JaCoCo coverage counts in our experiments.

5.2.8 Other

We also found some other, occasional reasons for the deviations. The �rst one was
the di�erent handling of some built-in methods of the Object class (for example,
equals, finalize or hashcode). If these were rede�ned through multiple inheri-
tance levels, both tools occasionally produced incorrect results for these methods.
Due to this di�erence, both JaCoCo and Clover could report lower coverage on the
same project. Another reason was that Clover had issues detecting the test cases
that were called from test cases (see, for example, the class c in commons-math),
which resulted in incorrect elements in the coverage results. Although it is possi-
ble to avoid calling test cases from test cases (even transitively), if this happens
for any reason the resulting detailed coverage data might be unreliable. Note that
the overall coverage of the test suite will not be in�uenced by this issue because
the coverage will not be missed just recorded at a di�erent program point.

5.2.9 Summary of di�erence causes

During our investigations of the di�erences listed above, we used the following
approach. We tried to eliminate or �x the issues one by one in the hope to reach
a state when the measurements produced by the two tools were synchronized.
This way, we would have been able to categorize each di�erence as tool-speci�c
or approach-speci�c. Finally, we were not able to uniquely classify all di�erence
causes to one of the two categories, as we detail below.

First, we excluded the test cases that were failing because of the instrumen-
tation, but this was rather a workaround than a solution. Second, we eliminated
cross-module related issues by measuring these sub-modules individually, and we
�ltered out those methods from the covered set of a test case that were executed
only during the setup/teardown phase. This was appropriate to to eliminate certain
kinds of di�erences in our experiments, but in real applications it might eliminate
important coverage information (depending on the de�nition and implementation
of a test case and whether module or whole system coverage is needed). In ad-
dition, we relied on the Maven project hierarchy and examined the source path
information of the classes, and �ltered out those methods that were located in
the test source directories, e.g., src/test. This was required to �lter out methods
that were incorrectly treated as non-test methods.

To mitigate the remaining inaccuracies, we tried to synchronize the method
sets (to make the individual test case and method coverage result comparable),
for which we de�ned a set of criteria. We thought that, as software engineers usu-
ally work with source code, the synchronized set should be the set of methods
actually appearing in the source code. We wanted to verify if Clover produced this
list accurately. For that we used the SourceMeter static analysis tool22, and found
that there were no di�erences between the two lists in any of the programs. Thus,

22 https://www.sourcemeter.com/

https://www.sourcemeter.com/
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for each subject program, we created a list of methods based on the source code
(excluding e.g., compiler-generated methods). We also made an assignment be-
tween the JaCoCo and Clover methods by hand. With this workaround � although
the two tools recognized the same methods with di�erent names � we could com-
pare their coverage values for the individual methods.

We denote the results using these sets as JaCoCo
sync and Clover

sync results. The
important property of the synchronized sets is that they are based on the same
set of methods, hence in this step we eliminated inaccuracies in the method sets
regardless of their reason.

To summarize, Table 9 shows how the issues we found persist in the di�erent
measurements. The �rst column names the issue, the second one states whether
we considered the issue being clearly tool speci�c, approach speci�c, or something
in between. We did not categorize any of the issues as purely �approach� spe-
ci�c because we think that any of the potential di�erences could be theoretically
aligned in source code and bytecode instrumentation. However, a number of such
issues are not expected to be handled equivalently in a realistic tool or this would
be impractical. For example, the standard name encoding in bytecode would be
unusual to identically follow in source code (see the enum example above).

The third column in the table shows whether the corresponding issue was
present in the JaCoCo

glob measurements, and the last two columns show whether the
issue caused di�erences in the two kinds of comparisons we performed. We found
that although there were some tool speci�c issues, most of them are generalizable,
and will probably be applicable to other bytecode and source code instrumentation
based tools. Indeed, we found that most of the speci�c issues of JaCoCo are present
in Cobertura and JCov, the other two bytecode instrumentation tool we considered,
as well.

Table 9: Presence of issues with di�erent levels of �ltering

Issue tool spec. Jglob J/C J/Csync

1. cross-submodule coverage yes � � �
2. untested sub-modules yes � � �
3. test case preparation and cleanup yes • • �
4. recognized method sets partially • • �
5. instrumentation yes � ◦ ◦
6. exception handling during cov. measurement yes • • •
7. name encoding partially • • ◦
8. other partially • • •

Measurement (Column 3) �: issue is not present in measurement;
•: issue is present in measurement. Comparisons (Columns 4�5) �
: caused di�erences can be and are automatically eliminated; ◦: caused
di�erences are manually eliminated; •: di�erences are present.

5.3 Di�erences Due to the Instrumentation Approach � RQ3

In the previous section, we listed the causes of di�erences in the coverages pro-
duced by the two measurement tools. Some of them turned out to be due to tool-
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speci�c design decisions, while others seemed to be inherent due to the di�erences
in the fundamental approach, namely bytecode vs. source code instrumentation.
Finally, in some cases we could not determine if a speci�c di�erence belonged to
the �tool-speci�c� or �approach� category. By using the synchronized method sets
and eliminating other tool-speci�c di�erences that were possible, we arrive at the
JaCoCo

sync and Clover
sync sets of measurements. The di�erences in these we at-

tribute to most probably the fundamental di�erences in bytecode vs. source code
instrumentation, however we cannot be sure that there are no more tool-speci�c
issues present. In this section, we quantitatively compare these two coverages. We
take a look again at the total coverage ratios, as well as the per-test case and
per-method details.

Table 10 shows the comparison of all three aspects at a general level, in which
the �nal results of Section 5.1 are repeated for convenience, and the corresponding
data are presented for the synchronized versions.

The di�erences of the overall coverages are shown in the columns 2�7 of the
table. As expected, in the synchronized set of results there are fewer di�erences
between the two measurements (the largest di�erence is 0.64%, in contrast to
40.05% of the outlier in the previous set). These results also indicate that the
coverage of JaCoCo is never greater than that of Clover with the synchronized set of
methods. This suggests that bytecode instrumentation typically demonstrates the
safe but imprecise case, because a smaller coverage may lead to wasted e�ort but
not to false con�dence.

Table 10: Di�erences in overall coverage with the original and synchronized ver-
sions of the tools
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checkstyle 53.77% 93.82% -40.05% 93.81% 93.81% 0.00%
commons-lang 92.92% 93.28% -0.36% 93.12% 93.30% -0.18%
commons-math 84.92% 84.65% +0.27% 85.23% 85.35% -0.12%
joda-time 89.52% 89.94% -0.42% 90.17% 90.19% -0.02%
mapdb 74.64% 76.06% -1.42% 76.03% 76.11% -0.08%
netty 40.92% 40.18% +0.74% 39.79% 40.43% -0.64%
orientdb 27.01% 28.01% -1.00% 28.02% 28.05% -0.03%
oryx 29.51% 28.75% +0.76% 28.67% 28.67% 0.00%

average 61.65% 66.84% -5.19% 66.86% 66.99% -0.13%

The comparison of the per-test case results is contained in the columns 2�3
of Table 11. Here, the overall Hamming distances can be compared, which have
been computed jointly for all test cases from the respective coverage matrices.
It can be observed that the average di�erences are reduced in di�erent degrees:
while in the case of commons-lang the reduction was minimal, the di�erence almost
disappeared in the case of oryx. The reduction is dependent on the internal structure
and relations of the programs' methods and tests, and cannot be directly predicted
from the di�erent properties we measured in other experiments.
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Table 11: Di�erences in per-test case and per-method coverages with the original
and synchronized versions of the tools
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checkstyle 0.005% 0.002% 25 1 16 0
commons-lang 0.014% 0.012% 152 5 132 5
commons-math 0.034% 0.005% 536 26 251 7
joda-time 0.157% 0.031% 444 2 308 2
mapdb 3.062% 1.165% 475 9 81 3
netty 0.155% 0.013% 766 167 484 98
orientdb 0.013% 0.008% 136 6 61 6
oryx 0.187% 0.004% 9 4 1 0

average 0.450% 0.160% 318 28 167 15

The per-method coverage di�erences are also presented for the �nal results
for the respective measurement levels in columns 4�7 of Table 11. They show
the numbers of test cases when there is a disagreement between the two tools
according to the two levels of strictness, as explained in Section 5.1.3. In particular,
columns �orig. strict� and �orig. nostrict� correspond to the sums CltJ+JltC, and
Czero+Jzero from Table 7, respectively, while the other two are the same for the
synchronized measurements. As can be observed, the synchronization improves
this measurement as well, and the improvement rates are again very di�erent for
the individual subjects. The counts roughly halved both in the strict and non-
strict cases, however there are notable cases when this was more signi�cant (e.g.,
mapdb) and also where it was much smaller (e.g., commons-lang).

Answering RQ3 is not easy: while we have seen that there might be notable
di�erences in the �synchronized� data sets showing di�erences due to the instru-
mentation approach, tool speci�c ones cannot always be sorted out reliably.

5.4 Impact on Test Case Prioritization and Test Suite Reduction � RQ4

In Section 2.2, we listed leading applications of code coverage measurement, and
how they are possibly impacted by the inaccuracies of the tools. The results pre-
sented earlier in this section showed that the inaccuracies may directly impact
some of the applications, most notably white-box testing, and that this can be
directly measured/predicted. However, it does not directly follow if the inaccura-
cies would have a similar e�ect in applications where code coverage is indirectly
used to achieve a di�erent purpose. We selected code coverage-based test case pri-
oritization and the related test suite reduction (Rothermel et al, 2001; Yoo and
Harman, 2012) to quantify the impact of code coverage inaccuracies.

Informally, test case prioritization takes the list of test cases of a test suite
and produces a speci�c order of their execution, which is believed to maximize the
chances of early defect detection, localization and correction. Typically, defect de-
tection is the primary concern, but in this work, we concentrate on both detection
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and localization. The goal of the former is to have failing test cases because they
indicate that there are faults somewhere in the system. On the other hand, in fault
localization we aim to �nd the causes of the faults, in other words pinpoint to the
location of actual defects in the code. Both activities may be aided by the use of
code coverage information, but coverage needs to be used di�erently:

� For fault detection, the usual approach is to maximize coverage at the beginning
of the prioritized list because it is naturally expected that elements that are
not covered by the test cases may not exhibit faults.

� On the other hand, successful localization highly depends on how much the test
cases are able to exhibit di�erent program behavior; i.e., if the test cases show
similar behavior on di�erent program elements, these elements may be indis-
tinguishable from this respect. Consequently, for fault localization, those test
cases should be chosen high in the priority that distinguish between di�erent
program elements This is often quite di�erent than simply highest coverage.
Many fault localization algorithms exploit this fact, such as Raptor (Gonzalez-
Sanchez et al, 2011), FLINT (Yoo et al, 2011), and Partition-based (Vidács
et al, 2014).

A practical use of the prioritized list of test cases is that not all of them are
executed, but only the �rst N elements of the prioritized list are selected. This can
happen in various settings. First, if faults are detected or localized the testing may
be terminated. Second, test selection may be terminated at the �rst point where
maximum coverage (or a suitable fault localization metric) is reached. Finally, if
there are resources to execute only a �xed number N of tests, this is a suitable ap-
proach because the chances of successful testing are maximized by using a suitable
prioritization algorithm. The test suites are then either minimized by permanently
discarding the remaining test cases or limited only for the execution (Yoo and Har-
man, 2012). Section 5.4.2 deals with test suite reduction, which is based on the
prioritized list of test cases investigated in Section 5.4.1.

Our rationale for selecting these applications is that they have solid algorithmic
background and the outcome of the algorithms may signi�cantly in�uence test
e�ectiveness and e�ciency.

In this section, we rely on our �rst set of coverage data used in Section 5.1 for
our Research Question 1. These are the �raw� coverages produced by the tools,
and are not in�uenced by our �synchronization� e�orts for Research Questions 2
and 3. We do this because, in most cases, the coverage tools and their results are
used �as is�: the users do not make an e�ort to additionally process the data. Thus,
we use coverage data denoted by JaCoCo and Clover for these comparisons.

5.4.1 Test case prioritization

In this experiment, we used four test case prioritization strategies: three optimized
for maximal fault detection, and one for fault localization. There are many strate-
gies for coverage-based fault detection prioritization, but the so-called general and
additional are probably the most widely used ones (Rothermel et al, 2001). We
will also consider a variation of the second one called additional with resets.

The general strategy greedily assigns a higher rank to those test cases that
produce highest absolute coverage (that is, the test cases are simply ordered by
their coverage value). The additional algorithm is a bit more clever in that it looks
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for test cases that contribute the most to the not yet covered elements (that is,
it starts with the highest covering test case and then it greedily selects the test
cases based on their additional coverage). A common issue with these approaches
is that once a high coverage is attained, the algorithm cannot select but randomly
from the remaining test cases. Therefore, an extension to the second algorithm
(additional with resets) restarts the greedy selection once no improvement in the
additional coverage can be obtained. In particular, it resets the coverage counter
to zero whenever the maximum coverage is reached, and continues to append test
cases to the prioritized list as if it was creating a new list from the remaining test
cases (Rothermel et al, 2001).

Our selected algorithm for fault localization aware test case prioritization was
the partition-based algorithm (Vidács et al, 2014). The basic idea behind this algo-
rithm is that the code elements in the coverage matrix are partitioned according to
their coverage patterns produced by the test cases (that is, equal matrix columns
constitute a partition). Since it is advisable that the code elements are distinguish-
able from each other during fault localization, the �nest partitioning is sought in
this prioritization. The algorithm greedily selects the test cases that best divide
the existing partitions that were obtained with the earlier test cases. To do this,
it divides in each step the code elements into covered and uncovered subsets, and
then it is recursively invoked to these subsets to choose the new test cases.

These four algorithms typically produce quite di�erent rankings in the priori-
tized lists, but all of them are highly sensitive to the coverage data. Some of them
mostly depend on the overall coverage (such as general), while �ne details in the
coverage patterns may have big in�uence on the others, for example partition-

based. Hence, in the �rst experiment, we wanted to compare for each algorithm
how their prioritized lists di�er when computed by the two coverage tools.

Note that certain test suite prioritization algorithms (and reduction algorithms
as well) make arbitrary choices in the cases when more than one item has the same
priority value. Therefore, due to their non-deterministic nature they could produce
di�erent results even on the same coverage data. Hence, we designed our algorithms
and their inner data structures to be deterministic.

To compare the prioritizations, we used Kendall's τB rank correlation coe�-
cient, which is known to be suitable for handling ties.

Table 12: Prioritization: Kendall's τ correlation between JaCoCo and Clover results

Additional
Program General Additional with resets Partition-based

checkstyle 0.801 0.274 0.666 0.049
commons-lang 0.890 0.373 0.751 0.043
commons-math 0.886 0.267 0.682 0.055
joda-time 0.940 0.245 0.672 0.018
mapdb 0.695 0.124 0.815 0.064
netty 0.567 0.129 0.476 0.266
orientdb 0.956 0.329 0.736 0.364
oryx 0.684 0.440 0.659 0.379
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Table 12 summarizes the associated results. We can observe that the correla-
tion for the general strategy is high or moderate for all programs, leading to a
conclusion that the di�erences in the coverage tools have relatively low in�uence
on the �nal rankings produced by this algorithm. The ranked lists produced by
the additional with resets strategy show similar correlation, only slightly lower
than for the general strategy (an exception is subject mapdb). However, the third
column shows that the additional strategy is much more in�uenced by the minor
di�erences in the coverage measurements: the highest correlation for this strategy
(0.44) is much worse than the lowest one of general (0.567), and it has some really
low values too (0.124).

These results are caused by the di�erent behavior of the algorithms and how
they react to the individual di�erences of the coverage vectors. In all of them, when
there are more test case candidates to be selected as the next item of the prioritized
list, the selection is arbitrary (the �random e�ect�). The good performance of the
general strategy can be attributed to the fact that before reaching the maximum
coverage, the overall coverage is dominant and the smaller di�erences do not have
a big impact here. In the case of this algorithm, the random e�ect will be smaller,
and it will increase only after reaching the maximum coverage. On the other hand,
the di�erent behavior of the additional and additional with resets strategies is
more related to the random e�ect: additional reaches maximum coverage relatively
early and then it starts extending the list with elements in an arbitrary order.
The additional with resets strategy is more deterministic: after the reset it will
work with the same determinism again and again, hence it will more resemble the
behavior of general.

Finally, the partition-based strategy for fault localization prioritization is the
most sensitive to the coverage di�erences. Except for maybe orientdb, oryx and netty,
it shows no correlation at all. Note that these are the subject programs that have
modules, the others are single module programs. In addition, these programs have
low coverage. When selecting the next item in the ranked list, the partition-based
strategy prefers the test case that best splits the method sets into two parts.
In each step, the algorithm tries to split a partition into parts of mostly equal
size, and select the best test case for it. But all the uncovered methods form
one partition, which is very large in these cases (due to the low coverage). When
this large partition is to be split, the selection of the test case is arbitrary, and
the implementation will select the �rst test case in the original list. Thus, the
correlation between the two ranked lists will depend on the correlation of the
original lists. This correlation is higher for the modular programs because the list
of the test cases are implicitly grouped by the modules.

The correlation values from the previous table were computed for the whole
prioritized lists of test cases. However, often only the beginning of the prioritized
list is used (such as for test suite reduction, which is discussed in the next section).
Further, the di�erences in the code coverage measurements can vary depending
on the stage of the algorithm: they may be di�erent among the �rst selected test
cases and later, when more test cases are already processed. Hence, to see these
e�ects in more detail, we computed the correlation values for each selection size
starting from the �rst test case in the prioritized list up to the whole set.

More precisely, Kendall correlation coe�cients were computed for each pre�x
of the ranked lists, which are shown in Figure 5. In these graphs, the X axis
shows how many elements from the beginning of the two prioritized lists were
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Fig. 5: Test case prioritization: correlation for di�erent selection sizes and strategies

considered for computing the correlation (in percentage), while axis Y shows the
actual correlation value. The curves correspond to the di�erent programs, but
we did not distinguish between them because it bears no information for this
discussion. The last value in each graph corresponds to the values in Table 12. As
can be seen, the di�erent strategies behave di�erently, but it is common that, at
the beginning, all strategies are very sensitive to the small coverage di�erences.
Also, the calculation of the correlation is statistically less signi�cant with smaller
number of elements in the data sets. In particular, the corresponding p-values are
greater than 0.05 for the �rst 20�50 elements. Hence, the investigation about the
data in these charts should not focus on the very beginning of the curves (also
graphically they show quite erratic behavior).

The speci�c observations we can make from this data are the following. In the
case of the general strategy (Figure 5(a)) the curves are forming a V-shape: the
correlation is suddenly reduced and then grows back as we compare more and more
elements of the prioritized lists. The characteristics of these drops are program
dependent, but at some point the correlations grow back and become steady when
more elements are considered. This shows that small coverage di�erences have
local in�uences on the ranking, but globally they have small impact.

The results for the additional strategy (Figure 5(b)) are di�erent: as this strat-
egy incorporates some random factor once the test cases in the �rst part of the
prioritized list give full coverage, the correlation after this point starts to decrease
as the e�ect of the arbitrary selection accumulates. However, the curves for the
di�erent programs are more similar to each other than those of the general strat-
egy.

Results for the additional with resets strategy (Figure 5(c)) are very similar
to the results of additional until the �rst reset (it is typically between 10 and 30
percent of the test cases). However, due to the elimination of the random factor
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with the reset, in the remaining parts of the curves they show similar behavior
to the general strategy. As more elements are compared, the correlation between
the two lists grows until the full lists are compared, and this �nal correlation is
comparable to the general strategy.

Since the additional with resets strategy is often seen as the best coverage-
based greedy strategy for fault detection prioritization, this result indicates a high
risk when using di�erent code coverage tools for this application. Namely, when
a relatively low number of tests are selected, the in�uence of the coverage tool is
quite high on the results.

Finally, the partition-based strategy (Figure 5(d)) behaves very di�erently. As
mentioned above, this strategy selects the next test case in the ranking, which best
splits the method sets into two parts. As a result, the �rst very few elements on the
two lists for each program are expected to be the same given the relatively small
di�erence in the coverage vectors. But further selections use smaller partitions of
the method sets, thus it is more probable that multiple test cases indicate the
same �best� split. In this case, the selection of the next one is arbitrary among
the candidates. It might happen that two �best� test cases split the corresponding
method partition in di�erent ways, which heavily a�ects the subsequent selections
and rankings.

For 5 programs, after the �rst erratic values of the short list comparisons, the
correlation drops down showing that the lists derived from the two coverage mea-
surements are very di�erent; practically, we cannot observe any correlation between
them due to the cumulative di�erences mentioned above. These are single module
programs, where all test cases are potential candidates. However, the modular ar-
chitecture programs orientdb, oryx, and netty have an inherent partitioning aligned
with the module boundaries. This means that the number of potential candidates
for a selection is limited and randomness has smaller e�ect. The partition-based

strategy results are aligned with these inherent partitions regardless of the cov-
erage measurement method; the algorithm works like if it were ranking the test
cases for each module independently. This results in more correlated rankings than
for single module programs. The results for all the programs show that the �rst
2�3 elements match exactly, the next few are the same but in di�erent order and
from there onward the lists show very low overall correlation. To conclude, the
partition-based prioritization algorithm is very sensitive to the small coverage dif-
ferences of the individual test cases, which is also true for multi-module programs,
but especially holds for single module ones.

5.4.2 Test suite reduction

As mentioned, in test suite reduction, a given number of elements from the be-
ginning of the prioritized list is selected. For this experiment, we followed two
scenarios. In the �rst one, we stop the selection when the current subset of the
test cases reaches the coverage of the unreduced test suite, and then compare the
attained reductions. In the second scenario we measure the di�erences of the cover-
ages when any �xed size of the reduced subset is used. These experiments include
reductions based on the general, additional and additional with resets prioritization
strategies.

Note, that in both scenarios the measurements for additional and additional

with resets strategies are the same: before the �rst reset additional with resets
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is equivalent to additional, but since the �rst reset occurs when the maximum
possible coverage is reached, the di�erences in the coverages after this point will be
constant. So, we will present additional and additional with resets results together.

Table 13 shows the results for the �rst scenario: namely, the reduction values for
the three fault detection algorithms that could be obtained for the subsets of test
cases, which achieve the original coverage of the unreduced sets. The reduction
is given as a relative number of eliminated test cases. Apart from the obvious
advantage of the additional strategies over general (which is not the topic of this
paper), the di�erences between the two coverage tools are not that obvious as we
have seen for test case prioritization. For the general strategy, mapdb seems to be
an outlier; the di�erence between the reduction rate of the results achieved by
the two coverage methods is more than 11%, which could be a consequence of
the high Hamming distances between the coverage vectors for this program (see
Figures 1 and 2). On the other hand, checkstyle and oryx, for instance, have very
di�erent Hamming distances but still they demonstrate similar test suite reduction
di�erences.

Table 13: Test suite reduction without reducing coverage for the di�erent strategies

Additional
General Additional with resets

Program JaCoCo Clover Di�. JaCoCo Clover Di�.

checkstyle 0.20% 3.03% 2.83% 75.95% 78.04% 2.09%
commons-lang 0.69% 0.72% 0.03% 69.95% 70.16% 0.21%
commons-math 0.08% 0.28% 0.20% 77.04% 77.53% 0.49%
joda-time 0.54% 0.92% 0.38% 76.01% 76.21% 0.20%
mapdb 0.11% 11.17% 11.06% 89.28% 89.34% 0.06%
netty 0.23% 0.57% 0.34% 87.85% 88.40% 0.55%
orientdb 0.25% 0.25% 0.00% 70.63% 71.76% 1.13%
oryx 7.21% 3.36% 3.85% 59.13% 60.09% 0.96%

The results for our second reduction strategy are shown in Figure 6. Here,
we calculated the e�ects of the di�erences for various �xed reduction values from
0�100% (in these diagrams, the test suite sizes increase from left to right). We
used general, additional, and additional with resets strategies, and calculated the
relative di�erences of the overall coverage values compared to Clover. The X axis
represents the number of test cases (relative to the size of the whole test suite)
and the Y axis shows the di�erence itself. Again, we do not distinguish between
the subjects because only the trends are important.

It can be observed that the behavior of di�erent programs in the general mea-
surements (Figure 6(a)) are di�erent, but in general, the smaller size the reduced
suite has, the greater di�erence can be measured between the coverages of the re-
duced suites. In other words, a higher reduction rate introduces more uncertainty
in the results. In general, we found that if the size of the reduced suite was over
20% of the full suite then the di�erence of coverages mostly remained under 5%.
The shape of the di�erence depends on the properties of the subject program and
its tests. The situation is di�erent for the additional measurements (Figure 6(b)).
The decrease of coverage di�erences is clearly visible, and it is even much faster.
Except for one program, the di�erence of coverages remains below 2% at a 10%
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Fig. 6: Test suite reduction: coverage di�erences for general and additional strate-
gies

test suite size and above. The fast convergence is caused by the algorithm itself,
which aims to reach full coverage as quick (with as few test cases) as possible.
Thus, the two coverage values will approach their maximum with monotonically
smaller steps, which implies gradually smaller and smaller di�erences.

5.4.3 Summary of impacts

In summary for our RQ4, our investigations about the impacts of code coverage
inaccuracies showed that they were really unpredictable on the chosen applications.
For some algorithms the impacts were high and less for the others. A notable
example is the test case prioritization algorithm additional with resets, which is
often considered the best greedy strategy. The in�uence of the coverage tool was
quite high in this case, when a relatively low number of tests were selected (which
is often the case in practice).

6 Discussion

6.1 Interpretation of the Results

In this work, we performed experiments on the granularity of Java methods to �nd
out the di�erences between the bytecode instrumentation approach and source
code instrumentation with respect to the �nal code coverage results. In particular,
most of the detailed experiments have been performed using two tools, JaCoCo and
Clover, which we selected as representatives of the two instrumentation approaches.
We selected Clover as the source code-based tool from two candidates in our shortlist
(which produced very similar results), and used it as the comparison basis in
the experiments. We started with three tool candidates in the other category,
but we found out that they produce similar results, so we selected JaCoCo as the
representative of bytecode-based approaches. In our experiments, we relied on real
size Java systems with realistic test suites, so we believe that testing practitioners
and researchers can bene�t from our �ndings as well.

We have seen that the bytecode level and the source code level coverage mea-
surements can produce very di�erent results (answering RQ1). In general, the
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overall di�erences are low (below 1.5%), but the di�erent properties of the sub-
ject systems and the measurement methods may result in very large di�erences as
well. This can be exempli�ed by the subject checkstyle, where the generated meth-
ods caused a di�erence of about 40%. Furthermore, di�erences can be identi�ed in
both directions: in some cases JaCoCo reports more coverage than Clover and vice
versa.

On a more detailed analysis level, per-test case and per-method di�erences
also showed discrepancies in both directions. Overall, in some cases the di�erences
are minimal (below 1%), however since this is very much project dependent, we
measured relatively high di�erences as well (higher than 20% in some cases; see
Figures 1 and 2). The di�erences might a�ect a large portion of the methods of a
program, even around 30%, as it can be observed from Table 7.

The causes of these di�erences are various (RQ2). There are tool speci�c ones
like the di�erent sub-module handling of the used tools, or the handling of test
setup and teardown methods; these are independent from the selected instrumen-
tation method. These can be eliminated by �ltering the results (although this
might not be fully automated). Other tool speci�c features like the in�uence of
the instrumentation on the behavior of the subject system tests are integral parts
of the tools and in general cannot be avoided. Finally, deviations like the di�erent
issues on method set recognition and name encoding are mostly determined by
the instrumentation method, not the tool.

Theoretically, some of these di�erences could be eliminated using additional
information but not all (answering RQ3). In order to assess the amount of inherent
di�erences that are not attributed to tool speci�c issues, we tried to eliminate the
di�erences, and we managed to do so in many cases by adjusting or �ltering the
measurements (see Table 9). However, the remaining di�erences still caused devia-
tions in the coverage values, though they were much lower than the di�erences for
the unmodi�ed tools: at most 0.64% in the total coverage (see Table 10). These re-
sults show that with a careful tool design, more predictable results could have been
achieved, but the full alignment of the di�erent tools seems practically impossible.
Since it is not expected from a tool user to make such corrective actions in the
�rst place, as a general advice, tool users should examine the particular working
methods of the tool and be aware of its limitations. Our list of possible reasons for
the di�erences may be used as a guideline on how to avoid and workaround the
inaccuracies of the bytecode level instrumentation tools with respect to the source
code instrumentation approaches, and in particular to the tools we investigated.

In the last part of our experiments, we checked how the di�erences in the cov-
erage measurement in�uenced the results of an application that used coverage as
its input (RQ4). We applied di�erent test case selection and prioritization algo-
rithms which were all based on the coverage values computed by the two tools.
We found that the coverage di�erences had various in�uence on the results of the
algorithms; the impact was dependent on the di�erent properties of the subject
programs and the algorithms themselves (answering RQ4). However, for example,
the most popular test prioritization algorithm, additional with resets, might pro-
duce a low correlation of 0.476 between the results of the two tools, which indicates
that any practical application or research based on a tool with such inaccuracies
imposes a high risk of the validity of the results (see Table 12).

We systematically searched for correlations between the subject program prop-
erties (modularity, method and test case numbers), raw measurement values (total
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and per-test case coverages, coverage di�erences), and the application results (cor-
relations, reduction rates), but we did not �nd notable dependencies that could be
generalized. It seems that the in�uence of coverage di�erence on the applications is
subject and algorithm dependent. For example, the average Hamming distance be-
tween the individual coverage vectors of mapdb and commons-lang is very di�erent,
3.062% and 0.014%, respectively. Yet, the correlations between their prioritized
lists using the additional with resets strategy are similar, 0.815 and 0.751. The
programs joda-time and netty, which produce very similar average Hamming dis-
tances (0.157% and 0.155%) but di�erent correlations of the prioritization (0.672
and 0.476) are examples for the opposite relation. The e�ect is that the impact of
the inaccuracies in the coverage measurement are unpredictable, hence special care
should be taken if code coverage is not used only as a general test completeness
measure, but as a base for a more complex analysis.

6.2 Threats to Validity

The main aim of the paper was to investigate the e�ects of the di�erent instru-
mentation techniques on code coverage measurement results. We applied empirical
measurements using eight subject programs and two speci�c tools (we started the
investigation with four tools). Clearly, this raises the question how generalizable
the results are to other tools using similar techniques. The subjects were selected
from di�erent domains and had di�erent sizes (both in terms of code and tests),
but were all actively developed community software.

The two �nal tools we selected for the detailed examination were among the
most widely used coverage tools representing the two instrumentation approaches,
and they were mature and actively developed. We carefully analyzed the data in
the preliminary experiments from Section 4.2, and came to the conclusion that
there was not a big di�erence among the candidates from our shortlist in either
category. However, limiting the detailed analysis to two tools might impose a threat
to the generalizability of the results to other tools. When interpreting the results,
we tried to separate the tool-speci�c issues from the approach-speci�c ones, and
the results of source code instrumentation with Clover were veri�ed with manual
instrumentation.

A possible threat is that we slightly modi�ed the instrumentation process of
JaCoCo by adding a test execution listener that detected the start and the end of
the execution of a test case. The results obtained with this modi�cation may not
directly translate to the coverage results everyday users would experience with
the stock version of JaCoCo. However, we compared the results of the unmodi�ed
JaCoCo measurement to our version in terms of actually covered program elements
and found no signi�cant di�erences.

Our experiments showed results with respect to method-level coverage analysis.
Generalization to other granularities such as components or statements may not
directly be possible.
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7 Conclusions

The results have shown that even at the method level, signi�cant di�erences occur
between the bytecode and the source code level instrumentation measurements.
This con�rms the results of some related work (e.g., (Li et al, 2013; Alemerien
and Magel, 2014)). Some of the di�erences can be eliminated, but some cannot or
their elimination would not be practical. These di�erences, when used in di�erent
testing applications, will undoubtedly have an in�uence on the application results.
But the kind and level of in�uence cannot be generally predicted, as it depends
on the subject program and the application itself. A small di�erence in coverage
may be ampli�ed at the application level, and a big coverage di�erence may have
minor impact.

As a conclusion, we may say that the discrepancies between the di�erent instru-
mentation approaches might but not necessarily have in�uence on code coverage
applications. It is thus safe to treat source code-based instrumentation as the cor-
rect approach to code coverage measurement, despite its disadvantages (which are
summarized in Section 2.3). Our results indicate that bytecode-instrumentation
may have serious disadvantages in terms of the accuracy of the results. The list
of possible reasons for the di�erences may be used as a guideline on how to avoid
and workaround the inaccuracies of the tools. This can then help assess the level
of risk of measurement inaccuracies in particular applications of code coverage
measurement.

The measurement data used in the experiments are available at:
http://www.sed.inf.u-szeged.hu/java-code-coverage.
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Appendix A Comparison results of source code based tools

In this appendix we present additional results of comparing the results of the two
methods employing source code instrumentation, Clover and Test Coverage.

As these two tools generate instrumented source code, it is possible to compare
their instrumentation algorithms on a high level by investigating the instrumented
code itself. To do so, we manually checked the instrumented sources and investi-
gated the probe points, i.e., the locations where extra code were injected into the
original source code. We found that the two tools identi�ed and instrumented ex-
actly the same source code elements. The main technical di�erence between the
two tools is that while Test Coverage uses boolean vectors to store coverage data,
Clover has a complex mechanism for calculating which part of the production code
is exercised (this enables per-test coverage measurement as well). Thus, in general,
Test Coverage inserts less extra code into the original source. Another di�erence is
the handling of such code which do not have a conventional form of a Java method
but will be included in the bytecode as a special method (e.g., static initialization
code of the class or anonymous methods). Both tools recognize and instrument
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these parts of the source code, but Clover reports them as methods, while Test

Coverage includes them in the class coverage only.
In the next step, we calculated the raw overall coverages for our subject systems

with these two tools in order to see how much their results di�er. Table 14 shows the
associated results. Columns 2 and 3 show the overall coverage ratios as produced
by the tools, while the last column includes the percentage di�erence. The numbers
in the last row represent the averages of the absolute di�erences.

Table 14: Comparison of the overall coverages computed by the source code tools
(Clover and Test Coverage)

Cloverglob

Program Cloverglob Test Coverage vs.
Test Coverage

checkstyle 93.82% 93.77% -0.05%
commons-lang 93.28% 93.13% -0.15%
commons-math 84.65% 85.59% +0.94%
joda-time 89.94% 90.94% +1.00%
mapdb 76.06% 78.58% +2.52%
netty 46.66% 48.93% +2.27%
orientdb 39.84% 39.92% +0.08%
oryx 27.51% 27.68% +0.17%

average di�. 0.90%

We can observe that the above mentioned di�erences of the tools cause small
di�erences in the overall coverage results. Note, that we used Clover

globwhich is the
value measured globally, including cross-submodule coverage for submodule-based
systems, and this is how Test Coverageworks too. Unfortunately, we were not able to
produce per-test coverage values using Test Coverage, as this would have required the
individual execution of the test cases and consequently large-scale modi�cations
in the build environments. Hence, we could not perform such a comparison of the
tools.

Appendix B Comparison results of bytecode based tools

In this appendix we present additional results of comparing the results of the three
tools employing bytecode instrumentation: JaCoCo, JCov and Cobertura.

We calculated the raw overall coverages for our subject systems with these
tools in order to see how much their results di�er. Table 15 shows the associated
results. Columns 2�4 are the overall coverage ratios as produced by the tools �out
of the box� (i.e., without any modi�cations made to them,23 only the necessary
parameters have been set). The last three columns show the pairwise di�erences
in the percentage, while the numbers in the last row represent the averages of the
absolute di�erences.

23 There was one exception to this: in Cobertura, we disabled the feature of skipping the
analysis of generated source code, as this was not implemented in the other two tools.
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Table 15: Comparison of the overall coverages computed by the bytecode tools
(Cobertura, JaCoCo and JCov)

JCov Cobertura Cobertura
Program JaCoCo JCov Cobertura vs. vs. vs.

JaCoCo JaCoCo JCov

checkstyle 53.85% 52.20% 54.79% -1.65% 0.94% 2.59%
commons-lang 93.29% 92.81% 94.08% -0.49% 0.79% 1.28%
commons-math 85.59% 87.41% 88.78% 1.82% 3.19% 1.37%
joda-time 91.36% 91.33% 91.55% -0.03% 0.19% 0.22%
mapdb 79.65% 79.12% 78.46% -0.53% -1.20% -0.67%
netty 47.41% 49.10% 45.51% 1.69% -1.90% -3.59%
orientdb 38.40% 42.02% 42.23% 3.62% 3.83% 0.21%
oryx 29.62% 26.33% 25.60% -3.29% -4.03% -0.74%

average di�. 1.64% 2.01% 1.33%

Quantitatively, the di�erences between these tools were at most 4%, and the
behavior of the tools was di�erent on the di�erent subjects. We made some deeper
but basically still quantitative analysis: we compared the per-test coverage results
of the tools. Unfortunately, we were not able to produce such results using Cobertura,
so we compared JaCoCo and JCov in this respect.

In Figure 7 we present the di�erences in test case coverage vectors. For each
test case, we use a coverage vector in which each element corresponds to a single
code element. We compared such vector pairs for JaCoCo and JCov for each test case
using the Hamming distance measure, and normalized the result by the length of
the vectors. Figure 7 shows the corresponding data in form of histograms.

For the �rst four subject programs, data shows that most of the vector pairs
are the same and the di�erence is less than 1% for the others. For mapdb and netty,
there are very few vector pairs that match exactly, but most of them are still close
to each other. In the case of oryx and orientdb, about half of the vector pairs matches
exactly, the di�erence in the majority of the cases is less than 1%, but there are
di�erences as high as 5% or even 14%. After the manual investigations, most of
these high di�erences are found to be tolerable outliers.

Similarly to the previous set of experiments, we performed per-method com-
parison of the coverages. Here the vectors were assigned to code elements and a
vector element corresponded to a test case. Figure 8 shows the di�erences in these
vectors for JaCoCo and JCov in form of histograms.

We got the same results as in case of test case vectors for the �rst 4 subject
programs, namely, most of the vector pairs are the same and the rest of them di�er
at most 1%. Here, the last 4 programs are similar to each other: a lower part of the
vector pairs matches exactly, but there are some higher di�erences as well. Later,
these high di�erences are turned out to be explainable outliers.

To �nd the cause of the di�erences (especially of the high Hamming distances)
we observed from these experiments, we investigated the detailed coverage of the
three tools manually as well. Our conclusion was that the main cause of the dif-
ferences was mostly due to the slightly di�erent handling of compiler generated
methods and nested classes in the bytecode (such as the methods generated for
nested classes). Since the overall quantitative di�erences were at most 4% and they
were concerned mostly generated methods, which are less important for code cov-
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Fig. 7: Relative Hamming distances of test case vectors (JaCoCo vs. JCov)

erage analysis, and the high individual Hamming distances could also be traced
back to these methods, we concluded that one representative tool of the three
should be su�cient for further experiments.
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