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Abstract. In this paper we deal with the heuristic exploration of general hypothesis
spaces arising both in the HMM and segment-based approaches of speech recognition.
The generated hypothesis space is a tree where we assign costs to its nodes. The tree
and the costs are both generated in a top-down way where we have node extension
rules and aggregation operators for the cost calculation. We introduce a special set of
mean aggregation operators suitable for speech recognition tasks. Then we discuss the
efficiency of some heuristic search methods like the Viterbi beam search, multi-stack
decoding algorithm, and some improvements using these aggregation operators. The
tests showed that this technique could significantly speed up the recognition process.
The run-times we obtained were 2 times faster than the basic multi-stack decoding
method, and 4 times faster than the Viterbi beam search method.
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In speech recognition the importance of efficient search techniques is well known. In
the literature numerous improvements to speed up the search process while keeping the
recognition performance constant are available [2,3]. In an earlier paper we proposed
some refinements for the well-known Viterbi beam search and the multi-stack decoding
algorithm [1]. In this one we substitute the aggregation operators used for the recognition
cost calculation by others that can further speed up the speech recognition process. In fuzzy
theory [8] many aggregation operators are available, and we find that the family of the
mean aggregation operators offers enough freedom for carrying out exhaustive trials. Out of
curiosity we also introduced a special λ factor for weighting the cost values of the parameters
in the mean aggregation operators so that, by advancing in time, the older cost values would
be even less dominant.

The structure of the paper is as follows. First, we briefly define the probability-based
approach for the speech recognition problem, the hypothesis spaces that arise, then the
possible aggregation functions. Second, we discuss the basic search algorithms and the search
improvements we applied to them. Finally we investigate how the aggregation operators
influence both the performance and speed of the recognition system.
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Petr Sojka, Ivan Kopeček, and Karel Pala (Eds.): TSD 2004, LNAI 3206, pp. 315–322, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

mailto:ggabor@inf.u-szeged.hu
mailto:kocsor@inf.u-szeged.hu
http://www.fi.muni.cz/usr/sojka/
http://www.fi.muni.cz/~kopecek/
http://www.fi.muni.cz/usr/pala/
http://nlp.fi.muni.cz/tsd2004/


316 Gábor Gosztolya and András Kocsor

1 The Hypothesis Space

In speech recognition problems we have a speech signal given by the series of observations
A = a1a2 . . . at , and the set of possible phoneme sequences (words or word sequences)
which will be denoted by W . Our task is to find the word ŵ ∈ W defined by

ŵ = arg max
w∈W

P(w|A), (1)

which, using the Bayes’ theorem, is equivalent to the following maximization problem:
ŵ = arg max

w∈W
(P(A|w) · P(w))/P(A). Further, taking into account the fact that P(A)

is the same for all w ∈ W , we have that

ŵ = arg max
w∈W

P(A|w)P(w). (2)

Speech recognition models can be divided into two groups (the discriminative and the
generative ones), depending on whether they use Eq. (1) or Eq. (2). Throughout this paper
we will apply the generative approach [2].

Unified view. Both the generative and discriminative models exploit frame-based and/or
segment-based features, which allows us to have a unified view of the HMM and segment-
based recognition techniques. First, we give a brief description of this scheme along with the
generated hypothesis structure.

Now let us commence with some definitions. Let us define w as o1o2 . . . on , where oj is
the j th phoneme of word w. Furthermore, let A1, A2, . . . , An be non-overlapping segments
of the observation series A = a1a2 . . . at , where Aj = atj−1 . . . atj , j ∈ {1, . . . , n}.
An Aj segment is defined by its start and end times and is denoted by [tj−1, tj ]. For a
segmentation A = A1, A2, . . . , An we collect the time indices corresponding to each
segment into a vector Tn = [t0, t1, . . . tn] (1 = t0 < t1 < . . . < tn = t). We use the
conventional assumption that the phonemes in a word are independent so that P(A|w) can
be obtained from P(A1|o1), P(A2|o2), . . . , P(An |on) in some way. To calculate P(A|w),
various aggregation operators can be used at two distinct levels. In the first one the P(Aj |oj )

probability values are supplied by a g1 operator, i.e. P(Aj |oj ) = g1([tj−1, tj ], oj ), which
combines a value for measuring how well the Aj segment represents the oj phoneme based
on local information sources. In the second one another operator g2 is used to construct the
whole P(A|w) probability from the P(A1|o1), . . . , P(An |on) values.

The well-known Hidden Markov Model (HMM) [3] is basically a frame-based approach,
i.e. it handles a speech signal frame by frame. Usually a GMM is applied to compute
the P(al |oj ) values (for delta and delta-delta features neighboring observations are also

required) and for the Aj segment the g1([tj−1, tj ], oj ) value is defined by
∏tj

l=tj−1
coj ·

P(al−k . . . al+k |oj ), where 0 ≤ coj ≤ 1. Practically speaking, g1 includes all the
information we have when we are in a particular state of a HMM model. We note here
that, instead of GMM, Artificial Neural Networks and other machine learning algorithms
which can be used for density estimation are also viable. This provides a way for creating
model hybrids. As for the P(A|w) value, the g2 operator is defined by P(An |on)

∏n−1
j=1 (1−

coj )P(Aj |oj ).
In the segment-based speech recognition approach – like the SUMMIT system of MIT [4]

or our OASIS [5] – , g1 will usually be the direct output of some machine learning algorithm
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using features that describe the whole [tj−1, tj ] segment. Among the many possibilities the
most conventional choice of g2 is simply to multiply the probabilities. However, later we
show that using other operators is beneficial for both speed and performance.

The hypothesis space. The task of speech recognition is a selection problem over a
Cartesian product space where the first dimension is a set of word hypotheses, while the
second is a set of segmentations.

Given a set of words W , we use Pre fk(W ) to denote the k-long prefixes of all the words
in W having at least k phonemes. Let

T k = {[t0, t1, . . . , tk ] : 1 = t0 < t1 < · · · < tk ≤ t} (3)

be the set of sub-segmentations made of k segments over the observation series a1a2 . . . at .
The hypotheses will be object pairs, i.e. they are elements of H =⋃∞

k=0(Pre fk(W )×T k).
We will denote the root of the tree – the initial hypothesis – by h0 = (∅, [t0]) (h0 ∈ H ).
Here Pre f1(W )× T 1 will contain the first-level nodes. For a (o1o2 . . . oj , [t0, . . . , tj ]) leaf
we link all (o1o2 . . . oj oj+1, [t0, . . . , tj , tj+1]) ∈ Pre fj+1(W )× T j+1 nodes.

Now we need to evaluate the nodes of the search tree. To this end let the g1 and g2 func-
tions be defined by some aggregation operators. Then, for a node (o1o2 . . . oj , [t0, . . . , tj ]),
the value is defined by

g2(g1([t0, t1], o1), . . . , g1([tj−1, tj ], oj )). (4)

Note that, in practice, it is worth calculating Eq. (4) recursively. After defining the evaluation
methodology we will look for a leaf with the highest probability.

2 Aggregation Operators

In this section we will first give a brief overview of mean aggregation operators, self-
consistent mean operators and root-power mean operators. Then, based on these definitions,
we will give a new set of aggregation operators useful for defining g2 in the speech
recognition task.

The term mean aggregation operators is well-known in fuzzy literature [11]. We will use
the definitions of [8], but extend the terms to handle values outside the [0, 1] interval. This is
because, instead of a probability p, a cost c = log p value is used in practice, which induces
addition instead of multiplication.

Definition 1. A mapping G : [0,∞) j → [0,∞) is called a mean aggregation operator if
it satisfies the following conditions:

M1. Commutativity G is indifferent to the order of the arguments.
M2. Monotonicity G(x1, . . . , xj ) ≥ G(y1, . . . , yj ) if xi ≥ yi holds for 1 ≤ i ≤ j .
M3. Idempotency If xi = c for all 1 ≤ i ≤ j , G(x1, . . . , xj ) = c.

Next, we need the concept of a bag. A bag associated with the set [0,∞) is any collection
of elements drawn from [0,∞), which differs from a set in that it allows multiple copies of
the same element. B[0,∞) will denote the set of all bags associated with the interval [0,∞).
In other words, B[0,∞) =⋃

j≥1[0,∞) j .
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Definition 2. A mapping G : B[0,∞) → [0,∞) is a self-consistent mean operator if G
satisfies the following conditions:

1. Naturalness: G(x) = x.
2. Commutativity: G is indifferent to the order of the arguments.
3. Monotonicity: For bags of the same dimension condition, M2 applies.
4. Self-Identity: If e := G(x1, . . . , xj ), then G(x1, . . . , xj , e) = G(x1, . . . , xj ).

We will apply a special family of self-consistent mean operators – the root-power mean
operator –, which is defined as

Gα(x1, . . . , xj ) =
(

xα
1 + . . .+ xα

j

j

) 1
α

, α ∈ R. (5)

for making g2 functions. It is well-known [9,10], that if α→−∞, Gα→min(x1, . . . , xj );
G−1 equals the harmonic mean; if α→ 0, Gα keeps to the geometrical mean; G1 equals the
arithmetical mean; and if α → ∞, Gα → max(x1, . . . , xj ). By changing the α parameter
we have a continuous transition from the minimum operator to the maximum operator.

Now let us define a variant of the root-power mean operator as

Gα,λ(x1, . . . , xj ) =
(

λ j−1xα
1 + λ j−2xα

2 + . . .++λxα
j−1 + xα

j

j

) 1
α

, (6)

where α ∈ R is as before and λ ∈ [0, 1] is a weighting parameter. The interpretation of this
operator as g2 in the context of speech recognition is the following: xi is the g1([ti−1, ti ], oi )

value, while λ j−i is a weighting factor for xi so that advancing in time the cost of earlier
phonemes will become less and less dominant in the aggregation form.

3 Search in the Hypothesis Space

Since the hypothesis space is usually huge, a full search is unfeasible. Therefore we have to
use some heuristics. We chose the multi-stack decoding method and the Viterbi beam search
as basic search techniques. In the following if a hypothesis is discarded (– we won’t scan
its descendants), we say it was pruned. A stack is a structure for keeping hypotheses in.
Moreover, we use limited-sized stacks: if there are too many hypotheses in a stack, we prune
the ones with the highest cost.

Multi-stack decoding method. In this algorithm we assign a separate stack to each time
instance ti and store the hypotheses in the stack according to their end times. In the first step
we place h0 into the stack associated with the first time instance, then, advancing in time, we
pop each hypothesis in turn from the given stack, extend them in every possible way, and put
the new hypotheses into the stack associated with their new end times [6]. Algorithm 1 in
Appendix shows the pseudocode for multi-stack decoding.

Viterbi beam search. This algorithm differs only in one feature from the multi-stack
decoding approach: instead of keeping the n best hypotheses, a variable T called the beam
width is employed. For each time instance t we calculate Dmin , i.e. the lowest cost of
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the hypotheses with the end time t , and prune all hypotheses whose cost D falls outside
Dmin + T [7].

Search Improvements. When calculating the optimal stack size for multi-stack decod-
ing, it is readily seen that this optimum will be the one with the smallest value where no
best-scoring hypothesis is discarded. But this approach obviously has one major drawback:
most of the time bad scoring hypotheses will be evaluated owing to the constant stack size. If
we could find a way of estimating the required stack size associated with each time instance,
the performance of the method would be significantly improved.

i) One possibility is to combine multi-stack decoding with a Viterbi beam search. At each
time instance we keep only the n best-scoring hypotheses, and also discard those which are
not close to the peak (thus the cost will be higher than Dmin + T ). Here the beam width can
also be determined empirically.

ii) Another approach is based on the observation that, the later the time instance, the
smaller the required stack. We attempted a simple solution for this: the stack size at time ti
will be s ·mi , where 0 < m < 1 and s is the size of the first stack.

iii) Another technique is a well-known modification of stacks. It can easily happen that
there are two or more hypotheses which have the same phoneme-sequence and the same end
times (it may be that some earlier phoneme bound is at a different time instance). In this case
it is sufficient to retain only the most probable ones.

iv) Yet another approach for improving the method comes from the observation that we
need big stacks only at those segment bounds where they exactly correspond to phoneme
bounds. So if we could estimate at a given time instance what the probability is of this
being a bound, we could then reduce the size of the hypothesis space we need to scan.
We trained an ANN for this task (on derivative-like features) where its output was treated
as a probability p. Then a statistical investigation was carried out to find a function that
approximates the necessary stack size based on this p. First, we recognized a set of test words
using a standard multi-stack decoding algorithm with a large stack. Then we examined the
path which led to the winning hypothesis, and noted the required stack size and the segment
bound probability p for each phoneme. The result represented as a stacksize–probability
diagram was used to obtain a proper fitting curve estimating the required stack size. It can be
readily shown that most of the higher stack sizes are associated with a high value of p, so the
stack size can indeed be estimated by this probability.

4 Experiments and Results

For testing purposes we used a corpus of 500 children uttering 60 words each, making a total
of 30,000 utterances of 2000 different Hungarian words with a variance related to everyday-
use occurrence. Many of the children had just learned to read, which led to a diverse database.
Moreover, many of the words were similar to each other with a phoneme-difference of just
one or two. As a consequence, the HTK system scored only 84.34%.

Our aim here was to test the above search improvements – applied together with the g2

aggregation operator – with the alpha and lambda parameters, as defined in Eq. (6). In a pilot
test we found that it was worth testing only the interval α > 0. We performed these tests using
the segment-based approach. The g1 operator was the output of a 2-layer feed-forward neural
network trained on the standard segment-based features used by the SUMMIT system [4].
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Fig. 1. Recognition accuracy for the Gα,γ aggregation operator (α ∈ [0.1, 3], λ = 1.0).

We also applied a modified form of g1 and g2: a) g1 can be calculated in normalized form
when it is multiplied by a factor depending on the length of the segment, b) instead of g2 we
may also use j times g2 (see Eq. (6)), where j is the length of the actual word-prefix (in
phonemes). This leads to four possible types (D with the α = 1 value means conventional
addition):

A) g1 not normalized, g2 not multiplied by j
B) g1 not normalized, g2 multiplied by j
C) g1 normalized, g2 not multiplied by j
D) g1 normalized, g2 multiplied by j

In the first test we examined the above aggregation methods with αs ranging from 0.1 to 3.0
with a 0.1 increments, with different λs from 0.1 to 1.0 (which means a total of 4× 30× 10
test cases). In Figure 1 the four types can be seen with λ = 1.0. Figure 1 shows that if we
don’t normalize g1, the recognition will be relatively insensitive to changes in α, but type
D achieved the best results. Surprisingly α = 1.0 usually did not produce the best results;
rather the interval [0.4, 0.7] seems the best for type D, and [0.5, 2.0] for types A and B . The
result was a recognition improvement of almost 7%.

In the second test we examined the behavior of search improvements using different α

and λ values. Because an exhaustive examination would have been too involved, we restricted
the λs to 0.7, 0.8, 0.9 and 1.0, and used only the α values which performed best in the first
test. Then, for a fixed α, λ and aggregation type, the parameters of the search improvements
were determined using the sequential forward selection technique. First we tested all the
improvements one by one with optimal parameters, then we chose the one which produced
the biggest speed-up. Next, we tested the remaining improvements combined with the chosen
improvements, until we had gone through all the possible combinations.

Table 1 only shows the best results for each step. We expected a recognition accuracy of
at least 80%. The speed is measured by average hypothesis-extensions per word: the smaller
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Table 1. Average number of phoneme-extensions for different search techniques

Viterbi multi-stack iii iii + i iii + i + iii + i +
λ beam search decoding iv iv + ii

A 1.0 41,576.98 23,699.43 14,576.20 13,577.95 11,934.11 11,911.38
B 1.0 37,764.81 12,843.03 10,544.18 8,081.93 7,153.78 7,063.16
D 1.0 67,222.28 25,571.59 14,952.41 14,926.21 11,972.71 11,179.51
A 0.9 68,789.68 22,446.94 14,552.13 14,464.07 11,840.28 11,810.74
B 0.9 41,605.54 12,840.50 10,532.37 8,138.60 7,452.19 7,411.95
D 0.9 62,080.18 19,248.69 14,962.18 13,439.83 11,392.84 10,811.37
A 0.8 84,199.83 22,446.30 17,453.82 17,172.01 15,972.26 15,625.16
B 0.8 48,809.48 16,043.51 11,696.54 9,555.46 8,943.54 8.891.57
D 0.8 62,687.10 22,448.76 17,948.40 15,460.08 14,297.17 14,072.94
A 0.7 141,165.57 38,060.62 31,522.57 31,419.86 30,683.94 30,179.25
B 0.7 56,029.24 16,042.50 11,677.73 9,612.77 9,142.64 9,098.23
D 0.7 62,182.55 22,446.83 17,943.66 16,673.19 15,179.55 15,019.66

the number, the faster the algorithm is. It can be seen that a significant speed-up was achieved.
(Aggregation type C could not attain the 80% value, so it was omitted from the table.)

5 Conclusion

In speech recognition, as is usual in software applications, the two key aspects are speed
and accuracy. Here we suggested a new set of aggregation operators that could be used for
speeding up some heuristic search methods without significantly lowering the recognition
accuracy. Based on the results above, we conclude that it is worth using mean aggregation
operators in speech recognition systems. In the next phase we will apply the proposed
methodology to a continuous speech recognition system. This is the subject of future work.

6 Appendix

The multi-stack decoding pseudocode described by Algorithm 0. “←” means that a variable
is assigned a value; “⇐” means pushing a hypothesis into a stack. Stack[ti ] means a stack
belonging to the ti time instance. A H (w, T ) hypothesis denotes a phoneme sequence and
time-instance sequence pair. Extending a hypothesis H (w, T ) = H (w, [t0, . . . , tk]) with a
phoneme v and a time ti results in a hypothesis H ′(wv, T ∪ ti ) = H ′(wv, [t0, . . . , tk, ti ]),
where the cost of the new hypothesis is calculated via the g2 operator, applying the g1

function. We denote the maximal length of a phoneme by maxlength.
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Algorithm 1. Multi-stack decoding algorithm

Stack[t0]⇐ h0(∅, [t0])
for i = 0 . . . n do

while not empty(Stack[ti ]) do
H (w, T )← top(Stack[ti ])
if ti = tmax then

return H
end if
for tl = ti+1 · · · ti+maxlength do

for all {v | wv ∈ Pre f1+length of w} do
H ′(w′, T ∪ tl)← extend H with v

Stack[tl ]⇐ H ′
end for

end for
end while

end for
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