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Abstract In speech recognition, not just the accuracy
of an automatic speech recognition application is im-
portant, but also its speed. However, if we want to
create a real-time speech recognizer, this requirement
limits the time that is spent on searching for the best
hypothesis, which can even affect the recognition ac-
curacy. Thus the applied search method plays an im-
portant role in the speech recognition task, and so
does its efficiency, i.e. how quickly it finds the ut-
tered words. To speed up this search process, vari-
ous ideas are available in the literature: we can use
search heuristics, multi-pass search, or apply a fam-
ily of aggregation operators. In this paper we test all
these methods in turn, and combine them with a set
of other novel speed-up ideas. The test results confirm
that all of these techniques are valuable: using com-
binations of them helped make the speech recognition
process over 12 times faster than the basic multi-stack
decoding algorithm, and almost 11 times faster than
the Viterbi beam search method.
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1 Introduction

The speech recognition task is a field in artificial intel-
ligence with high computational demands, so it is very
important to make efficient use of the available CPU
time. This is especially true if we would like to con-
struct a real-time speech recognition application with
a good recognition accuracy. This efficiency strongly
depends on the effectiveness of the search process, and
it is also heavily investigated (Ney and Ortmanss 2000;
Kanthak et al. 2002), which is why this paper is de-
voted to this particular issue.

To speed up the search process, various ideas are
available in the literature: we can do a multi-pass
search (Schwartz et al. 1996), apply search heuris-
tics (Gosztolya et al. 2003), or try out other similar
ideas. However, if we were to improve the recognition
accuracy by methods not requiring additional compu-
tational time, we would have more room to achieve
a speed-up while maintaining the same level of accu-
racy. This is what we decided to do. We experimented
with a family of aggregation operators (Gosztolya and
Kocsor 2004; Dubois and Prade 2000) used for calcu-
lating hypothesis probabilities.

The structure of this paper is as follows. First, we
define a standard speech recognition framework. Sec-
ond, we describe the speed-up improvements used
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along with the search process. After the experiments
and test results are discussed, and then we draw some
conclusions.

2 Search spaces in speech recognition

In speech recognition problems we have a speech
signal represented by a series of observations A =
a1a2 . . . at , and a set of possible phoneme sequences
(words or word sequences) which will be denoted
by W . Our task is to find the word or word sequence
ŵ ∈ W defined by

ŵ = arg max
w∈W

P(w|A), (1)

which, using Bayes’ theorem, is equivalent to the fol-
lowing maximization problem:

ŵ = arg max
w∈W

P(A|w) · P(w)

P (A)
. (2)

Further, noting the fact that P(A) is the same for all
w ∈ W , we have that

ŵ = arg max
w∈W

P(A|w)P (w). (3)

Speech recognition models can be divided into two
groups—the discriminative and generative ones—
depending on whether they use (1) or (3). Through-
out this paper we will apply the customary, generative
approach (Jelinek 1997), but all of the tested improve-
ments and ideas in this paper can be applied both in
discriminative and generative environments.

2.1 Unified view

Both the generative and discriminative models exploit
frame-based and/or segment-based (Ostendorf et al.
1996) features, and this fact allows us to have a unified
framework of the Hidden Markov model and segment-
based recognition techniques. We should emphasize
here that this theoretical model covers all the com-
mon speech recognition models, thus the methods de-
scribed in this paper are also applicable to each model.
First, let us give a brief outline of this framework along
with the generated hypothesis structure.

Let us commence with some definitions. Let us de-
fine w as o1o2 . . . on, where oj is the j th phoneme
of word w. Furthermore, let A1,A2, . . . ,An be non-
overlapping segments of the observation series A =

Fig. 1 Scheme of the recognition process with the two distinct
levels (g1 and g2)

a1a2 . . . at , where Aj = atj−1 . . . atj , j ∈ {1, . . . , n}.
An Aj segment is defined by its start and end times
and is denoted by [tj−1, tj ]. For a segmentation A =
A1,A2, . . . ,An we collect the time indices corre-
sponding to each segment into a vector Tn = [t0, t1,
. . . , tn] (1 = t0 < t1 < · · · < tn = t). We make the
conventional assumption that the phonemes in a word
are independent so that P(A|w) can be obtained from
P(A1|o1),P (A2|o2), . . . ,P (An|on) in some way. To
calculate P(A|w), various aggregation operators can
be used at two distinct levels. In the first one the
P(Aj |oj ) probability values are supplied by a g1 op-
erator, i.e.

P(Aj |oj ) = g1([tj−1, tj ], oj ), (4)

which provides an overall measure that tells us how
well the Aj segment represents the oj phoneme based
on local information sources. In the second one, an-
other operator (g2) is used to construct P(A|w) using
the probability values P(A1|o1), . . . ,P (An|on) (see
Fig. 1).

2.2 Frame-based approach

The well-known Hidden Markov Model (HMM) (Ra-
biner and Juang 1993) is basically a frame-based ap-
proach, i.e. it handles a speech signal frame by frame.
Usually a Gaussian Mixture Model (GMM) (Duda and
Hart 1973) is applied to compute the P(al |oj ) values
(for delta and delta-delta features neighbouring obser-
vations are also required) and for the Aj segment the
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g1([tj−1, tj ], oj ) value is defined by

tj∏

l=tj−1

coj
· P(al |oj ), (5)

where 0 ≤ coj
≤ 1. Practically speaking, g1 contains

all the information we have when we are in a particu-
lar state of a HMM model. We note here that, instead
of GMM, Artificial Neural Networks (ANNs) (Bishop
1995) or other machine learning algorithms that can
be used for density estimation are also viable. This
provides a way for creating model hybrids. As for the
P(A|w) value, the g2 operator is defined by

P(An|on)

n−1∏

j=1

(1 − coj
)P (Aj |oj ). (6)

2.3 Segment-based approach

In the segment-based speech recognition approach—
like the SUMMIT system of MIT (Glass et al. 1996)
or our OASIS (Kocsor et al. 1999)—g1 will usually be
the direct output of some machine learning algorithm
using features that describe the whole [tj−1, tj ] seg-
ment. Sometimes a length normalization is also used,
then this output is raised to the (tj − tj−1)th power.
Among the many possibilities the most conventional
choice of g2 is simply to multiply the probabilities,
but using other operators could be beneficial for the
overall performance (Gosztolya and Kocsor 2004).

2.4 The hypothesis space

The task of speech recognition is essentially a selec-
tion problem over a Cartesian product space where the
first dimension is a set of word hypotheses, while the
second is a set of segmentations. Given a set of words
W , we use Prefk(W) to denote the k-long prefixes of
all the words in W having at least k phonemes. Now
let

T k = {[t0, t1, . . . , tk] : 1 = t0 < t1 < · · · < tk ≤ t} (7)

be the set of sub-segmentations made of k segments
over the observation series a1a2 . . . at . The hypotheses
will be object pairs, i.e. they are elements of

H =
∞⋃

k=0

(Pref k(W) × T k). (8)

We will denote the root of the tree—the initial hypo-
thesis—by h0 = (∅, [t0]) (h0 ∈ H). Pref 1(W) × T 1

will contain the first-level nodes. For a (o1o2 . . . oj ,

[t0, . . . , tj ]) leaf we link all (o1o2 . . . oj oj+1,

[t0, . . . , tj , tj+1]) ∈ Pref j+1(W) × T j+1 nodes.
Next we need to evaluate the nodes of the search

tree. To this end let the g1 and g2 functions be ag-
gregation operators of some kind. Then, for a node
(o1o2 . . . oj , [t0, . . . , tj ]), the value is defined by

g2
(
g1([t0, t1], o1), . . . , g1([tj−1, tj ], oj )

)
. (9)

Note that, in practice, it is worth calculating (9) recur-
sively. After defining the evaluation methodology we
will look for a leaf with the highest probability.

This definition in typical circumstances leads to a
huge hypothesis space, where a full search would be
impractical because of its big run time and memory re-
quirements. This leads us to employ heuristics like the
well-known Viterbi beam search (Hart et al. 1972) or
our choice, the multi-stack decoding algorithm (Bahl
et al. 1993), which will be described later in detail.

In this paper we employed a traditional technique
to avoid underflowing: instead of a probability p, we
used the cost c = − logp. This will require other mod-
ifications like using addition instead of multiplication,
or looking for the hypothesis with the lowest cost, and
not the one with the highest probability. We applied
the frame-based approach: the phoneme-level values
were calculated in the way described above, but using
ANN-s instead of the traditional GMM-s, and after the
negative logarithm of the resulting values was calcu-
lated. Both for g1 and g2, the default aggregation oper-
ator adds the costs, which is equivalent to multiplying
the probabilities. But later we changed both operators
for the sake of increasing the recognition performance.
When a hypothesis is discarded for some reason, we
say that it was pruned.

3 Aggregation operators in speech recognition

In this section we will first give a brief overview of
mean aggregation operators, self-consistent mean op-
erators and root-power mean operators. Then, based
on these definitions, we will give a new set of aggre-
gation operators useful for defining g1 and g2 in the
speech recognition task.

The term mean aggregation operators is well
known in fuzzy literature (Klement et al. 2000). We
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will use the definitions of (Dubois and Prade 2000),
but extend the terms to handle values outside the [0,1]
interval. We need this modification because instead of
a probability p we used the cost c = − logp through-
out this study.

Definition 1 A mapping G : [0,∞)j → [0,∞) is
called a mean aggregation operator if it satisfies the
following conditions:

M1. Commutativity: G is indifferent to the order of
the arguments.

M2. Monotonicity: G(x1, . . . , xj ) ≥ G(y1, . . . , yj ) if
xi ≥ yi holds for 1 ≤ i ≤ j .

M3. Idempotency: If xi = c for all 1 ≤ i ≤ j ,
G(x1, . . . , xj ) = c.

Next, we need the concept of a bag. A bag associ-
ated with the set [0,∞) is any collection of elements
drawn from [0,∞), which differs from a set in that
it allows multiple copies of the same element. B[0,∞)

will denote the set of all bags associated with the in-
terval [0,∞). In other words,

B[0,∞) =
⋃

j≥1

[0,∞)j . (10)

Definition 2 A mapping G : B[0,∞) → [0,∞) is a
self-consistent mean operator if G satisfies the follow-
ing conditions:

1. Naturalness: G(x) = x.
2. Commutativity: G is indifferent to the order of

the arguments.
3. Monotonicity: For bags with the same dimension

condition, M2 applies.
4. Self-Identity: If e = G(x1, . . . , xj ), then G(x1, . . . ,

xj , e) = G(x1, . . . , xj ).

We will apply a special family of self-consistent
mean operators—the root-power mean operator—
which is defined as

Gα(x1, . . . , xj ) =
(

xα
1 + · · · + xα

j

j

) 1
α

, α ∈ R, (11)

for making g1 and g2 functions. It is well known (Hardy
et al. 1968; Cloud and Drachman 1998), that when
α → ∞, Gα → min(x1, . . . , xj ); G−1 equals the
harmonic mean; when α → 0, Gα tends to the geo-
metrical mean; G1 equals the arithmetical mean; and

when α → ∞, Gα → max(x1, . . . , xj ). By varying
the α parameter we have a continuous transition from
the minimum operator to the maximum operator, so
this operator seems flexible enough for us to use in
speech recognition tasks. For details about how we
applied it, see the Test results section.

4 Clustering the phoneme set

Among many others, in this study we performed a
multi-pass search for speed-up reasons. This multi-
pass search method (see The search process section)
is based on smaller, more compact phoneme sets, but
their efficient construction is not trivial. We will de-
scribe this process in this section by defining two novel
distance functions between phonemes, show that they
have the right sort of properties to be metrics, and then
make use of them in the phoneme-clustering problem.

There is no simple answer to the question of how
we should construct the phoneme groups mentioned
above, but these phoneme groupings have to be hier-
archical. Thus, the phoneme sets of a phoneme group-
ing must be the unions of some phoneme sets of an-
other phoneme grouping. This is necessary because of
the properties of the multi-pass search technique. We
might base the phoneme group construction on previ-
ous grammatical knowledge, or use the confusion ma-
trix of the phoneme classifier. The justification of the
latter option is that the recognition process is already
heavily based on the phoneme classifier, so this was
why we chose it.

A classifier gets some kind of features as input,
and its task is to classify them into one of the � =
{ω1,ω2, . . . ,ωK } classes. A confusion matrix A is
constructed in such a way that ai,j is the number of
feature vectors belonging to ωj from a selected test set
which were classified as ωis by the classifier (Duda et
al. 2001). In our case the classifier is used to categorize
the parts of speech into one of the phoneme classes.
The confusion matrix of a good classifier is close to
a diagonal matrix, which is why we will concentrate
on the number of misclassified items (i.e. the number
of examples that were incorrectly classified). A typi-
cal confusion matrix can be seen in Table 1, where the
classes are the vowels of the Hungarian language.

Grouping phonemes is a standard clustering prob-
lem (Hand et al. 2001): some points (here, the phon-
eme classes) should be assigned to a certain number
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Table 1 An example of a confusion matrix

1 2 3 4 5 6 7 8 9

1 2502 3 96 35 4 0 0 4 8

2 18 965 3 24 3 0 0 0 5

3 87 8 875 19 2 0 0 5 11

4 43 11 16 271 1 1 0 1 2

5 12 2 3 2 2250 257 80 101 53

6 0 1 0 0 51 299 17 22 8

7 1 0 0 0 46 31 208 6 1

8 3 4 3 1 70 39 8 5235 111

9 7 1 6 3 19 10 2 97 461

of clusters (in our case, phoneme groups). Fortunately
there are some quite general algorithms for this task.
The one we are going to use requires a distance func-
tion (D) for two clusters, which will be defined below,
but first we will explain how this algorithm works.

Initially each phoneme will be considered as a
distinct cluster. Then, at each step, we find those
Ci and Cj clusters for which D(Ci,Cj ) is minimal,
and afterwards combine them. We repeat this until
D(Ci,Cj ) ≥ L, where L is some parameter. (See Ap-
pendix A for the pseudocode of this algorithm.)

To define our novel distance functions first let A′ be
a normalized matrix for the confusion matrix A of the
applied phoneme classifier (see Table 2). It takes the
form

a′
i,j = ai,j∑K

k=1 ak,j

, i, j ∈ {1, . . . ,K}. (12)

We can assume that
∑K

k=1 ak,j 	= 0, otherwise it would
mean that the j th phoneme has no examples in the test
database. Next we define a distance function between
phonemes based on this A′ matrix. Let

d1
i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j ;
∞ if a′

i,j = a′
j,i = 0 and i 	= j ;

− log(a′
i,j ) if a′

j,i = 0 and a′
i,j 	= 0;

− log(a′
j,i ) if a′

i,j = 0 and a′
j,i 	= 0;

min
(− log(a′

i,j )

− log(a′
j,i)

)
otherwise,

(13)

Table 2 The normalized confusion matrix of the matrix in Ta-
ble 1. The largest value of each column is noted in bold

1 2 3 4 5 6 7 8 9

1 0.94 0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.01

2 0.01 0.97 0.00 0.07 0.00 0.00 0.00 0.00 0.00

3 0.03 0.01 0.87 0.05 0.00 0.00 0.00 0.00 0.02

4 0.02 0.01 0.02 0.76 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.01 0.92 0.40 0.25 0.02 0.08

6 0.00 0.00 0.00 0.00 0.02 0.47 0.05 0.00 0.01

7 0.00 0.00 0.00 0.00 0.02 0.05 0.66 0.00 0.00

8 0.00 0.00 0.00 0.00 0.03 0.06 0.03 0.96 0.17

9 0.00 0.00 0.01 0.01 0.01 0.02 0.00 0.02 0.70

and let

d2
i,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if i = j ;
∞ if a′

i,j = a′
j,i = 0 and i 	= j ;

− log
(

a′
i,j +a′

j,i

2

)
otherwise.

(14)

The idea behind defining d1 and d2 is to define some
basic distance values between two phonemes. Ideally
d(x, y) should be low if the xth and yth phonemes are
frequently confused by the classifier, and high if rarely
so. Moreover we expect that d(x, x) should be 0 and
d(x, y) should equal to d(y, x).

Now let us define d ′ as a distance function between
phonemes, where d ′

i,j is the length of the shortest path

from i to j using the distance function of either d1

or d2. (We can choose either of them, but of course if
we test both, this choice leads to twice as many test
cases. The results can be seen in the results section.)
The intention behind this step was to bring groups of
similar phonemes closer together. d ′ is a distance func-
tion which satisfies the criteria of being a metric be-
cause:

(a) d ′
i,i = 0,

(b) d ′
i,j = d ′

j,i and
(c) d ′

i,j ≤ d ′
i,k + d ′

k,j .

Now we have to define the distance D(Ci,Cj ), i.e. the
distance of the phoneme clusters Ci and Cj , using the
d ′(xi, yi) values, which are the distances between dif-
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ferent phonemes. To do this we have two straightfor-
ward choices (Hand et al. 2001):

Dmin(Ci,Cj ) = min
x,y

{d ′(x, y)|x ∈ Ci, y ∈ Cj }, (15)

or

Dmax(Ci,Cj ) = max
x,y

{d ′(x, y)|x ∈ Ci, y ∈ Cj }. (16)

The former tends to create longer, larger clusters,
while the latter usually creates more compact ones. In
our experiments we tested both versions.

We should note here that the use of Dmax in this
algorithm could lead to a non-deterministic case if, at
any given point, there exist some clusters Ci , Cj and
Ck such that Dmax(Ci,Cj ) = Dmax(Ci,Ck). With
Dmin no such problem arises, but it is not a metric be-
cause in some cases the triangle inequality does not
hold: there exist Ci , Cj and Ck clusters such that

Dmin(Ci,Cj ) � Dmin(Ci,Ck) + Dmin(Ck,Cj ). (17)

5 The search process

Given the phoneme groups—and hence the hypothesis
space—we still have to search for the best hypothesis.
There are standard search heuristics for this task, and
the one we opted for was the multi-stack decoding al-
gorithm. Moreover, it is possible to construct multi-
pass methods where there are multiple steps in the
search process. In this paper we applied this idea using
the previously constructed phoneme groups.

5.1 Multi-pass search strategies

In general, multi-pass methods (Schwartz et al. 1996)
work in two or more steps: in the first pass the less
likely hypotheses are discarded because of some con-
dition requiring low computational time. Then, in the
later passes, only the remaining hypotheses are exam-
ined by more complex, reliable evaluations, which will
approximate the probabilities of the hypotheses more
closely. In the common search methods only the last
pass remains, so more hypotheses are scanned there,
making the process more time-consuming.

In a conventional two-pass procedure only one such
quick check is done, then all the remaining hypotheses

are examined in the final step (Chelba 2000). But there
is the possibility of examining these remaining hy-
potheses with more sophisticated, but still quick—yet
not final—techniques, and to discard those hypotheses
which seem to be unlikely. This way we can construct
a multi-pass method consisting of an arbitrary number
of passes, which is also not uncommon in the litera-
ture (Evermann et al. 2004; Ayako et al. 2003).

To speed up these earlier steps, we need to construct
faster phoneme classifiers, and the usual way of doing
this is by reducing the number of features. In our sys-
tem, where ANNs are used, it also leads to a lower
number of hidden neurons. However, now we chose
a different technique: the number of phoneme groups
was decreased, thus in the first pass a search with
a very restricted phoneme set was performed. Then,
in the later passes, more and more detailed phoneme
groupings were used, where the dictionary consisted
of the most promising words of the previous level.
(This meant a lower number of output neurons for
ANNs, which also led to the decrease of the number
of hidden ones.) Obviously, during the last pass we
had to use the original phoneme set to obtain only one
word as a result, not a set of words, but because of the
reduced dictionary used, it can be done much faster.
At each step we employed the multi-stack decoding
algorithm in the search process.

5.2 The multi-stack search method

We chose the multi-stack decoding heuristics (Bahl et
al. 1993) as our basic search technique. To describe the
method first we have to give a definition. A stack is a
structure for keeping hypotheses in. Moreover, we use
limited-sized stacks: if there are too many hypotheses
in a stack, we prune the ones with the highest cost.

In this algorithm we assign a separate stack to each
time instance ti and store the hypotheses in the stack
according to their end times. In the first step we place
h0 (the initial hypothesis) into the stack associated
with the first time instance, then, advancing in time,
we pop each hypothesis from the given stack, extend
them in every possible way, and put the new hypothe-
ses into the stack associated with their new end times.
Algorithm 2 in Appendix B shows the pseudocode of
multi-stack decoding.

This algorithm has one parameter, the stack size.
Decreasing it usually reduces the accuracy of the
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method (i.e. the recognition performance), while a
greater stack size leads to increased run times and
therefore a slower speech recognition system. Thus
it is very important to find the best parameter value,
which might mean a trade-off between accuracy and
speed. Of course, above a certain parameter setting
there is no change in accuracy and this is often what
we call the optimal value.

5.3 The Viterbi beam search algorithm

This algorithm differs only in one respect from the
multi-stack decoding approach: instead of keeping the
n best hypotheses, a variable T called the beam width
is employed. For each time instance t we calculate
Cmin, i.e. the lowest cost of the hypotheses with the
end time t , and prune all hypotheses whose cost C falls
outside Cmin + T (Hart et al. 1972).

5.4 The speed-up improvements

When calculating the optimal stack size for the multi-
stack decoding algorithm, it is readily seen that this
optimum will be the one with the smallest value where
no best-scoring hypothesis is discarded. But this ap-
proach obviously has one major drawback: most of
the time bad scoring hypotheses will be evaluated
owing to the constant stack size. If we could find a
smart way of estimating the required stack size asso-
ciated with each time instance, the performance of the
method would be significantly improved. We modified
the stack first so as to keep only the most probable
hypothesis from the ones having the same phoneme-
sequence and with the same end time, which could
also be regarded as an improvement.

(i) One possibility is to combine multi-stack decod-
ing with a Viterbi beam search. At each time instance
we keep only the n best-scoring hypotheses, and also
discard those which are not close to the peak (thus
their cost is higher than Cmin + T ). Here the beam
width can also be determined empirically.

(ii) Another approach is based on the observation
that the later the time instance, the smaller the stack
required. We attempted a simple solution for this: the
stack size at time ti will be s · mi , where 0 < m < 1
and s is the size of the first stack. Of course m should
be close to 1, otherwise the stacks would soon be far
too small.

(iii) Yet another approach for improving the method
comes from the observation that we need big stacks

only at those segment bounds where they exactly cor-
respond to phoneme bounds. So if we could estimate
at a given time instance what the probability is of this
being a bound, we could then reduce the size of the
hypothesis space we need to scan. We trained an ANN
for this task (on the 13 MFCC � features) where its
output was treated as a probability p. Then a statis-
tical investigation was carried out to find a function
that approximates the necessary stack size based on
this p. First, we recognized a set of test words us-
ing a standard multi-stack decoding algorithm with
a large stack. Then we examined the path which led
to the winning hypothesis, and noted the required
stack size and the segment bound probability p for
each phoneme. The result, represented as a stacksize-
probability diagram, was used to obtain a proper fitting
curve for estimating the required stack size (Gosztolya
et al. 2003). It can be readily shown that most of the
higher stack sizes are associated with a high value of
p, so the stack size can indeed be estimated by this
probability. This observation was clearly confirmed by
the test results.

In this paper, because of the large number of differ-
ent test combinations, we did not try to determine the
actual curve for the stack size in each test case. An-
other reason was the uneasy combination of this im-
provement and the multi-pass search, where the effect
of a stack size curve in one pass on the whole recogni-
tion process cannot be easily determined. Rather, we
applied a greatly simplified form of it: if the probabil-
ity of the given time instance being a bound is greater
than a parameter p0, then the stack size belonging to
this time instance will be reduced to the second para-
meter s0. Although it seems to be a quite primitive tool
for speeding up the search algorithm, the experiments
showed that it is indeed effective.

6 Test results

We tested all these improvements on an isolated word
recognition task. The reason for doing this was that
there were only a few databases available for Hungar-
ian that were of a satisfactory size. In the near future
we plan to carry out tests on continuous speech recog-
nition tasks, but it is very difficult for Hungarian—
in contrast with those for the English language. This
is because Hungarian is an agglutinative language—
which means that a word can take many forms, making
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it very hard to successfully apply an n-gram language
model (Szarvas et al. 2000). However, our preliminary
tests suggest that the improvements are also valuable
in such an environment.

The train database consisted of 400 Hungarian
speakers, each uttering 10 sentences and 4 words over
the telephone (Vicsi et al. 2002). The first test data-
base contained 10 sentences and 4 words from other
100 speakers recorded over the telephone, and it was
used for the phoneme-construction task. The other test
database consisted of these 500 speakers uttering the
name of a different town or city, and it served the task
of word recognition. Some of these utterances were
unrecognizable even to us, however. They were re-
moved from the test database, so in the end it con-
tained 431 different words. The fact that the train and
(word recognition) test databases are not strictly sepa-
rate because the same persons uttered the words might
seem a problem at first glance, but for a database of
this size it should not really matter. The vocabulary
consisted of the original 500 words.

The HTK system (Young 1995), which is a frame-
based system that applies the HMM method, was
used as a reference and produced a score of 92.11%
here, using the default settings of the system (i.e.
MFCC + � + �� features, 3-state monophone mod-
els). This value may not seem that high; but we think
that the properties of the test database (recorded over
the phone, complicated and sometimes very similar
town-names, etc.) probably account for this. On the
other hand, here we were not interested in the actual
recognition scores, but in the attainable advantage of
speed while maintaining the original recognition per-
formance.

The testing was done in the framework of the
OASIS Speech Laboratory (Kocsor et al. 1999). The
model was a frame-based one, i.e. the small, equal-
sized parts of the spectrum were first classificated as
phonemes by a machine learning method. The features
employed were the standard 39 MFCC +�+�� co-
efficients. We used Artificial Neural Networks, but us-
ing GMMs would not have made any difference to the
outcome. The minus logarithm of these scores were
then aggregated into phoneme-level values by apply-
ing g1 (addition by default, because we are dealing
with costs), then the phoneme-level values were aggre-
gated by g2 (the default operator was also the addition
operator). This way our system initially was equivalent
to a HMM/ANN hybrid (Morgan and Bourland 1995)

with a state transition probability of 1.0. We could do
it because it was shown earlier that the state transi-
tion probabilities have practically no effect on recogni-
tion performance (Bourland et al. 1994). The baseline
recognition accuracy of this system was 94.20%.

6.1 The sequence of tests

Because we used various types of speed-up tech-
niques, we soon realized there were many different
ways we could combine them. We decided that first
the aggregation operators would be tested, then the
best variation with the best parameter setting would
be used later on. Next, the multi-stack decoding algo-
rithm was applied with a stack size determined as the
lowest one that maintained the optimal recognition ac-
curacy. Then multi-pass tests were applied where we
also looked for the combination which produced the
biggest speed-up. Because we had four versions for
phoneme group generation, each leading to three pos-
sibilities of recognition steps, this led to 12 variations.
One more variation was the recognition in one pass
with the original phoneme set, so we had 13 variations
in total. In the last test the improvements were tested
on these 13 variations.

6.2 Testing the aggregation operators

Previously we defined the root-power mean operator
in (11) as

Gα(x1, . . . , xj ) =
(

xα
1 + · · · + xα

j

j

) 1
α

, α ∈ R. (18)

First we will use it to construct the phoneme-level cost
from the frame-level costs (g1). We wanted to include
the addition operator as a special case of some more
general operator, for which we have two plausible pos-
sibilities:

g1 = j · Gα(x1, . . . , xj ) (19)

and

g1 = (xα
1 + · · · + xα

j )
1
α . (20)

In this test we investigated the effect of them on the
above aggregation methods with the α parameter rang-
ing from 0.02 to 3.00 with a 0.02 increments. In Fig. 2
the two types are shown. It is readily seen that if we
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Fig. 2 Recognition
accuracy using two
variations of the Gα

aggregation operator
(α ∈ [0.02,3]) as g1:
version a is given in (19),
while version b is defined
in (20)

use the version described by (20) with α = 0.94 in-
stead of the default α = 1.00, we can increase the
recognition performance by about 1%, thus we will
use this setting later on. Almost the same level of im-
provement can be attained with the other version (see
(19)) and α = 1.06, . . . ,1.16. Out of curiosity we ran
a test using the original g1 = Gα(x1, . . . , xj ) version,
but this test did not produce any acceptable results.
Now we apply this root-power mean operator as g2, as
we need it to construct hypothesis-level costs from the
phoneme-level costs. Both previous variations were al-
ready length-normalized, which means that the cost of
a segment was based also on its length, not just on
the similarity of the segment and the given phoneme
(unlike in some segment-based frameworks where g1

is the direct output of a machine learning algorithm).
However, it can happen that in the final recognition,
after applying g2, a length-unnormalized version of g1

works better. That is why we also apply a modified
form of (11) in two ways. The first is that g1 can be
calculated in an unnormalized form when it is divided
by the length of the segment (and will be denoted by
a ′ sign). The second option is that for g2 we may also
use j times the result of the root-power mean operator
(see (11)), where j is the length of the actual word-
prefix (in phonemes). This leads to four possible types:

g2 = Gα(x1, . . . , xj ), (21)

g2 = j · Gα(x1, . . . , xj ), (22)

g2 = Gα(x′
1, . . . , x

′
j ) and (23)

g2 = j · Gα(x′
1, . . . , x

′
j ). (24)

Table 3 Number of phoneme groups for the various dis-
tance functions and passes. The original phoneme set (P0) con-
sisted of 36 phonemes

d1 d2

Passes Dmin Dmax Dmin Dmax

P1 25 26 27 28

P2 17 16 19 17

The results can be seen in Fig. 3. Surprisingly, the
results show that we were not able to improve the
recognition accuracy this way: the optimal value was
achieved by the version described in (23) with α =
1.00, which means the default addition of the costs.
This could be because all the possible ways of improv-
ing the accuracy had already been exploited via g1.

6.3 Multi-pass search methods

For the multi-pass search, first we have to cluster the
original phoneme set. Applying the clustering algo-
rithm for this reason, using one of the above D func-
tions will lead to a series of unions and a series of
distance values. Based on them we can choose the
possible values of the limit L, which will lead to the
phoneme groups during the recognition process. Ob-
viously, good L values are those where there is a nice
gap between successive distance values in the output.

On examining Fig. 4 we had to look for the bigger
flat regions on each curve because these represent big
gaps between phoneme cluster distances. On each of
them we selected two L values, resulting in the same
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Fig. 3 Recognition
accuracy using the four
tested variations of the Gα

aggregation operator
(α ∈ [0.02,3]) as g2:
versions c, d , e and f are
given in (21), (22), (23) and
(24), respectively

Fig. 4 Number of phoneme groups (classes)—L limit diagram for the four distance-variations d1 and d2, respectively. The A and C
curves are for Dmin, while the B and D curves are for the Dmax group distance function

number of phoneme groups, which were later used in
the multi-pass recognition method. The corresponding
recognition steps were called Pass 1 (P1) and Pass
2 (P2), with the number of phoneme groups varying
from 25 to 28 and from 16 to 19, respectively. The
default phoneme set was denoted by P0 and had 36
phonemes (of course, there was also a pass belonging
to this phoneme group). The number of phonemes for
each pass and distance function can be seen in Table 3.

After constructing the phoneme sets, we had to de-
termine the stack size values for each recognition step
(for each multi-pass combination). To do this we ran
another exhaustive set of tests: for each pass we used a
stack size of 25, 50, 75, 100, 125, 150, 175 or 200. For
example, for a three-pass configuration it meant 512
test cases. In the end with each combination we kept

those stack sizes that produced the lowest speed and
had a word accuracy score of at least 94%.

6.4 Testing the speed-up improvements

Having the optimal aggregation operator we now need
to test the speed-up improvements. However, their ap-
plication is not trivial: we could use them in vari-
ous combinations and most of them have some pa-
rameters which also affect the accuracy and speed
of the search process. For this reason we used an it-
erative technique called sequential forward selection
(Devijver and Kittler 1982; Schlimmer 1993). Here we
apply it with a simple multi-stack decoding search on
the original phoneme set. First all the improvements
are tested separately, which includes the determination
of their optimal parameters. Among them, in the fol-
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Table 4 Performance of
the basic search methods
(the Viterbi beam search
and the multi-stack
decoding algorithm), and
the applied, novel
improvements and
improvement combinations.
The number of total and
average (per word) ANN
calls are linearly
proportional to the running
time

Method combinations Total ANN calls avg. ANN calls

Viterbi beam search 83,929,336 194,731.64

multi-stack decoding 96,491,720 223,878.70

multi-stack + i 17,392,150 40,353.02

multi-stack + ii 23,412,327 54,320.94

multi-stack + iii 22,117,284 51,316.20

multi-stack + i + ii 14,037,545 32,569.71

multi-stack + i + iii 13,741,984 31,883.95

multi-stack + i + iii + ii 11,905,349 27,662.62

lowing we keep the one which produced the biggest
speed-up along with the given parameter value. In the
next step we test the remaining improvements, un-
til we have gone through all the possible combina-
tions (Gosztolya and Kocsor 2004). The results can
be seen in Table 4, where we separated the iterations
with a horizontal line. The fastest configuration of an
iteration was noted in bold, while the order of the im-
provements means the order of fine-tuning the para-
meters. Thus the tested configurations in an iteration
differ only in the last noted improvement.

After this test we have a sequence of improve-
ments, and an optimal parameter setting for the origi-
nal phoneme set. We used this sequence for each pass
of the 12 multi-pass configuration. However, the im-
provements usually had one or more parameters that
had to be set manually again for each multi-pass con-
figuration. It was a time-consuming task indeed, but it
was the only way we could guaranteed that the results
would have both the minimum recognition accuracy
and the optimal speed-up.

6.5 Results

Because our goal was to speed up the dynamic recog-
nition process with the above improvements while pre-
serving the accuracy, the speed of a configuration was
determined as the lowest one where the recognition ac-
curacy was at least 94% (which was the original recog-
nition percentage). The speed was measured in terms
of average phoneme identifications per word with a
value normalized to the pass belonging to the standard
phoneme group. For the results see Table 5. In the ta-
ble the symbol “•” means that we applied the given
recognition pass in the configuration, while the sym-
bol “◦” means that this pass was omitted.

The first thing we noticed was that the usage of ag-
gregation operators was successful: in the first step the

recognition accuracy rose from 94.20% to 95.12% just
by applying the root-power mean operator as g1, with
the modifications described above. In the second step,
however, we were not able to increase this percentage
any more at the word-level (g2), despite testing numer-
ous variations.

The multi-pass search method presented also prov-
ed to be successful: besides the same level of recog-
nition accuracy, a multi-pass recognizer ran 12–59%
faster than the basic multi-stack decoding method. It
is also true that two-pass methods in general worked
better than three-pass ones, and among them, the two-
pass methods with P1 are usually better than the ones
with P2. Since the initial phoneme set only consisted
of 36 phonemes, there was no point in creating more
phoneme groups. We can perform four or more pass
searches, but we would need a larger phoneme set to
justify this (Gosztolya and Kocsor 2005).

Next, we can compare the performance of the
multi-pass methods based on the various distance
functions. It seems that the ones which used Dmin

worked less efficiently than those which used Dmax;
on the other hand, the performance of d1 and of d2

seem to be very similar, hence we cannot say which
one is better.

Finally, let us look more closely at the improve-
ments. If we examine Table 4, it shows that with
these modifications the search process can indeed be
speeded up significantly. But Table 5 also makes clear
that these improvements cannot be applied together
with all the multi-pass methods efficiently. Although
the combined version is always at least twice as fast as
the multi-pass configuration alone, the original multi-
stack decoding method combined with these improve-
ments often outperforms them. This, however, does
not mean that this combination is futile in every case:



Int J Speech Technol

Table 5 Performance of
the multi-pass search
configurations, combined
with the novel
improvements. The •
symbol means applying the
given pass in the given
configuration, while the ◦
symbol means that we
omitted it. The speed here
was also measured in the
number of ANN calls per
word

Phoneme Passes Applied improvements

group P0 P1 P2 – i i + iii i + iii + ii

Standard • ◦ ◦ 223,878.70 40,353.02 31,883.95 27,662.62

d1 Dmin • • ◦ 128,065.86 27,150.05 22,014.37 21,587.46

• ◦ • 139,095.04 89,208.51 73,886.70 70,967.27

• • • 197,607.23 104,374.78 83,653.64 79,132.82

Dmax • • ◦ 92,819.79 23,699.83 18,781.79 17,871.53

• ◦ • 103,547.41 50,657.19 43,696.51 40,826.04

• • • 121,225.49 59,817.09 46,534.93 44,673.19

d2 Dmin • • ◦ 109,416.60 25,597.55 20,453.14 19,391.61

• ◦ • 147,378.76 64,603.24 46,932.94 44,772.42

• • • 177,443.28 77,849.67 62,205.58 52,837.09

Dmax • • ◦ 110,234.28 28,802.34 25,665.77 24,149.25

• ◦ • 93,444.29 39,500.06 32,972.24 31,842.79

• • • 133,025.09 41,047.91 32,324.59 30,562.53

the two-pass search method (which is based on the dis-
tance function using d1 and Dmax), using P1 runs 36%
faster with our improvements than the basic multi-
stack decoding method in similar circumstances.

7 Conclusions

In this paper we tested several different approaches
for speeding up a speech recognition system. Besides
a type of multi-pass search, which was based on a
novel distance function between phonemes, we ap-
plied search heuristics and some other ideas. In our
studies we also used a family of aggregation operators
to increase the recognition accuracy, which required
no additional computational time. This way we had
more room to decrease the running time of the recogni-
tion system while maintaining the same level of recog-
nition accuracy. The results show that although it is not
worth combining every multi-pass configuration with
all of the improvements (i+ iii+ ii: see Table 5 above),
our attempts were successful: the final hybrid search
method was over 12 times faster than the basic multi-
stack decoding algorithm, and ran almost 11 times
faster than the Viterbi beam search heuristics.

Appendix A

The pseudocode of a general clustering algorithm.
“←” means that a variable is assigned a value. The pa-

rameters are the initial x1, x2, . . . , xn points to be clus-
tered (grouped), a D(Ci,Cj ) distance function, and an
L value for the stopping criterion.

Algorithm 1 General clustering algorithm
for i = 1, . . . , n do

Ci ← {xi}
end for
while there is more than one cluster left do

(i, j) ← arg max D(Ci,Cj ) is minimal
if D(Ci,Cj ) > L then

break
end if
Ci ← Ci ∪ Cj

Remove Cj

end while

Appendix B

The multi-stack decoding pseudocode is described by
Algorithm 2. “⇐” means pushing a hypothesis into a
stack. Stack[ti] means a stack belonging to the ti time
instance. A H(w,T ) hypothesis denotes a phoneme
sequence and time-instance sequence pair. Extend-
ing a hypothesis H(w,T ) = H(w, [t0, . . . , tk]) with
a phoneme v and a time ti results in a hypothesis
H ′(wv,T ∪ ti ) = H ′(wv, [t0, . . . , tk, ti]), where the
cost of the new hypothesis is calculated using the g2

operator, after applying the g1 function. Here the max-
imal length of a phoneme is denoted by maxlength.
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Algorithm 2 Multi-stack decoding algorithm
Stack[t0] ⇐ h0(∅, [t0])
for i = 0 . . . n do

while not empty(Stack[ti ]) do
H(w,T ) ← top(Stack[ti ])
if ti = tmax then

return H

end if
for tl = ti+1 · · · ti+maxlength do

for all {v | wv ∈ Pref 1+length of w} do
H ′(w′, T ∪ tl) ← extend H with v

Stack[tl] ⇐ H ′
end for

end for
end while

end for
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