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Abstracts: In speech recognition probably the most important factor is the recognition accuracy.
This is why many attempts have been made to improve it. One such idea might be to use some
kind of aggregation method for hypothesis probability calculations. The triangular norms are
tools for aggregating one probability value from multiple probability values, thus they seem to
be good for this task. In this paper, however, we go even further: we apply full reinforcement
aggregation operators because they work in a similar way to human reasoning due to their full
reinforcement property. The tests also revealed that this idea is fruitful: we were able to reduce
the relative error rates by 16%.

1 Introduction

Fuzzy logic has a wide range of applications. One such area could be the hypothesis probability
calculation in the field of automatic speech recognition. This paper deals with applying full re-
inforcement aggregation operators [6] for this task, because this idea could better the recognition
rates with small or no further computational needs.

The aggregation task in speech recognition means that we have the probability of each phoneme
and want to aggregate them in some way to get a probability value for the word they construct.
Fuzzy logic offers a wide range of operators for this purpose. Perhaps the most well-known
of them is the group of triangular norms (t-norms) which we used for probability calculation
earlier [4]. But the full reinforcement aggregation operators (or uninorms) are tools more suitable
for artificial intelligence purposes: if the values considered are all – or mostly – high ones, the
result will also be high, while if the input values are mostly low ones, the resulting probability
will also be low. This behavior models human reasoning more than the behavior of either the
t-norms or their corresponding pairs, the triangular conorms (or t-conorms), which is why we
chose them to improve the recognition accuracy of our system.

The structure of this paper is as follows. First we define the speech recognition problem and
the hypothesis space. Next, we introduce t-norms, t-conorms and uninorms, and show the
connection between each. Then we describe the test environment and analyze the test results.
Lastly we draw some conclusions about the methods used in this paper.

2 The Speech Recognition Problem

In speech recognition problems we have a speech signal represented by a series of observations
A = a1 . . . at, and a set of possible phoneme sequences (words) which will be denoted by W .
Our task is to find the word ŵ ∈ W defined by

ŵ = arg max
w∈W

P (w|A), (1)



which, using Bayes’ theorem, is equivalent to the maximization problem ŵ = arg max
w∈W

P (A|w)·P (w)
P (A) .

Further, noting the fact that P (A) is the same for all w ∈ W , we have that

ŵ = arg max
w∈W

P (A|w)P (w). (2)

Speech recognition models can be divided into two types – the discriminative and generative
ones – depending on whether they use Eq. (1) or Eq. (2). In the experiments we restricted our
investigations to the generative approach [5].

2.1 Unified view

Both the generative and discriminative models exploit frame-based and/or segment-based fea-
tures, and this fact allows us to have a unified framework of the frame- and segment-based
recognition techniques. First we will provide a brief outline of this framework along with its
hypothesis structure.

Let us define w as o1 . . . on, where oj is the jth phoneme of word w, and let A1, . . . , An be non-
overlapping segments of A = a1 . . . at, where Aj = atj−1

. . . atj , j ∈ {1, . . . , n}. An Aj segment
is defined by its start and end times and will be denoted by [tj−1, tj ]. For a segmentation
A = A1, . . . , An we put the values of the time indices into a vector In = [t0, t1, . . . , tn] (1 = t0 <

t1 < . . . < tn = t). We assume that the phonemes in a word are independent so that P (A|w) can
be obtained from P (A1|o1), . . . , P (An|on) in some way. To calculate P (A|w), various aggregation
operators can be used at two levels. In the first one the P (Aj |oj) probability values are supplied
by a g1 operator, i.e. P (Aj |oj) = g1([tj−1, tj ], oj), which provides an overall value for measuring
how well the Aj segment represents the oj phoneme. In the second one, another operator (g2)
is used to construct P (A|w) using the probability values P (A1|o1), . . . , P (An|on).

The frame-based approach

The well-known Hidden Markov Model (HMM) is a frame-based approach, i.e. it handles the
speech signal frame by frame [8]. Usually a Gaussian Mixture Model is applied to compute the
P (al|oj) values (for delta and delta-delta features neighboring observations are also required)
and for the Aj segment the g1([tj−1, tj ], oj) value is defined by

tj
∏

l=tj−1

coj · P (al−k . . . al+k|oj), (3)

where 0 ≤ coj ≤ 1. Thus g1 includes all the information we have when we are in a particular
state of a HMM model. As for the P (A|w) value, the g2 operator is usually defined by

P (An|on)
n−1
∏

j=1

(1 − coj )P (Aj |oj). (4)

2.2 The hypothesis space

The task of speech recognition is a selection problem over a Cartesian product space where the
first dimension is a set of word prefixes, while the second is a set of segmentations. For a set of
words W we denote the k-long prefixes of the words in W as Prefk(W ). Let Ik = {[t0, . . . , tk] :
1 = t0 < · · · < tk ≤ t} be the set of sub-segmentations made of k segments. The hypotheses will
be elements of H =

⋃∞
k=0(Prefk(W ) × Ik), while the root of the tree will be h0 = (∅, [t0]) ∈ H.

Pref1(W ) × I1 contains the first-level nodes, and for a (o1 . . . oj , [t0, . . . , tj ]) leaf we link all the
nodes (o1 . . . ojoj+1, [t0, . . . , tj , tj+1]) ∈ Prefj+1(W ) × Ij+1.



Now we need to evaluate the nodes of the search tree. To this end let the g1 and g2 functions
be defined by some aggregation operators. Then, for a node (o1o2 . . . oj , [t0, . . . , tj ]), the value is
usually defined by

g2(g1([t0, t1], o1), . . . , g1([tj−1, tj ], oj)). (5)

Note that, in practice, it is worth calculating this expression recursively. In this paper we will
use a frame-based framework, where g1 is the traditional multiplication operator. As for g2, we
will test multiple aggregation operators to raise the recognition scores.

After defining the evaluation methodology, we will look for a leaf with the highest probability.

3 Full Reinforcement Aggregation Operators

In the fuzzy literature [6] a wide range of operators are described and studied. Hence, if we want
to change the standard aggregation operator of the speech recognition problem, a straightforward
idea is to look for one in the fuzzy domain. First we will define the triangular norms and
triangular conorms, introduce the full reinforcement aggregation operators, then we will show
how we can apply them in the speech recognition problem.

3.1 Triangular norms and conorms

Definition 1 A triangular norm (t-norm) is a binary operation T on the interval [0, 1], i.e.,
a function T : [0, 1]2 → [0, 1], such that for all x, y, z ∈ [0, 1] the following four axioms are
satisfied:

(T1) T (x, y) = T (y, x). (commutativity)
(T2) T (x, T (y, z)) = T (T (x, y), z). (associativity)
(T3) T (x, y) ≤ T (x, z) whenever y ≤ z. (monotonicity)
(T4) T (x, 1) = x (boundary condition)

T-norms play the role of conjunction operators in fuzzy logic. One such t-norm is the product
operator (TP ), which helps explain why it was useful for us to use various t-norms as we did
with g2 previously [4]. Moreover, it can be shown that for any t-norm T and x, y ∈ [0, 1],
0 ≤ T (x, y) ≤ min(x, y).

Definition 2 A triangular conorm (t-conorm) is a binary operation S on the interval [0, 1],
i.e., a function S : [0, 1]2 → [0, 1], which, for all x, y, z ∈ [0, 1], satisfies (T1) − (T3) and

(S4) S(x, 0) = x (boundary condition)

T-conorms play the role of disjunction operators in fuzzy logic. One such t-conorm, of course,
is the addition operator. Furthermore, as in the case of t-norms, it can be shown that for any
x, y ∈ [0, 1], max(x, y) ≤ S(x, y) ≤ 1.

Lastly, let us introduce a notation. Associativity (T2) allows us to extend each t-norm T to an n-
ary operation by induction, defining for each n-tuple (x1, x2, . . . , xn) ∈ [0, 1]n as T (x1, x2, . . . , xn) =
T (. . . T (T (x1, x2), x3) . . . , xn). If, in particular, we have x1 = x2 = . . . = xn, we briefly write

x
(n)
T = T (x, x, . . . , x). Finally we put, by convention, for each x ∈ [0, 1] x

(0)
T = 1 and x

(1)
T = x.

Of course the same can be done with any t-conorm S. This extension makes it easier for us to
use any t-norm T and t-conorm S in Eq. (5) both as g1 or g2, although here we will replace
only the latter one.



3.2 Uninorms

Full reinforcement aggregation operators or uninorms are operators that are based on the com-
mon properties of both t-norms and t-conorms, i.e., commutativity, associativity and mono-
tonicity. The difference is in the fourth axiom:

Definition 3 A uninorm is a binary operation U on the unit interval [0, 1], i.e., a function
U : [0, 1]2 → [0, 1], which satisfies (T1) − (T3) and

(U4) U has a neutral element e ∈]0, 1[, i.e. U(x, e) = x

The construction of an n-ary operator above can be also done for a uninorm. Moreover, it can be
shown that a uninorm behaves like a t-norm if 0 ≤ x, y ≤ e and like a t-conorm if e ≤ x, y ≤ 1.
This property, if applied backwards, permits a way of uninorm construction such that for any
uninorm U

U(x, y) =

{

eT (x
e , y

e ) if 0 ≤ x, y ≤ e,

e + (1 − e)S(x−e
1−e , y−e

1−e ) if e < x, y ≤ 1,
(6)

where T and S are any t-norm and t-conorm, respectively. There are remaining regions, however,
where 0 ≤ x ≤ e and e < y ≤ 1, and where e < x ≤ 1 and 0 < y ≤ e. In these regions U(x, y)
can be any function as long as min(x, y) ≤ U(x, y) ≤ max(x, y) is satisfied. In this paper we
chose the minimum function, i.e. U(x, y) = min(x, y), based on the results of preliminary tests.

3.3 Tested Uninorms

Klement, Mesiar and Pap [6] list the most important t-norm and t-conorm families. Based on
their work, and using the experience gained from our previous tests [4], we will use the following
triangular norm and conorm families:

Schweizer-Sklar t-norms and t-conorms (λ ∈ R, λ 6= 0):

TSS
λ (x, y) = (max((xλ + yλ − 1), 0))1/λ (7)

SSS
λ (x, y) = 1 − (max(((1 − x)λ + (1 − y)λ − 1), 0))1/λ (8)

Hamacher t-norms and t-conorms (λ > 0):

TH
λ (x, y) =

xy

λ + (1 − λ)(x + y − xy)
(9)

SH
λ (x, y) =

x + y − xy − (1 − λ)xy

1 − (1 − λ)xy
(10)

Dombi t-norms and t-conorms (λ > 0):

TD
λ (x, y) =

1

1 + ((1−x
x )λ + (1−y

y )λ)1/λ
(11)

SD
λ (x, y) = 1 −

1

1 + (( x
1−x)λ + ( y

1−y )λ)1/λ
(12)

Aczél-Alsina t-norms and t-conorms (λ > 0):

TAA
λ (x, y) = e−((− log x)λ+(− log y)λ)1/λ

(13)

SAA
λ (x, y) = 1 − e−((− log(1−x))λ+(− log(1−y))λ)1/λ

(14)



3.4 Uninorms in Speech Recognition

In speech recognition the norms we described can be used as the g1 or g2 function. As the
default value of these functions is multiplication in both cases, it is straightforward to use
triangular norms with these problems [4]. T-norms, however, have the property that one low
value drastically reduces the resulting value. As it happens, the human mind works in a different
way for a t-norm: one low value can be compensated by the other high ones and vice versa.
And this is precisely what uninorms give us: if all – or almost all – the input values (in the case
of g2 phoneme probabilities) are high, the result will be high. But if most input values are low,
the result – in our case the hypothesis probability – will also be low.

The application of uninorms is not limited to g2. They can be used to define g1, provided the
speech recognition framework is a frame-based one. In this paper, however, we only discuss g2

due to lack of space.

4 Experiments and Results

The tests were made in the framework of the OASIS Speech Laboratory [7]. The train database
consisted of 500 speakers, each uttering 10 sentences and 4 words via telephone. The test
database consisted of all these speakers uttering the name of a town or city. Some of these
utterances were unrecognizable even to humans, so in the end the test database contained
431 different words. The HTK system [9] used for reference produced 92.11% under these
circumstances. Unfortunately, the Hungarian language is an agglutinative one which makes it
more difficult to construct a language model than it is for English, but in the near future we are
planning to recognize whole sentences instead of isolated words.ab

In the further tests the problem was that there were far too many possible uninorms to test,
so we had to somehow reduce the ways of uninorm-construction. First we decided to pair only
t-norms and t-conorms from the same family. But still we had three possible parameters from
now on: λT , the λ parameter of the t-norm; λS , that is of the t-conorm; and e, the neutral
element of the uninorm. First we decided to assign λT to a value where T produces the best
results using it as the aggregation function g2. (This is equivalent as having e fixed to 1.) Next,
λS was determined in the same way by fixing e to 0, although it produced worse recognition
rates due to the fact that a t-conorm is not really suitable for being used as a g2 function. Lastly,
the optimal value of e was determined, where we could now use the values λT and λS . Figure 1
shows the recognition rates we obtained for each t-norms, t-conorms and uninorms.

It can be seen, then, that the t-norms alone outperformed the original product operator. T-
conorms, as expected, did not perform so well, although, surprisingly, the Dombi and the Aczél-
Alsina t-conorm families attained a result over 10%. The performance of the uninorms was even
better than that of the t-norms in the case of UD and UAA, too. In each case on the lower e

values naturally the t-conorms dominated, while on the higher ones the recognition percentage
corresponded to the one for the t-norm alone. In the end we found that the uninorms constructed
from the Dombi [2] and the Aczél-Alsina [1] family produced the best rates.

5 Conclusions

In this paper we investigated the usefulness of fuzzy operator types in speech recognition. We
tested triangular norm and triangular conorm families for the purpose of hypothesis probability
calculations, then with their combinations we constructed full reinforcement aggregation oper-
ators for the same task. These operators, having the advantages of both the t-norms and the
t-conorms, were able to improve the recognition accuracy from 94.20% to 95.12%, which was
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Figure 1: Recognition accuracy using the Schweizer-Sklar, Hamacher, Dombi and Aczél-Alsina
t-norm and t-conorm families, and their constructed uninorms.

equivalent to a 16% increase in terms of the relative error reduction.
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