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Abstract. Automatic speech recognition (ASR) is an area where the
task is to assign the correct phoneme or word sequence to an utter-
ance. The idea behind the ASR segment-based approach is to treat one
phoneme as a whole unit in every respect, in contrast with the frame-
based approach where it is divided into equal-sized, smaller chunks. Do-
ing this has many advantages, but also gives rise to some new problems.
One of these is the detection of potential bounds between phones, which
has an effect on both the recognition accuracy and the speed of the speech
recognition system. In this paper we present three ways of boundary de-
tection: first two simple algorithms are tested, then we will concentrate
on our novel method which incorporates a spiking neuron. On examining
the test results we find that the latter algorithm indeed proves successful:
we were able to speed up the recognition process by 35.72% while also
slightly improving the recognition performance.

1 Introduction

In the problem of Automatic Speech Recognition (ASR) we have to map the
correct phoneme or word sequence to a given speech signal. Most methods for
this task are based on the frame-based notion, which treats the speech signal as
a series of independent, equal-sized small units called frames. These frames are
classified as phonemes, and then joined to make whole words or sentences, from
which the most probable one is chosen. This scheme is based on the concept of
combining multiple, consecutive frames into one phoneme.

The segment-based approach is founded on different principles. Here all the
frames which make up a phoneme are treated together as one unit, and nat-
urally their classification is also done together. This way we can extract more
information from the context, and this leads to more precise phoneme-level iden-
tification, but doing this is not without its drawbacks. One, for instance, is that
both ends of the phoneme segment become variables of the search, which raises
the computational needs of the recognition process to a quadratic running time
instead of the former linear one. To reduce this CPU requirement we can filter
the phoneme boundary hypotheses before evaluating them. It is easy to see that
this restriction has to be carried out very carefully: if we do not allow the kind
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of bound where there is actually a boundary between two phonemes, we will
lose information, and this will probably lead to a decrease in the recognition
performance. On the other hand if we allow possible boundaries where there is
no need for them, we can significantly and unnecessarily slow down our speech
recognition system. Hence a tradeoff should be made.

Here we will focus on the task of constructing a method for detecting prob-
able segments in order to speed up the recognition process. To do this, we will
investigate one simple method as a baseline, construct three novel segmentation
algorithms, and then vary their parameters in order to make them work effi-
ciently. In the experiments we found that we were able to not only speed up the
recognition process significantly, but also improve the recognition performance,
which was an unexpected bonus.

The structure of our paper is as follows. First we define the speech recognition
task in a segment-based approach. Next we discuss the issue of segmentation,
outlining the problem and our solutions. Then we describe the test environment
and the tests we made. Lastly we present our results and draw some conclusions.

2 The Speech Recognition Problem

In speech recognition problems we have a speech signal represented by a series
of observations (frames) A = a1 . . . at, and a set of possible phoneme sequences
(words) which will be denoted by W . Our task is to find the word ŵ ∈ W
defined by

ŵ = arg max
w∈W

P (w|A), (1)

which, using Bayes’ theorem, is equivalent to the maximization problem

ŵ = arg max
w∈W

P (A|w) · P (w)
P (A)

. (2)

Further, noting the fact that P (A) is the same for all w ∈ W , we have that

ŵ = arg max
w∈W

P (A|w)P (w). (3)

Speech recognition models can be divided into two types – the discriminative
and generative ones – depending on whether they use Eq. (1) or Eq. (3). In
the experiments we restricted our investigations to the generative approach [1].
Speech recognition models can also be divided into two types, namely a frame-
based one and a segment-based one. Here we will focus on the latter type. Note
too that the factors P (A|w) and P (w) can be treated separately. From now on
we will focus on the former one, and take P (w) (the language model) as given.

Now let us define the word w as a phoneme-sequence o1, . . . , on. Next, let us
divide A into non-overlapping segments A1, . . . , An, each Aj belonging to the
corresponding phoneme oj . (As A = a1 . . . at, we can define Aj as atj−1 . . . atj
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with 1 = t0 < t1 < . . . < tn = t.) Then, making the common assumption that
the phonemes are independent, we have

P (A|w) =
n∏

j=1

P (Aj |oj). (4)

In a segment-based model we calculate these P (Aj |oj) values by some machine-
learning method using interval features (i.e. features like the mean, minimum or
maximum, calculated on the whole atj−1 . . . atj segment). In our system Artificial
Neural Networks (ANNs) [2] are used, and their corresponding output serve as
estimates for the P (oj |Aj) probability values after length normalization. From
these, estimates of P (Aj |oj) can be readily obtained by a division by the priors.

2.1 Restricting the Space of Possible Segmentations

At this point we can assign a probability for a phoneme-sequence and segment-
sequence pair, so in theory we can find the optimal (most probable) pairing.
Unfortunately, it is practically impossible to examine all pairings, hence we have
to introduce some further restrictions for technical reasons. Firstly, instead of
referring to the segments as A1, . . . , An, we use their boundary elements, i.e.
I = [t0, t1, . . . , tn]. This I will from now on be called a segmentation, and we
can refer to an Aj segment with its starting and ending segmentation bounds as
[tj−1, tj ]. Next, we will limit the range of these tj values: instead of taking any
number between 1 and t, only the elements of some set T will be allowed. This
set is called the set of possible segmentation bounds (or possible segmentation
in short), while the algorithm which supplies these values for the given speech
signal A is called the segmentation algorithm. In this paper we will focus on this
issue.

It is not hard to find reasons for the existence of this T set. It is very un-
likely that every value between 1 and t will be needed (partly because it would
mean that all phonemes are then of identical length). On the other hand, keep-
ing values in T which will obviously not be used in any segmentation makes
speech recognition much more time-consuming without any gain. Constructing
a good T also seems possible because in the ideal case it coincides with the real
boundary between phones, which can hopefully be predicted by signal processing
techniques. We will discuss this issue later in detail, but first we need to describe
the search algorithm used.

2.2 The Search Process

The task of a search algorithm is to find the word and segmentation pair with
the highest probability for the given speech signal A. Many search methods
are available in the literature to do this: perhaps the most widely-used one is
the Viterbi beam search [3], but here we opted for the multi-stack decoding
algorithm [4].

These two methods are similar in the way they work: they handle prefixes of
phoneme sequence-segmentation pairs which are called hypotheses. The hypothe-
ses are stored in priority queues assigned to each possible phoneme boundary,
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which automatically discard hypotheses considered improbable relative to the
other hypotheses kept there. During a search these queues are visited in increas-
ing time order. At each step all hypotheses are taken from the actual queue and
they are expanded in every possible way: a new valid phoneme is attached to
the end with a new end time. Then the new hypotheses have their probabilities
calculated, and are inserted into the queue belonging to their new end time. Of
course these queues automatically sort the hypotheses they store, and discard
the most improbable ones. In the end the result will be the most probable hy-
pothesis belonging to the final queue which has a correct phoneme-sequence (i.e.
not ending in the middle of a word).

The difference between the two search methods is how they decide whether a
hypothesis in a priority queue is improbable. The Viterbi beam search discards
those whose probability does not lie within a given interval relative to the best
one, this threshold being called the beam width parameter. The multi-stack de-
coding algorithm, however, always keeps a fixed number of best hypotheses, and
discards the rest. The corresponding constant is the stack size. Since we used
the multi-stack decoding algorithm, we shall concentrate on it, but the following
statements also apply to the Viterbi beam search method.

Choosing the right stack size parameter is of course of great importance. If it
happens to be too low, the correct word-segmentation pair may be lost, because
a hypothesis leading to it is discarded due to its temporary improbability. If,
however, the stack size chosen is too big, it greatly slows down the search process,
forcing the method to needlessly investigate and expand many non-promising
hypotheses.

3 Phoneme Boundaries

In a segment-based speech recognition task it is vital that all actual phoneme
boundaries (or at least frames in their immediate neighbourhood) be in the set
of possible segmentation bounds T . On the other hand we should limit the size
of this set, otherwise it would lead to an unacceptable loss in speed. This makes
the choice of the elements of this T quite important.

A baseline phoneme boundary assignment can be simply to draw one possi-
ble phoneme boundary at every kth frame. It is a brute force solution, but it
makes quite satisfactory recognition scores possible. However, using this, during
a search we have to consider lots of hypotheses, which naturally slows down the
search process. On the other hand, this way we cannot miss any real phoneme
boundary. But this method is by no means optimal, so next we will describe the
algorithms we constructed for phoneme boundary detection.

3.1 Phoneme Boundary Detector Algorithms

All our algorithms will take as input a function which estimates for each point
the probability of this point being a boundary position. One may think that
supplying this value for all frames (all ai values) solves the entire segmentation
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Fig. 1. Up: A spectrum with its correct segmentation. Down: the same spectrum with
the bi values and the output of the Thresholding Algorithm.

problem, but unfortunately this is not the case. While it is indeed a very impor-
tant factor, in our experiments we found that determining the actual position of
the segment bounds is by no means straightforward. Hence in the following we
will assume that for each frame ai we have a value bi which tells us the probabil-
ity of a phoneme boundary being at that particular place. To get these bi values
we applied a neural net, which will be described in detail in the Experiments
section.

Thresholding Algorithm. This algorithm improves the default brute force
segmentation method by applying a threshold. That is, we still draw a possible
phoneme boundary at every kth frame, but only if the corresponding bi value is
greater or equal to some minimum probability pmin. The lower panel of Figure 1
shows how this method works. One can see that it draws equidistant boundaries
everywhere, apart from two intervals where the bi values are permanently low.
Compared to the correct segmentation shown in the upper panel, it is clear that
this method draws lots of unnecessary boundaries.

Maximum Algorithm. This algorithm simply looks for positions where the
bi values take their local maxima over a given interval of neighbouring points.
The advantage of this method is that the boundary positions suggested by it
in many cases fall pretty close to the ones proposed by humans, as those hu-
man experts who manually process such databases also place the boundaries at
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Fig. 2. Up: the same spectrum as in Figure 1 with the bi values and the output of the
Maximum Algorithm. Down: the same spectrum with the bi values and the output of
the LIF Algorithm.

the points where the spectral change is the largest. By adjusting the size k of
the neighbourhood examined by the algorithm we can easily guarantee a mini-
mal distance between the hypothesized boundaries. The algorithm can also be
combined with the thresholding method described above. The behaviour of this
method is illustrated in Figure 2 (upper panel).

LIF Algorithm. The problem with both the former algorithms is that we have
no direct control over the density of the boundary hypotheses, so in certain
cases they may not draw any boundary for a ’long’ period of time. A less risky
solution would be a modification of the baseline algorithm which puts boundary
lines everywhere along the time axis, but dynamically adjusts the density of the
markers in such a way that it is proportional to the local probability values bi. A
self-evident biologically motivated solution for this is to apply a leaky integrate-
and-fire (LIF) neuron model [5]. This construct is the best-known example of
the family of spiking neuron models, and its operation is very simple: the neuron
integrates its input until the sum reaches a certain threshold. Then the neuron
fires (emits a spike), its potential is reset, and the whole process starts again.
The model can be refined by making the integration ”leaky”, in which case the
membrane potential decays with a characteristic time constant when no input
is present. The model may also incorporate an absolute refractory period, over
which it is not excitable.
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In our segmentation algorithm the bi values are used as input for the integrate-
and-fire neuron. Obviously, where these values are higher, their sum reaches the
activation threshold sooner, and the spikes become more dense. With the tuning
of the threshold one can control the density of the spikes, while by setting the
refractory period a minimum distance between the neighbouring spikes can be
easily guaranteed. In our experiments these parameters (e and k, respectively)
were tuned manually. Obviously, we tried to set the parameters so that at the
most dense areas the density of the markers were similar to those of the baseline
algorithm, while at other places the boundary markers were more spaced out.
The behaviour of this method is illustrated in Figure 2 (lower panel).

4 Experiments and Results

The experiments were carried out within the framework of the OASIS speech
recognition system, which, due to its module-based structure and its flexible
script system, provides a good basis for experimentation [6]. We used the multi-
stack decoding algorithm for searching with a constant big stack size. While it is
true that this parameter also affects both the running speed and the recognition
scores, here we sought to test just the various segmentation algorithms.

There are many ways of measuring the correctness of a possible segmentation
(and hence the algorithm which produced it). Perhaps the easiest one is to
compare T with the actual phoneme bounds. To do this, first the elements of
T and the actual phoneme bounds have to be mapped to each other somehow.
After this step one can easily see how many boundaries are missing from T and
how many of its elements are redundant. This test can be carried out in a very
short time, but it is not without its drawbacks: the actual phoneme boundaries
have to be known beforehand, and it is not easy to say how many missing bounds
should be considered ”too few”. (Similarly, it is not known how many needless
bounds should be judged as ”too many”.) Moreover, it is also not clear when
two phoneme boundaries can be mapped to each other.

Since this testing method had quite a few drawbacks, we eventually chose the
other option: we examined how a possible segmentation T works in practice;
that is, how it affects the actual recognition scores on real data. For this we
performed a thorough test involving sentence recognition, and examined how
the recognition scores varied. But to do this we first have to introduce the way
these two recognition measures can be calculated.

We cannot simply compare the original and the resultant sentences because
this way even one badly identified word would ruin the whole sentence. We can-
not compare the two sentences word for a word either, because one incorrectly
inserted or omitted word would also ruin the calculated performance ratio. For
this reason, usually the edit distance of the two sentences is calculated; that is,
we construct the resulting sentence from the original using the following oper-
ations: inserting and deleting words, and replacing one word with another one.
These operations have some cost (in our case the common values of 3, 3 and 4,
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respectively), then we choose an operation series with the lowest cost. Finally
we can calculate the following measures:

Correctness =
N − S − D

N
(5)

and
Accuracy =

N − S − D − I

N
, (6)

where N is the total number of words in all the original sentences, S is the
number of substitutions, D is the number of deletions and I is the number of
insertions. We will employ these two formulas throughout our tests. As for the
speed-up values, we always express the running speed of the recognition using
T as the percentage of that of the baseline.

4.1 The Baseline Values

The next step is to construct a working speech recognizer setup to serve as our
baseline configuration. First we have to solve the problem of phoneme recog-
nition (see Eq. (4)), for which we will use ANNs. The features used were the
typical segment-based ones (for details see [7]). We had a large, general database
for training: 332 people of various ages spoke 12 sentences and 12 words each,
which were recorded on different computers and sound cards via different mi-
crophones [8]. To get a segment-boundary hypothesis we used the brute force
method with k = 8.

The tests were performed on sentences from the field of medical reports; for
this purpose 150 randomly selected sentences were recorded. The language model
was a simple word 3-gram; i.e. the probability of the next word depended just on
the last two words spoken, and it was calculated by a statistical examination of
texts in a similar field. We attained, at the word-level, correctness and accuracy
scores of 96.42% and 95.34%, respectively, which then served as our baseline.

4.2 Detecting Phoneme Boundaries

For phoneme boundary detection, first a function which generates the bi values is
needed. As the phoneme boundary positions correlate well with the local spectral
changes, we used the first derivates (”Δ values”) of the mel-frequency cepstral
coefficients (MFCC) [9] as features. For each phoneme in the train database we
assigned a value of 1 to the first and last frames, a value of 0 to the middle frame,
and a value between 0 and 1 to the rest of the frames depending on how close
they were to the sides. Next an ANN was trained for these frames and target
values in regression mode. This way evaluating this ANN on any frame ai, say,
generated the corresponding phoneme bound probability value bi.

4.3 Test Results for the Thresholding Algorithm

Surprisingly this algorithm did not produce good results. Although with some
parameters (like k = 6, pmin = 0.065) we were able to get a small speed-up, it
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also caused a decrease in the recognition scores. With some other parameters
(like k = 6, pmin = 0.070) the recognition performance was better than that of
the baseline, but this configuration was slower as well. The next table shows the
interesting test results we obtained:

k pmin Correctness Accuracy Relative speed
6 0.065 96.06% 94.94% 90.23%
6 0.070 97.49% 95.70% 114.02%
baseline 96.42% 95.34% 100.00%

Usually the method was just too slow, or when this was not the case, the two
recognition percentages fell dramatically. These results are probably due to the
fact that the phoneme boundary probability estimator ANN was trained to de-
tect the amount of change in the spectrum. Sometimes, however, this change is
not abrupt, but occurs over a long time, resulting in just slightly higher bi val-
ues over the longer period. The Thresholding Algorithm was not able to detect
these changes, unlike the other two which, in contrast, could take the context of
a given frame into consideration.

4.4 Test Results for the Maximum Algorithm

The overall results of this algorithm are somewhat mixed. Although visually
inspecting the possible segmentations it produced should be the most promising
method of the three, in practice this was not so. The explanation is that although
the method usually inserted very few needless possible bounds, it also skipped
some necessary ones, and in practice failing to find phoneme bounds is a very
serious mistake. The results can be seen in the next table.

k Correctness Accuracy Relative speed
3 93.90% 90.68% 127.73%
4 95.34% 92.83% 72.98%
5 93.19% 89.96% 48.83%
6 82.80% 78.49% 35.70%

baseline 96.42% 95.34% 100.00%

Moreover, the algorithm was tuneable only to a very limited extent: its parameter
had to be a small integer, so while with the value of 3 it was slower than the
basic method, even with 5 it produced a much lower accuracy value. With the
only value left in between (4) the accuracy was also somewhat low (92.83% vs.
the baseline 95.34%; a 53% increase in the relative error).

4.5 Test Results for the LIF Algorithm

This algorithm, unlike the others, achieved a satisfactory improvement in speed
with no loss in accuracy (see Figure 3). Moreover, it was able to raise the recog-
nition figures along with a decent gain in speed. This was probably due to the
fact that the algorithm was better than the other two in some respects. While
the Maximum Algorithm was very good at finding possible phoneme bounds,
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Fig. 3. The correctness, accuracy and running time results of the LIF algorithm with
different k and e values; the baseline values are shown by a dotted line

it could not be tuned. On the other hand, the Thresholding Algorithm could
be fine-tuned with its two parameters, but the method itself was too simple
to produce really good results. The LIF algorithm, however, seems to be the
golden mean between the two: it also has two parameters for tuning, and sug-
gests phoneme bounds at much smarter places than the Thresholding Algorithm
does, and it takes the context into account.

As for the increase of the recognition scores, it was a surprising result, which
was probably due to the combined effect of many factors. Firstly, the phoneme
bounds were placed at more accurate positions than they were with the basic
method. Secondly, fewer possible phoneme bounds were generated, thus fewer
unusable hypotheses were generated, which did not fill the priority queues that
much (as the stack size was the same in all cases). And thirdly, due to the fewer
possible phoneme bounds being used, it was possible to draw them more closely
to each other (i.e. to use a smaller k value) than in the basic method. (The
last statement, of course, is true for all three segmentation algorithms.) Some
interesting values are shown in the next table, the best values being presented
in bold.
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k e Correctness Accuracy Relative speed
5 1.75 97.13% 94.98% 69.37%
6 1.75 97.85% 96.42% 64.28%
7 1.30 98.20% 95.69% 78.58%
7 2.20 96.05% 94.26% 46.48%
8 1.30 97.85% 96.05% 70.23%

baseline 96.42% 95.34% 100.00%

From the values the tradeoff between the recognition scores and the running
speed can clearly be seen: if we aim for a 50% plus reduction in the running
times, it will eventually lead to a small decrease in both correctness and accu-
racy. Since accuracy is more important than correctness, we chose the configura-
tion with the values k = 6 and e = 1.75. With these parameters we were able to
achieve correctness and accuracy scores of 97.85% and 96.42%, respectively, with
the running time being just 64.28% of the original one. These recognition per-
formances mean a 40% and 23.28% improvement in relative error terms, while
the 35.72% reduction in running times is also significant. Of course, it is not
really the actual parameters which are important, but rather the fact that this
method could be fine-tuned to our needs.

5 Conclusions

In this paper we investigated the issue of detecting potential phoneme bounds,
which is an important task in segment-based speech recognition. Since the posi-
tion of the probable phoneme bounds correlate well with local spectral changes,
we were able to construct a bound probability estimator function based on them.
Then we introduced three novel algorithms for phoneme bound detection instead
of the basic, functional-but-slow brute force method, which were all based on this
estimator function. The three algorithms were all quite different: the first was
a thresholding version of the basic brute force procedure, the second looked for
local maxima of the probability estimator function, while the third incorporated
a special spiking neuron. Out of these three the last proved to be surprisingly
good for the task: not only were we able to speed up the recognition process
by 35%, but we could also significantly raise the recognition scores at the same
time. These points, we think, make the algorithm worthy of both further study
and putting it into practice.
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