
Spoken Term Detection Based on
the Most Probable Phoneme Sequence

Gábor Gosztolya
University of Szeged, Hungary

Department of Informatics
Email: ggabor@inf.u-szeged.hu

László Tóth
Research Group on Artificial Intelligence
of the Hungarian Academy of Sciences

Szeged, Hungary
Email: tothl@inf.u-szeged.hu

Abstract—The aim of the spoken term detection task is to
find the occurrence of user-entered keywords in an archive of
audio recordings. In this area, besides the accuracy of hits
returned, the speed of search is also very important, for which
an intermediate representation of recordings is normally used.
In this paper we evaluate a spoken term detection method which
represents the speech signals by their most probable phoneme
sequence, on which a dynamic search is then performed. As the
accuracy of the phoneme recognizer used is vital, we shall test this
method by using several approaches of phoneme identification.
We found that our method already achieves satisfactory accuracy,
although its run time is still rather high. We also found that
this approach is heavily dependent on the performance of the
phoneme recognizer.

I. INTRODUCTION

Spoken term detection (STD) is a relatively new area, which
is closely related to speech recognition. Both seek to precisely
match the relation between audio speech recordings and their
transcripts; but while speech recognition seeks to produce the
correct transcript of speech utterances, spoken term detection
seeks to locate those parts of the utterance where the user-
entered keyword occurs.

In the STD task a great emphasis is placed on the speed
of the search process as in practice a user expects a quick
response, whereas typically several dozen hours of audio
recordings have to be examined. For this reason usually some
kind of intermediate representation is used, which could be
slow to generate, but in which it is easy to search. Among the
numerous possibilities we chose the most probable phoneme
sequence as it is quite compact, while still containing enough
information to make high accuracy possible. But because
this approach works directly on this most probable phoneme
sequence, it is vulnerable to errors; for this reason we tested
a number of phoneme recognition approaches.

The structure of this paper is as follows. First we will
describe the spoken term detection task and its relation to
speech recognition. Alongside this, we will also introduce a
formulation of the STD problem. Then we will introduce our
STD algorithm and explain it in detail. After, we will explain
the various phoneme recognition techniques we experimented
with. Then we will describe the experimental setup, namely
the evaluation methodology applied, the database used, and

This research was partially supported by the TÁMOP-4.2.2/08/1/2008-0008
program of the Hungarian National Development Agency.

our process of testing. Lastly, we will present and analyze the
test results, and draw some conclusions.

II. THE SPOKEN TERM DETECTION TASK

In the spoken term detection task we would like to find
the user-entered expressions (which we will call terms or
keywords) in an audio database, which will be referred to as
the set of recordings. An STD method returns a list of hits,
each of which contain the point of occurrence (i.e. a speech
signal index, starting and ending times), the term found, and a
probability value that can be used to rank the hits. In contrast
to other similar tasks, in STD the order of the hits does not
matter; instead, the probability value is mainly used to filter
the hit list further, keeping just the more probable elements.

Next we will examine the relationship between the spoken
term detection task and the speech recognition one, and then
present a mathematical formulation of the STD problem.

A. Relation to Speech Recognition

The STD task is quite closely related to speech recognition;
clearly, in theory, one possible solution is to perform speech
recognition on the recording set, and then search for the given
keywords only in the text output. This approach, however,
relies heavily on the vocabulary used during speech recogni-
tion, which is a definite weak point for any search application:
the list of frequent search terms changes quite rapidly. It is
so mainly because most search terms are nouns, and a big
proportion of them are proper nouns, whose use is liable to
fluctuate quite markedly. Yahoo said that 70% of the keywords
entered into their search engine are nouns, and more than half
of them (40%) are proper nouns [1]. Due to this, nowadays in
spoken term detection a great emphasis is laid on vocabulary-
independence, which excludes simply searching in the text
output of speech recognition performed on the recognition set.
Still, spoken term detection uses many techniques developed
for and used in speech recognition, so we should first examine
the speech recognition problem.

In the speech recognition task we have an input speech
signal A and a dictionary (i.e. a list of possible words or word
sequences) W , and we look for the most probable word ŵ for
this signal; that is,

ŵ = arg max
w∈W

P (w|A). (1)

SAMI 2011 • 9th IEEE International Symposium on Applied Machine Intelligence and Informatics • January 27-29, 2011 • Smolenice, Slovakia

- 101 -978-1-4244-7428-8/11/$26.00 ©2011 IEEE

The discriminative approach of speech recognition makes use
of this formula. Usually, however, Bayes’ theorem is first
applied to this equation, then

ŵ = arg max
w∈W

P (A|w) · P (w)

P (A)
. (2)

Now we should note that P (A) has the same positive value
for all w ∈ W . So if we omit it from our equations, the most
probable word sequence ŵ will still be the same, i.e. [2]

ŵ = arg max
w∈W

P (A|w)P (w). (3)

The more common generative approach of speech recognition
makes use of Eq. (3), and we will also use it here. This
formula has two distinct components; the former one, P (A|w),
describes the relationship between the speech signal A and the
actual word w, and it is called the acoustic model. The latter
one, P (w), which is the language model, is independent of
the signal A, and it estimates the probability of the word w.

In contrast to speech recognition, an important aspect of
spoken term detection is its vocabulary-independence. Due to
this, from the former two factors we do not want to rely on
P (w), but concentrate just on the acoustic model P (A|w).
Note, however, that omitting P (w) affects the potential accu-
racy of spoken term detection: it is known that even human
listeners rely on the meaning of sentences spoken, which is,
of course, described by the language model. Moreover, some
words may contain entire other words (or parts which are
almost identical), and this could lead to false detections if
we just rely on the acoustic model.

B. Formulating the Spoken Term Detection Task

Spoken term detection is a relatively new task; it has,
however, been intensively studied for more than a decade [3],
[4]. (We also regard keyword spotting as just another term
for open-vocabulary spoken term detection [5].) Now we will
present a mathematical formulation of the STD task.

From the viewpoint of the run time requirements of a spoken
term detection method, the whole process can be divided into
two distinct phases: before the user types in the search terms,
and after it. The run times of the former part are not too
important; of course it has to finish within a reasonable time,
but even ten times that of real time is still acceptable. The
latter part, however, is crucial: if a user would like to find a
keyword in several hours of recordings, even 1/100th of real
time might be regarded as far too slow.

To meet this requirement, it is straightforward to divide the
processing of the speech signals into two parts so that after the
first one (which we will call the preparation phase) we get an
intermediate representation which is compact, but contains as
much relevant information as possible. This way a search in
the search phase could be done quite quickly, and still produce
good accuracy scores. Formulating this approach, we can write

P (A|w) =
∑

S

P (A|S, w) · P (S|w), (4)

where S is some intermediate representation. Doing this,
however, means that the set of all possible S-s has to be
evaluated, which in practice makes the use of this formula
quite difficult. In practice it is convenient to approximate it;
that is,

∑

S

P (A|S, w) · P (S|w) ≈ max
S

P (A|S) · P (S|w), (5)

and therefore

Ŝ = argmax
S

P (A|S) · P (S|w), (6)

where Ŝ is a (simplified) intermediate representation. This
equation can now be divided into two distinct parts: P (A|S)
describes the connection between the original speech signal
and the intermediate representation, which is just what the
preparation phase calculates; while P (S|w) represents the
relationship between the intermediate representation and the
word w, for which the search phase is responsible.

Up until now we have analyzed the problem from a speech
recognition point of view, where we first looked for the most
probable word for the given speech signal, then we looked
for the “ideal” intermediate representation for it. Now we
will turn to the spoken term detection viewpoint, and for
this reason we will further decompose Eq. (6). Due to the
vocabulary independence criterion, when we look for the
optimal representation Ŝ, we do not want to use w, which
leaves us with

Ŝ = argmax
S

P (A|S). (7)

In the search phase we would like to identify those parts of
speech where the occurrence of a search term w is probable,
which means that we are looking for all non-overlapping Ls
for which

P (L|w) ≥ Pmin, (8)

where L is a “continuous” part of Ŝ, and Pmin is a minimum
probability threshold. (We will assume this time that from a
part of the representation Ŝ we can obtain the corresponding
part of the speech signal.)

The choice of the format of the intermediate representation
is not trivial; several choices are available in the literature.
A straightforward one is a table of all phoneme probabilities
for each frame (usually every 1/100th of a second) [6]; it,
however, could be quite big, and performing a search in this
data structure takes quite a lot of time. Another possibility is
to run a speech recognizer without a language model to obtain
a graph of the most probable phonemes for each utterance; it
is much more compact, although searching in it could also be
rather slow. We chose a more simplified form: for each speech
signal just the most probable phoneme sequence is generated
by the speech recognizer. Now we will explain this approach
and our algorithm in more detail.

G. Gosztolya and L. Tóth • Spoken Term Detection Based on the Most Probable Phoneme Sequence

- 102 -

III. SPOKEN TERM DETECTION BASED ON THE MOST
PROBABLE PHONEME SEQUENCE

When choosing an intermediate representation in the STD
problem we have to satisfy two requirements. First, this
representation should contain as much relevant information
as possible, to achieve a good accuracy score; and second, it
should be simple and very compact, to allow a quick search.
Clearly, it is hard to fulfil these two requirements at the same
time; thus all intermediate representations represent a trade-off
between these two aspects.

In the literature it is common to keep an N -best list of
the most probable phoneme sequences, which then produces a
special type of graph called a lattice [7]. The nodes of this lat-
tice are assigned to frames (i.e. time indices), while the edges
between these nodes are the possible transitions belonging to
one phoneme each, and they also have a probability value. In
this kind of data structure a dynamic search can be performed.
In practice, however, this could still prove to be too slow; for
this reason we decided to just keep the most probable phoneme
sequence for each recording.

This approach has two clear advantages over the lattice-
based one: firstly, the number of phonemes (which form the
edges of the graph) is dramatically reduced. The reason for
this is that when constructing a lattice, the N best phoneme
edges are kept for each possible node, i.e. for each frame;
from experience it means about 50 times more edges when
using N = 3 than our approach of keeping only the most
probable phoneme sequence. The second advantage of this
approach is that a string itself is a much simpler data structure
than a lattice, and this makes performing a search more
straightforward.

This approach can be formulated in the following way. Ŝ
will be represented as a phoneme sequence, Ŝ = s1 . . . sN ,
and for each si we also note its starting and ending time, its
probability value and the phoneme label. Then, for a term w =
w1w2 . . . wn we look for all the non-overlapping subsequence
Ls for which

P (w|L) ≥ Pmin, (9)

where Pmin is a threshold set previously. Making the assump-
tion that the phonemes of a word are independent, we get

P (w|L) =

n
∏

i=1

P (wi|li) ≥ Pmin, (10)

where l1, . . . , ln are the phonemes of the subsequence L.
Naturally this approach is very vulnerable to the errors of
phoneme classification: during a search we can no longer
use acoustic information to correct the errors of phoneme
classification. (Of course this is also the drawback of the
lattice-based approach, but not to this extent as we can correct
these classification errors by using the alternative edges of
the graph.) To compensate for this, we allowed phoneme
insertions, deletions and substitutions. This means that we
allow wi and li to be empty (λ), although not at the same
time; that is,

P (w|L) =

m
∏

i=1

P (wi|li) ≥ Pmin, (11)

where by omitting the wi = λ values from the sequence
w1, . . . , wm we get the word w, and without the li = λ
values the sequence l1, . . . , lm forms L. P (wi|λ) refers to
the probability of deleting the phoneme wi (if wi 6= λ),
P (λ|li) means the probability of inserting the phoneme of
li (if li 6= λ), while P (wi|li) is the probability of substituting
phoneme wi for the phoneme of li in the case where neither
wi nor li is λ. The optimal sequences can be determined by
calculating the edit distance [8]. The probability values may be
computed from the errors of the phoneme recognizer, which
were determined based on its confusion matrix [9].

In practice when combining probability values obtained
from different sources it is common to use some kind of
weighting procedure, assigning different degrees of importance
to the individual values. In our case we assigned different
weights for the three phoneme operations, relative to the
probability value of li. A further task is to set the value of the
threshold Pmin, where we should choose a score which works
well for search terms having quite different lengths. For this
reason we used an adaptive threshold, which was normalized
based on the number of phonemes in the search term.

Using the most probable phoneme sequence as an interme-
diate representation has another potential advantage over the
lattice-based one. It is common to use some kind of indexing;
that is, use some kind of data structure for storing the inner
representation which permits very quick search operations at
the cost of a slower preparation phase and using (much) more
storage space. It can readily be seen that indexing a phoneme
array is much easier than indexing a much more complex
graph; although even more sophisticated indexing methods
can be used if we no longer allow phoneme insertions and
deletions. In this study we have not yet applied any kind of
indexing method, but we plan to do so in the near future as it
is a very effective way of speeding up the search phase.

IV. HIGH-PRECISION PHONEME IDENTIFICATION

The STD approach described above relies on the output of
the phoneme recognizer, so it is vital to use one which works
with a high precision. An interesting issue is to what extent
the accuracy of the phoneme recognizer affects the behaviour
of a STD system; and since this cannot be determined in any
other way, we decided to make experiments with a number of
such recognizers.

The standard method for performing speech recognition is
the application of hidden Markov models (HMMs) [2]. To
get the most probable phonetic transcripts of the utterances
we applied the publicly available HTK package [10]. As we
intended to build an open-vocabulary system, at the language
modelling level only a phoneme bigram was used, so the usual
word-level model was not included in our system. In this case
the accuracy of recognition just depends on the quality of the
acoustic models, hence we applied various refinements to the
acoustic modelling part.

SAMI 2011 • 9th IEEE International Symposium on Applied Machine Intelligence and Informatics • January 27-29, 2011 • Smolenice, Slovakia

- 103 -

Conventional HMMs apply mixtures of Gaussian curves
for the estimation of likelihoods. In the simplest case one
such mixture is mapped to each of the phonemes of the
language. However, better results are obtained if the phones are
decomposed into three pronuncation phases, or states. Hence,
standard monophone systems dedicate a 3-state model to each
phoneme. The recognition accuracy score can be raised further
if we use different models for the same phone pronounced in
a different context. These context-dependent models are called
triphones, and their application is standard practice nowadays.
Because we sought to test the behaviour of our STD method
when using different phoneme recognition approaches, we
trained the HTK system both with monophone and triphone 3-
state models. As acoustic features we used the mel-frequency
cepstral coeffcients (MFCCs) with their ∆ and ∆∆ values [2],
which is the most conventional feature set. The monophone
phone set consisted of 52 labels, while the triphone system
was composed of 1073 physical states.

The acoustic models may be further refined by using more
sophisticated machine learning techniques. One possibility is
to apply Artificial Neural Nets (ANNs) [11] to estimate the
local probability values instead of Gaussian curves. The result-
ing construct is called the HMM/ANN hybrid [12]. Thanks to
the advantages of ANNs, a 1-state monophone hybrid model
can produce just as good a accuracy score as a standard 3-
state triphone HMM. However, like the conventional HMM,
the hybrid can also be further refined by applying 3 states
per phone instead of just one. The triphone modelling scheme
may also be adapted to ANN-based modelling, but it requires a
very long training time due to the increased number of models.
Hence researchers have started to apply triphone models in
HMM/ANN hybrids only relatively recently [13], [14].

It is also a fairly recent result that the performance of the
hybrid can be improved if a second neural net is trained on
a longer context of outputs produced by the ANN of the
hybrid [15], [16]. The reason is that, thanks to the context,
this second net is able to correct the errors of the first net to a
certain extent. We shall call this construct the 2-stage hybrid
model.

In our experiments with the hybrid case the following acous-
tic models were constructed. The standard 1-state hybrid was
created by training a multi-layer perceptron on the 52 phone
label targets. This neural net had 5000 hidden neurons and was
trained using error backpropagation on 9 neighbouring MFCC
frames as input. Then a 3-state system was created by training
the neural net with three states per phone, which required
modifying it so as to have 156 output neurons. The output
of this ANN was then used as input for training the second
net of the 2-stage models. Again, 9 neighbouring blocks of
outputs were used as input features to allow context modelling.
Both the 1-state and 3-state modelling tasks were repeated
with the 2-stage construct. Due to its increased training time,
triphone hybrid models were created only for the 2-stage
scheme; the monophone results already convincingly showed
the superiority of the 2-stage system over the 1-stage model
(for the phone recognition results, see Table I in Section V-D).

V. EXPERIMENTS AND RESULTS

Having defined the spoken term detection method and the
phoneme recognition techniques used, we now turn to the
testing process. First we define the evaluation methodology,
then describe the database used and the way of testing, and
finally we present and analyze the results.

A. Methods of Evaluation
A Spoken Term Detection system returns a list of hits

for a query. Given the correct list of hits (the references),
we should rate the performance of the system to be able
to compare different systems and configurations. Since it is
a standard information retrieval task, it is straightforward to
apply standard IR metrics: precision and recall, defined as

Precision =
NC

NC + NFA

(12)

and
Recall =

NC

NTotal

, (13)

where NC is the number of correct hits returned, NFA is the
number of false alarms, and NTotal is the total number of
reference occurrences [17]. Thus, a perfect system has both a
precision and a recall score of 1 (or 100%). The problem with
these metrics is that in practice there is a trade-off between
these two values: high precision can easily lead to a low recall
score, while it is easy to achieve high recall rates while getting
poor precision scores. Hence it would be better to summarize
the performance of a system using just one score. In IR tasks
usually the F-measure is used for this, which is the harmonic
mean of precision and recall, defined as

F =
2 · Precision · Recall

Precision + Recall
. (14)

This formula, however, has the drawback that it weights
precision and recall equally, which might be different from our
preferences. We could also use different weights for the two
measures, but their relative importance is also not really clear.
This is why in the field of Spoken Term Detection usually
some other – although similar – measures are used, which
usually further filter the list of hits returned, keeping just the
more probable candidates. The one which was more commonly
applied previously is the Figure-of-Merit (FOM), which the
average of the recall scores when we allow only 1, 2, . . . 10
false alarms per hour per keyword. Another, more strict
measure was defined by the National Institute of Standards
and Technology (NIST) in its 2006 evaluation of Spoken Term
Detection [18]. Unlike FOM, it uses all the hits supplied by
the STD method in its primal form, and is defined as

ATWV = 1 −
1

T

T
∑

t=1

(

PMiss(t) + βPFA(t)
)

, (15)

where T is the number of terms, PMiss(t) is the probability
value of missing the term t and PFA(t) is the probability value
of a false alarm. These probability values are defined as

PMiss(t) = 1 −
NC(t)

NTotal(t)
(16)

G. Gosztolya and L. Tóth • Spoken Term Detection Based on the Most Probable Phoneme Sequence

- 104 -

Classification Method Accuracy
HMM, 3 states 68.35%

HMM/ANN, 1 state 75.56%

Monophone HMM/ANN, 3 states 76.93%

HMM/ANN 2-stage, 1 state 77.46%

HMM/ANN 2-stage, 3 states 79.18%

Triphone HMM, 3 states 75.38%

HMM/ANN 2-stage, 3 states 83.33%

TABLE I
PHONEME ACCURACY SCORES OF THE DIFFERENT PHONEME

RECOGNITION TECHNIQUES.

and
PFA(t) = 1−

NFA(t)

Tspeech − NT (t)
, (17)

where Tspeech is the duration of the test speech in seconds.
Usually the penalty factor for false alarms (β) is set to 1000. A
system achieving perfect detection (i.e. having a precision and
a recall of 1.0) has an ATWV score of 1.0; a system returning
no hits has a score of 0.0; while a system which finds all
occurrences, but produces 3.6 false alarms for each term and
speech hour also has a score of 0.0 (assuming that Tspeech

is significantly larger than NT) [19]. Further, max-ATWV (or
MTWV) is a (theoretical) upper bound of ATWV, where we
calculate the ATWV score for every N -best list of the hit
list returned, and take their maximum. It summarizes the
performance of a given algorithm if the minimal probability
threshold Pmin has been optimally chosen.

Recently ATWV has become the more frequently used eval-
uation metric, and we will mainly use this. Out of curiosity,
however, we will also calculate the FOM and MTWV scores.

B. The Testing Database

We used recordings of Hungarian broadcast news for testing,
which were recorded from 8 different TV channels. The
recordings were divided into clear, noisy and spontaneous
subsets, from which we used only the clear ones. The 70
broadcast news were divided into three groups: the first, largest
one (about 5 hours long) was used for training purposes. The
second part (about 1 hour long) was the development set: these
recordings were used while developing the search method and
fine-tuning its parameters. The third part was the test set (about
2 hours long), and it was used to evaluate the overall perfor-
mance of each method. We chose 25 words and expressions
as search terms, which came up in the news recordings quite
frequently. They varied between 6-16 phonemes in length (2-6
syllables), and they were all nouns, half of them (12) being
proper nouns.

C. The Testing Process

Our STD method has several parameters which should be
fine-tuned to achieve optimal performance: we have to choose
the weights for the actions of phoneme insertion, deletion and
substitution, and also set the minimal probability Pmin. For
the former task we used the development set of recordings, and
applied the MTWV metric. We tuned the three weights in two

Classification Method ATWV MTWV FOM
HMM, 3 states 0.2625 0.2720 69.26%

HMM/ANN, 1 state 0.4125 0.4228 76.09%

Monophone HMM/ANN, 3 states 0.4880 0.5038 79.64%

HMM/ANN 2-stage, 1 state 0.5070 0.5262 86.35%

HMM/ANN 2-stage, 3 states 0.5556 0.5956 83.20%

Triphone HMM, 3 states 0.4725 0.4974 80.69%

HMM/ANN 2-stage, 3 states 0.5666 0.6208 90.90%

TABLE II
THE PERFORMANCE OF OUR STD METHOD USING THE DIFFERENT

PHONEME RECOGNITION TECHNIQUES.

phases: first we used the same value for all three, and chose
the value where the MTWV score was the highest. Then in the
second step all three weights were fine-tuned independently,
one after another, using step sizes of 5% of the common weight
found in the first phase.

Next, having determined the weights, we had to pick a value
for Pmin, for which we used a quite straightforward method:
we performed spoken term detection on the development set
again, calculated the MTWV metric, and chose the threshold
belonging to the peak value. Then we performed STD on
the test set of recordings using the values determined for the
weights and for the threshold. The performance of the method
using different ways of phoneme classification was measured
on this list in terms of ATWV, MTWV and FOM.

D. Results

Table I shows the phoneme-level accuracy scores of the
different phoneme recognition techniques, while Table II gives
the accuracy scores of our STD method using them. It is
quite interesting that the basic phoneme recognition method
(using HMMs with Gaussians, with 3 states) with its phoneme
accuracy of 68.35% can be used for speech recognition in
practice; the results show, however, that it is not so for spoken
term detection: the ATWV score of 0.2625 is quite poor. The
reason for this is probably that the language model assists
this mediocre acoustic model, but in spoken term detection
we have no such correction possibility.

In general, the way the FOM metric behaves is quite similar
to that of the phoneme accuracy metric: the higher the latter is,
the higher the former becomes, and by about the same amount.
Only the higher values are exceptions, where the FOM score
increases more than the phoneme accuracy. This increase is
probably due to the fact that FOM is a quite lax evaluation
metric: in practice 10 false alarms per hour per keyword is
barely acceptable. The ATWV score, however, is a much more
strict one: an increase in phoneme-level accuracy from 68.35%
to 83.33% led to an increase from 0.2625 to 0.5666 in terms of
ATWV, and it rose from 0.2720 to 0.6208 when using MTWV.
Interestingly, though, the error scores were cut by about the
same amount (in this case by 47%, 41% and 47%). The jump
between the ATWV and MTWV scores in the case of the
HMM/ANN 2-stage hybrids using 3 states shows that the value
found for Pmin was not stable, so probably a different search
term length normalization method is called for.

SAMI 2011 • 9th IEEE International Symposium on Applied Machine Intelligence and Informatics • January 27-29, 2011 • Smolenice, Slovakia

- 105 -

1 2 3 4 5 6 7 8 9 10

60

70

80

90

False alarms per hour

R
ec

al
l (

%
)

HMM
HMM/ANN
HMM/ANN 3 states
HMM/ANN 2−stage
HMM/ANN 2−stage 3 states

Fig. 1. The recall scores achieved when allowing 1, 2, . . . 10 false alarms
per hour. Continuous and dashed lines represent monophone and triphone
phoneme models, respectively.

The FOM curve (which shows the recall scores as a function
of the number of false alarms per hour) of the STD method
using the different phoneme recognizers can be seen in Fig. 1;
the FOM values shown in Table II come from calculating
the mean of the values of these curves. The continuous
lines show the phoneme recognizers using the monophone
phoneme model, while the dashed lines show configurations
with triphone phoneme models. We should add that the curves
belonging to the HMM/ANN 2-stage hybrids using 3 states
are quite flat, which means that most hits are found even
when there are only a few false alarms. This is also reflected
in the high ATWV and MTWV scores obtained for these
configurations as these metrics allow quite few false alarms.

We made another important observation when examining
the weights of the phoneme insertion, deletion and substitution
operations. The optimal weights were so high that compared
to them the probability of the individual phonemes became
negligible: we got the same accuracy results when we ignored
the phoneme probability values. This means that in practice
only the most probable phoneme sequence is important, but
the probabilities of the phonemes are not, which has several
advantages. First, we have to set only two weights in this case,
and this makes their tuning much easier. Second, a phoneme
sequence can be stored in a simpler data structure without the
probability values of each individual phoneme, which can be
exploited when developing an indexing method to speed up
the search phase of spoken term detection.

While the accuracy scores achieved already support prac-
tical use, the search speed unfortunately still needs to be
improved: for our current implementation it takes an average
of 10.75 seconds per content hour per keyword to supply a
list of hits. This is partly due to technical issues: the current
implementation was done in Matlab, and we concentrated pri-
marily on accuracy and experimenting, not on classic software
design. It would be a good idea to incorporate some kind of
indexing mechanism, which we intend to do in the near future.

VI. CONCLUSIONS

In the spoken term detection task we seek to find all
occurrences of an user-entered expression in a list of audio
recordings. As a user expects a quick response, usually the
kind of intermediate representation of the recordings is used
which permits a quick search. For this reason we chose
the most probable phoneme sequence; but as this approach
strongly depends on the phoneme recognition technique ap-
plied, we conducted experiments with a number of such
methods. We found that, provided a high-accuracy phoneme
recognizer is applied, our system already achieves a high
accuracy. However, its running time is still too high, so we
will concentrate on this issue in the future.

REFERENCES

[1] C. Barr, R. Jones, and M. Regelson, “The linguistic structure of
English web-search queries,” in Proceedings of EMNLP 2008, Waikiki,
Honolulu, Hawaii, 2008, pp. 1021–1030.

[2] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing.
Prentice Hall, 2001.

[3] J. Mamou, B. Ramabhadran, and O. Siohan, “Vocabulary independent
spoken term detection,” in Proceedings of SIGIR, Amsterdam, The
Netherlands, 2007.

[4] J. Junkawitsch, L. Neubauer, H. Höge, and G. Ruske, “A new keyword
spotting algorithm with pre-calculated optimal thresholds,” in Proceed-
ings of ICSLP, vol. 4, Philadelphia, PA, USA, 1996, pp. 2067–2070.

[5] D. Wang, “Out-of-vocabulary spoken term detection,” Ph.D. dissertation,
University of Edinburgh, 2010.

[6] R. Wallace, R. Vogt, B. Baker, and S. Sridharan, “Optimising Figure of
Merit for phonetic spoken term detection,” in Proceedings of ICASSP
2010, Dallas, Texas, USA, 2010.

[7] I. Szöke, P. Schwarz, P. Matějka, and M. Karafiát, “Comparison of
keyword spotting approaches for informal continuous speech,” in Pro-
ceedings of Eurospeech 2005, Lisbon, Portugal, 2005, pp. 633–636.

[8] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[9] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John
Wiley & Sons Inc., 2001.

[10] S. Young, The HMM Toolkit (HTK) (software and manual),
http://htk.eng.cam.ac.uk/, 1995.

[11] C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

[12] H. A. Bourlard and N. Morgan, Connectionist Speech Recognition: A
Hybrid Approach. Norwell: Kluwer Academic, 1993.

[13] T. Pavelka and P. Král, “Neural network acoustic model with decision
tree clustered triphones,” in Proceedings of MSLP, Cancún, Mexico,
2008, pp. 216–220.

[14] A. Abad, T. Pellegrini, I. Trancoso, and J. Neto, “Context dependent
modelling approaches for hybrid speech recognizers,” in Proceedings of
Interspeech, Makuhari, Japan, 2010.

[15] J. P. Pinto, G. S. V. S. Sivaram, M. Magimai.-Doss, and H. Hermansky,
“Analysis of MLP based hierarchical phoneme posterior probability esti-
mator,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 19, no. 2, pp. 225–241, 2011.

[16] H. Ketabdar and H. Hermansky, “Enhanced phone posteriors for improv-
ing speech recognition systems,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 18, no. 6, pp. 1094–1106, 2010.

[17] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
ACM Press, New York, 1999.

[18] NIST Spoken Term Detection 2006 Evaluation Plan,
http://www.nist.gov/speech/tests/std/docs/std06-evalplan-v10.pdf,
2006.

[19] J. Pinto, H. Hermansky, I. Szöke, and S. Prasanna, “Fast approximate
spoken term detection from sequence of phonemes,” in Proceedings of
SIGIR, Singapore, 2008.

G. Gosztolya and L. Tóth • Spoken Term Detection Based on the Most Probable Phoneme Sequence

- 106 -

