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Abstract. Spoken term detection is a task in artificial intelligence where
user-entered keywords are to be looked for in a huge audio database. In
one common approach the recordings are first converted into phoneme-
sequences, and the actual search is performed in this space. During
search, instead of performing the default multiplication of basic phoneme
operation probabilities, applying a triangular norm can significantly
improve system accuracy. We used an application-oriented method for
triangular norm representation and tuning, namely the logarithmic ge-
nerator function. In practice this proved to be quite successful and led
to a relative error reduction score of 16%.

Keywords: triangular norms, additive generator function, artificial
intelligence, speech processing, spoken term detection, keyword spotting.

1 Introduction

Among the range of fuzzy functions, triangular norms (or t-norms) [7] have a sig-
nificant number of successful applications in the literature, especially in artificial
intelligence (AI) problems such as image enhancement [4], image blending [13],
classifier combination [3], speech recognition [9], and multimodal biometrics [14].
What is common among these AI tasks, and what makes them a good area for ap-
plying t-norms, is that they usually rely on aggregating lower-level probabilities
(outputs of single classifiers, phoneme probabilities of short excerpts of speech,
confidence scores of different biometrical identifier systems etc.). The standard
approach for this aggregation is to simply calculate the product of these in-
dividual probability values (naive Bayes approach), relying on the assumption
that these components are independent. While this assumption leads to a nice
and elegant mathematical formulation and also behaves well in practice, in most
cases it is clearly false, which calls for the use of other operators. However, these
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operators still have to express an AND-like relation of the arguments. Triangular
norms are just the conjunctive operators of fuzzy logics, and they are an ideal
choice for such tasks.

In this paper we will focus on an AI task, that of spoken term detection
(STD, sometimes also referred to as keyword spotting or KWS), which is a quite
recent topic within speech technology. It seeks to provide a way to search for user-
entered keywords in a huge archive of audio recordings. Recent approaches [27,28]
view this task in a dictionary-independent way, where search is performed only
by relying on the acoustic model and using only general language information
(e.g. probability values of consecutive phoneme pairs or triplets). This rules out
the approach of simply performing automatic speech recognition (ASR [25]) on
the recordings, storing the resulting word sequence, and performing a text search
in this textual representation, since this approach prevent users from finding
words (usually proper nouns) which were not present in the dictionary used in
the speech recognition step.

One common approach in STD is to represent the recordings as mere phoneme-
sequences, to which the phonemes of the search term are matched one by one.
The overall probability of such a phoneme-sequence pairing is usually computed
as the product of the individual probability values. In this paper we experimented
with triangular norms when performing this aggregation; among the wide range
of possible t-norms we chose an application-oriented representation.

In this paper we will describe the STD problem, focusing on the approach u-
sing phoneme-sequences. Then we will describe the t-norm representation chosen
(the logarithmic generator function), present the test results, and finally analyze
them.

2 The Spoken Term Detection Task

In the spoken term detection task we seek to find the user-entered natural lan-
guage expressions (terms or keywords) in an audio database (the set of record-
ings). An STD method returns a list of hits, each of which contains the point
of occurrence, the term found, and a probability value that can be used to rank
the hits. In contrast to other information retrieval tasks, in STD the order of
the hits does not matter; the probability value of the returned hits is only used
to filter the hit list further by using a decision threshold, keeping just the more
probable elements.

In STD, a user expects a quick response for his input, thus we have to scan
hours of recordings in a few seconds (or less). To achieve this, the task is usu-
ally separated into two distinct parts. In the first one, steps requiring intensive
computation are performed without knowing the actual search term, resulting in
some intermediate representation. Then, when the user enters the keyword(s), a
(quick) search is performed in this representation. We will focus on the approach
where the intermediate representation is the most probable phoneme sequence,
since it permits a very quick search while still retaining good accuracy [20].
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The most probable phoneme sequence for each recording is usually generated
by some standard speech recognition technique. Then, for a term w with the
phonemes w1, w2, . . . , wn, we look for all the non-overlapping phoneme sequences
(L) for which

P (w|L) ≥ Pmin, (1)

where Pmin is a threshold set previously. Making the standard assumption that
the successive phonemes are independent, we get

P (w|L) =
n∏

i=1

P (wi|li) ≥ Pmin, (2)

where l1, . . . , ln are the phonemes of the phoneme sequence L. To compensate for
errors in the phoneme sequence representations, phoneme insertions, deletions
and substitutions are allowed. This means that wi or li can be empty (λ), so

P (w|L) =
m∏

i=1

P (wi|li) ≥ Pmin, (3)

where by omitting the wi = λ values from the sequence w1, . . . , wm we get the
term w, and without the li = λ values l1, . . . , lm forms L. P (wi|λ) represents the
probability of deleting phoneme wi (if wi �= λ), P (λ|li) means the probability of
inserting phoneme li (if li �= λ), while P (wi|li) is the probability of substituting
wi for li in the case where neither wi nor li is λ (but it may be that wi = li). The
optimal pairs can be found by calculating the edit (or Levenshtein) distance [22].
The probability values of the phoneme operations can be computed from the
errors of the phoneme recognizer: after performing phoneme classification on
recordings with known real phonetic transcriptions, the probability values of
phoneme insertions, deletions and substitutions can be readily calculated by
comparing the resulting phoneme sequences to ground truth ones (i.e. from the
confusion matrix [21,10]).

Note that in equations (2) and (3) we made the assumption that the consecu-
tive phonemes are independent, which allowed us to decompose P (w|L) into a
product of lower-level probability values. This assumption is clearly false owing
to the continuous motion of the vocal chords, the tongue and the mouth [31],
so we can replace product with other operators as long as they behave well
in practice. As triangular norms also represent AND-like relations of values in
the range [0, 1], which is just what we need for combining probability values
of phoneme operations (insertions, deletions and substitutions), we may expect
them to work well in this task. Furthermore, several norms (e.g. [5,26,1,6]) have
one or more parameters, allowing us to fine-tune them to the actual problem.
For these reasons, we will apply t-norms in the STD task.

3 The Logarithmic Generator Function

One advantage of using triangular norms is their tunability: they can be adapted
to the requirements of the given problem. With respect to this, however, there
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could be great differences among various t-norm families depending on how the
range of triangular norms they contain matches the ideal performance needed
for our actual application [11]. On the basis of our earlier findings [9,12] it is
usually better to concentrate on the additive generator function f [26,17], since
we have plenty of room to adjust it to suit our actual needs. This can be viewed
as triangular norm construction [18,8], with respect to the criterion that the
applied triangular norm representation must be easy to handle.

Recall that a strict, continuous and Archimedean triangular norm T can be
written in the form

T (x, y) = f−1
(
f(x) + f(y)

)
, (4)

where f is the additive generator of T , and it is a continuous, strictly decreasing
function on the interval [0, 1]; f(0) = ∞ and f(1) = 0. Moreover, for a given
T , f is unique up to a scalar factor, so the triangular norm applied can also be
represented by its generator function. If we could find a suitable way to model
this function f , we could fine-tune its behaviour to suit our needs. To achieve
an optimal performance we have to find a flexible yet simple representation,
preferably one which is application-oriented.

The additive generator is widely examined in the literature (e.g. [19,23,18]).
However, for an actual application we need an application-oriented approach in-
stead of a theory-oriented solution, as we have to pay attention also to computer
arithmetics (like the ability of avoiding underflowing, being able to easily handle
values in a different order of magnitude, etc.). Due to these reasons we chose
the logarithmic generator function for triangular norm representation, which we
will describe next.

3.1 The Logarithmic Generator Function

To understand the logic of the logarithmic generator function [12], we should
first consider its application context. In a typical case we have a number of
probability estimates as input (p1, p2, . . . , pk), and a t-norm T ; and we need to
calculate

T k(p1, p2, . . . , pk) = T (. . . T (T (p1, p2), p3), . . . , pk). (5)

Now using the transcript T (x, y) = f−1(f(x) + f(y)) we have that

T k(p1, p2, . . . , pk) = f−1
( k∑

i=1

f(pi)
)
. (6)

In our environment, and in most artificial intelligence tasks, to avoid numerical
underflowing, instead of a probability value p we use the cost value c = − log p.
This step also implies that we use cost addition instead of probability mul-
tiplication, and perform (aggregated) cost minimization instead of probability
maximization. The triangular norms, however, work only on probability values.
To overcome this difficulty, first we incorporate this conversion into Eq. (6), i.e.
we will use

− log
(
f−1

( k∑

i=1

f(e−ci)
))

. (7)
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It is straightforward to include the calculation of the negative exponential into
f ; hence, the logarithmic generator function is defined as

φ(x) = f(e−x). (8)

Now we can write

φ−1
( k∑

i=1

φ(ci)
)
= − log

(
f−1

( k∑

i=1

f(e−ci)
))

(9)

= − logT (e−c1, e−c2 , . . . , e−ck), (10)

so using the logarithmic generator function φ(x) in exactly the same way as
we used the additive generator function f(x) will lead to a calculation of the
same triangular norm T , only with the corresponding cost values instead of the
probabilities both as arguments and as the result. As f(x) : [0, 1] → [0,∞) was
a strictly decreasing function with f(1) = 0, the logarithmic generator function
φ(x) : [0,∞] → [0,∞] is strictly increasing, and φ(0) = 0. The additive generator
function is unique up to a multiplicative constant for any given T t-norm, so the
same is true for the logarithmic generator function.

3.2 Representing the Logarithmic Generator Function

Now we will turn to modeling this logarithmic generator function. Almost any
representation could be used for this task; we chose to model it with a piecewise
linear one for two basic reasons. First, it is quite simple to handle: both φ and
φ−1 can be implemented very easily. Second, it is a very flexible representation:
the family of all strict t-norms with a piecewise linear logarithmic generator
φ : [0,∞] → [0,∞] with finitely many breakpoints, such that limx→∞ φ′(x) = 1,
is dense in the family of all strict t-norms with respect to the topology of uniform
convergence. A proof of this just involves a standard compactness argument.

Henceforth let φ = φm1,...,mN
a1,...,aN

: [0,∞] → [0,∞] be the piecewise linear, strictly
increasing function with break points on the domain as 0 = a0 < a1 < . . . <
aN < aN+1 = ∞ and with positive steepness values m1 < . . . < mN , respec-
tively, and mN+1 = limx→∞ φ′(x) = 1. That is,

φ(x) = (x− aj)mj+1 +

j∑

i=1

(aj − aj−1)mj , aj ≤ x < aj+1. (11)

If the ai control points are fixed, φ can be described by a vector of N steepness
values, making it easy to optimize. Furthermore, the function φ is unique up to a
positive multiplicative constant; by settingmN+1 to 1, we fix exactly one of these
equivalent representations. The actual function f (and hence, the triangular
norm T ) can be easily calculated from φ, being a piecewise exponential function
with N + 1 negative exponents. It will be continuous, but not smooth (except
when m1 = . . . = mN = 1, which is just the product case).
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Fig. 1. A (smoothed) histogram of the − log p values encountered during performing
STD, and the suggested positioning of the N = 8 control points

This way, by keeping all the aj values fixed, this problem can be simplified
to that of a maximization task in an N -dimensional space: we seek to maximize
the accuracy of the spoken term detection system as a function of m. As for the
choice of the control points, we have the possibility to set them at values where
they represent our problem as accurately as possible. Since it is also nontrivial,
next we will present a method for control point assignment.

3.3 The Choice of Control Points

Optimizing the logarithmic generator function means performing a search in an
N -dimensional vector space. To aid this search process we should avoid the pre-
sence of irrelevant or redundant dimensions, so we should try to give each one the
same importance. The main idea behind the general method introduced for this
purpose in [12] is to create statistics of the values occurring during use, i.e. note
which x and y values are passed to the T (x, y) operator (and thus to the generator
function f). Owing to the commutative property we do not need to distinguish
between the two arguments x and y. Next, we calculate a histogram of the − log
of recorded values: for each value we note how many times it appears. Afterwards,
we divide this histogram into N + 1 parts with equal-sized areas: the control
points will be the borders between these regions (see Fig. 1). This way about
the same number of evaluations will fall into each region between two adjacent
control points, making each steepness value (roughly) equally important. An
advantage of this method is that it is quite general regarding the actual task,
since it requires only a statistic of appearing cost values, and it also has only
parameter (N).

Now we have presented the logarithmic generator function, which allows us
to represent and fine-tune a triangular norm in an application-oriented manner.
We have also described a general methodology to fit it into a given problem by
positioning the ai control points. Next, we will focus on the actual application.
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4 Experiments and Results

Having defined the problem and the logarithmic generator function, we turn to
the testing part: we introduce the evaluation methodology, the testing environ-
ment and the way of testing, then present and analyze the test results.

4.1 The Evaluation Metrics

A Spoken Term Detection system returns a list of hits for a query. Given the
correct list of hits, we should rate the performance of the system to compare dif-
ferent configurations. In STD, instead of standard information retrieval metrics
such as precision (the ratio of correct hits found to the hits returned) and recall
(the ratio of correct hits found to all the correct hits), usually some other, albeit
similar measures are used. Here, we will mainly use the Actual Term-Weighted
Value (ATWV) [24], which is defined as

ATWV = 1− 1

T

T∑

t=1

(
PMiss(t) + βPFA(t)

)
, (12)

where T is the number of terms, PMiss (t) is the probability of missing the term
t (in fact, the opposite of recall for the term t) and PFA(t) is the probability of
getting a false alarm. These values are defined as

PMiss(t) = 1− NC(t)

NT (t)
and PFA(t) = 1− NFA(t)

Tspeech −NT (t)
, (13)

where NC(t) is the number of correct hits returned, NFA(t) is the number of false
alarms, NT (t) is the total number of real occurrences of term t, and Tspeech is
the duration of recordings in seconds. Usually the penalty factor for false alarms
(β) is set to 1000. A system achieving perfect detection (having precision and
recall scores of 100%) has an ATWV score of 100%; a system returning no hits
has a score of 0%; while a system which finds all occurrences, but produces 3.6
false alarms for each term and speech hour also has a score of 0% [24]. An older
and more permissive metric is the Figure-of-Merit (FOM), which is the mean of
recall scores when we allow only 1, 2, . . . 10 false alarms per hour per keyword.

Note that although ATWV uses all the hits returned, a threshold value was
still used, namely Pmin from Eq. (3). A carelessly chosen threshold constant
leads to a worse ATWV score than optimal; due to this, usually it is worth
calculating max-ATWV (or MTWV), which is a (theoretical) upper bound of
ATWV, where we take the maximal ATWV score of all N -best lists of the hit
list returned. It summarizes the performance of the system if the probability
threshold Pmin has been optimally chosen. Fortunately, the metric FOM does
not rely on this threshold value.
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Table 1. The accuracy values obtained when using different kinds of triangular norms

Development Set Test Set
T-norm used N MTWV FOM ATWV MTWV FOM

Log. gen., optimized for MTWV
8 71.32% 89.81% 65.38% 67.43% 86.67%
16 68.44% 88.15% 64.21% 67.43% 87.31%

Log. gen., opt. MTWV + FOM
8 70.71% 91.13% 69.22% 69.75% 88.55%
16 65.25% 92.79% 65.86% 66.03% 90.11%

Product (baseline) 57.31% 91.13% 63.29% 63.78% 89.96%

4.2 The Testing Environment

We used audio recordings of Hungarian news broadcasts taken from 8 different
TV channels for testing. The 70 broadcasts were divided into three groups: the
first, largest one (about 5 hours long) was used for training purposes. The second
part (about 1 hour long) was the development set: these recordings were used
to fine-tune the t-norm and get the corresponding threshold. The third part
was the test set (about 2 hours long), used for the final evaluation of system
performance. We chose 25 words and expressions as search terms, coming up in
the news recordings quite frequently; they varied between 6-16 phonemes (2-6
syllables) in length. The phoneme sequence intermediate representations were
produced by Artificial Neural Networks [2] used in two consecutive steps [29],
applying the standard MFCC +Δ+ΔΔ feature set [15] with phoneme bigrams
as a dictionary-independent language model, using the HTK tool [30].

4.3 The Testing Process

To set the control point ai values, we used the histogram-based method described
in Section 3.3. It requires a statistic of the actual probability values, which was
obtained in a simple way. Assuming that the distribution of the phonemes of
search terms mirror those of the recordings, we calculated the ratio of the occur-
rence of each phoneme in the training data set. Next, we chose two phonemes
according to this distribution, and noted the probability values of deleting the
first phoneme, inserting the second one, and replacing the first phoneme by the
second one. This process was repeated 100 000 times, some white Gaussian noise
was added to the generated values to smooth the resulting discrete values, and
we chose the control points based on this histogram.

We performed the optimization of the steepness values by using the freely
available Snobfit package [16]. We maximized for just the MTWV metric, and for
the MTWV and FOM metric combined, and experimented with N = 8 and N =
16 control points, which meant a total of 4 tests. We optimized it by performing
STD on the development set; the steepness values associated with the optimal
score were then evaluated on the test set, using the corresponding threshold
value. To ensure stability, we took all the vectors that produced an optimal score
on the development set, and calculated their mean for each steepness mi. In the
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Fig. 2. The product t-norm (left) and the optimized t-norm using the logarithmic
generator function (right). The x and y axes show the two argument probability values,
while the z axis show the resulting cost value (i.e. -log p).

end, we got five scores for each case: MTWV and FOM for the development set,
and ATWV (using the threshold value we got on the development set), MTWV
(using the optimal threshold for the test set) and FOM for the test set.

4.4 Results

Table 1 lists the accuracy scores obtained using the logarithmic generator func-
tion. Examining the scores attained on the development set, we can see that
all the optimized metric values significantly increased compared to the baseline
scores. The settings N = 16 produced somewhat worse scores than N = 8,
which is probably due to the curse of dimensionality: the number of tests re-
quired increases exponentially with the number of dimensions. Turning to the
test set results, we see that in some cases the ATWV score is much lower than
MTWV, reflecting threshold instability (i.e. Pmin obtained on the development
set was not optimal for the test set). In general, error reduction in the test
set was not as successful, which could be partly due to overfitting: the opti-
mization resulted in a development set-specific t-norm. To avoid this side effect,
incorporating other metrics (in our case FOM) into the objective function of
optimization seems to be a good idea, as in these cases there were only minor
differences in the corresponding MTWV and ATWV scores. This is probably
because different evaluation metrics measure the performance of a configuration
in a somewhat different manner; in our case ATWV focuses on the top of the
hit list, whereas FOM takes less probable hits into account as well. Trying to
satisfy both metrics at the same time might result in a more balanced hit list,
being better in general.

We should also stress that the resulting MTWV and ATWV scores exceeded
those of the product norm in every case. Focusing on the case N = 8 when we
optimized both for MTWV and FOM, we achieved an ATWV score of 69.22%,
which, compared to the baseline score of 63.29%, means a relative error reduction
score over 16%, this being quite a significant improvement in STD accuracy.
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The product t-norm and the best-performing logarithmic generator function
can be seen in Figure 2 (where, to emphasize the differences between the two
norms, the z axis has a log scale). It can be seen that the two norms are quite
different, reflecting the fact that the product operator is suboptimal for this task,
and, unlike the logarithmic generator function, it could not be tuned either.

5 Conclusions

In a common approach of spoken term detection, user-entered queries are pro-
cessed by matching their phonemes to the phonemes of recordings one at a time.
In this task usually the phoneme operations are assumed to be independent,
hence the product of their probabilities is taken; but using a triangular norm in-
stead of multiplication can improve the system accuracy. In this work we applied
an application-oriented representation of t-norms, and achieved a significant im-
provement in system accuracy and resulted in a relative error reduction of 16%
this way.
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