
Detecting Laughter and Filler Events by Time
Series Smoothing with Genetic Algorithms

Gábor Gosztolya1,2(B)

1 Institute of Informatics, University of Szeged,
Dugonics tér 13, Szeged 6720, Hungary

ggabor@inf.u-szeged.hu
2 MTA-SZTE Research Group on Artificial Intelligence,

Tisza Lajos krt. 103, Szeged 6720, Hungary

Abstract. Social signal detection, where the aim is to identify
vocalizations like laughter and filler events (sounds like “eh”, “er”, etc.)
is a popular task in the area of computational paralinguistics, a subfield
of speech technology. Recent studies have shown that besides applying
state-of-the-art machine learning methods, it is worth making use of the
contextual information and adjusting the frame-level scores based on
the local neighbourhood. In this study we apply a weighted average time
series smoothing filter for laughter and filler event identification, and set
the weights using genetic algorithms. Our results indicate that this is a
viable way of improving the Area Under the Curve (AUC) scores: our
resulting scores are much better than the accuracy of the raw likelihoods
produced by both AdaBoost.MH and DNN, and we also significantly
outperform standard time series filters as well.

Keywords: Social signals · Laughter and filler event detection · Time
series filter · Genetic algorithms

1 Introduction

In speech technology an emerging area is paralinguistic phenomenon detection,
which seeks to detect non-linguistic events (laughter, conflict, etc.) in speech.
One task belonging to this area is the detection of social signals, from which,
perhaps laughter and filler events (vocalizations like “eh”, “er”, etc.) are the most
important. Many experiments have been performed with the goal of detecting
laughter (e.g. [11,12]), and this task might prove useful in emotion recognition
and in general man-machine interactions. Apart from laughter, the detection of
filler events has also become popular (e.g. [14,18]). Besides serving to regulate
the flow of interaction in discussions, it was also shown that filler events are an
important sign of hesitation; hence their detection could prove useful during the
automatic detection of various kinds of dementia such as Alzheimer’s Disease [10]
and Mild Cognitive Impairment [18].

In the tasks of detecting laughter and filler events, it is well known (see e.g.
[3,6,9]) that although classification and evaluation are performed at the frame
c� Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): SPECOM 2016, LNAI 9811, pp. 232–239, 2016.
DOI: 10.1007/978-3-319-43958-7 27

Detecting Laughter and Filler Events by Time Series Smoothing 233

level, it is worth making use of the contextual information and adjusting the
frame-level scores based on the local neighborhood. Gupta et al. [9] applied
probabilistic time series smoothing; Brueckner et al. [3] trained a second neural
network on the output of the first, frame-level one to smooth the resulting
scores; while Gosztolya [6] used the Simple Exponential Smoothing method on
the frame-level posterior likelihood estimates.

What is common in these studies is that first they trained a frame-level clas-
sifier such as Deep Neural Networks (DNN) to detect the given phenomena, and
then, as a second step, they aggregated the neighbouring posterior estimates to
get the final scores. It is not clear, however, what type of smoothing may prove
to be optimal. In this study we compute the weighted mean of the neighbouring
scores as a time series smoothing filter; but even with this type of aggregation,
the optimal weight values have to be determined. We treated this task as an
optimization one in the space of frame-level weights, where we seek to maximize
the Area Under the Curve (AUC) score for the phenomena we are looking for
(now laughter and filler events). To find the optimal weight values, we applied
genetic algorithms. Using the optimal filters found on the development set, we
significantly outperformed both the unsmoothed (“raw”) values and some stan-
dard time series filters of the same size on the test set of a public English dataset
containing laughter and filler events.

2 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive methods which may be used to solve
search and optimization problems [1]. The concept and mechanisms applied are
based on the genetic processes of biological organisms. Mimicking the evolution
of biological populations by selection and recombination, genetic algorithms are
able to “evolve” solutions to real world problems.

Genetic Algorithms use a direct analogy of natural behaviour. They work
with a population of individuals, each representing a valid solution to the given
problem. Each individual consists of a number of parameters (genes). To each
individual, a fitness score is assigned, which is based on how good a solution it is
to the given task. Individuals with higher fitness scores are given opportunities
to “reproduce” by “cross breeding” (crossover) with other individuals in the
population. In this way new individuals are generated that share some features
taken from each parent. Then, to each child, mutation is applied, which usu-
ally means that with a small probability (e.g. 0.001), a gene is changed to some
random value. The traditional view is that, from the two recombination steps,
crossover is the more important one for rapidly exploring the search space, but
mutation provides a small amount of random search [1]. The individuals con-
structed in this way will form the population of the next generation. Traditional
GAs start from a randomly generated population and repeat the above steps for
several generations. Lastly, the best solution will be the individual in the last
population with the highest fitness score.

234 G. Gosztolya

3 Experimental Setup

3.1 The SSPNet Vocalization Corpus

The SSPNet Vocalization Corpus [14] consists of 2763 short audio clips extracted
from telephone conversations of 120 speakers, containing 2988 laughter and 1158
filler events. We used the feature set provided for the Interspeech 2013 Computa-
tional Paralinguistics Challenge (ComParE, [16]). It consisted of the frame-wise
39-long MFCC + Δ + ΔΔ feature vector along with voicing probability, HNR,
F0 and zero-crossing rate, and their derivatives. To these 47 features their mean
and standard derivative in a 9-frame long neighbourhood were added, resulting
in a total of 141 features [16]. Each frame was labeled as one of three classes,
namely “laughter”, “filler” or “garbage” (meaning both silence and non-filler
non-laughter speech).

We followed the standard routine of dividing the dataset into training, devel-
opment and test sets published in [16]. As evaluation metrics, we used the method
of evaluation which is the de facto standard for laughter detection: we calculated
the Area Under Curve (AUC) score for the output likelihood scores of the class
of interest. As we now seek to detect two kinds of phenomena (laughter and
filler events), we calculated AUC for both social signals; then these AUC values
were averaged, giving the Unweighted Average Area Under Curve (UAAUC)
score [16].

3.2 Frame-Level Classification

Before applying a time series filter, first we have to somehow get a likelihood
estimate for each class and frame of the utterances. For this, we utilized two
state-of-the-art machine learning methods, which we will briefly describe below.

AdaBoost.MH. AdaBoost.MH [15] is an efficient meta-learner algorithm,
which seeks to build a strong final classifier from a linear combination of simple,
scalar base classifiers. For more complex problems, the state-of-the-art perfor-
mance of AdaBoost.MH is usually achieved using decision trees as base learners,
parametrized by their number of leaves.

We utilized an open source implementation (the multiboost tool [2]), and
followed a multi-armed bandit (MAB) setup, which can speed up training signif-
icantly. In it, for each boosting iteration step, the optimal base learner is found
using only a small subset of features, and the usefulness of these subsets are
learned from the accuracy of these basic classifiers [4]. We sampled the over-
represented “garbage” class, and included the feature vectors of 8 neighbouring
frames on each side. We then used 8-leaved decision trees as base learners, and
trained our model for 100, 000 iterations. For the details, see [7].

Deep Rectifier Neural Networks. Deep neural networks differ from conven-
tional ones in that they consist of several hidden layers. This deep structure can

Detecting Laughter and Filler Events by Time Series Smoothing 235

provide significant improvements in results compared to earlier techniques used,
but the conventional backpropagation algorithm has problems when training
such networks. For this, one possible solution is deep rectifier neural networks [5].

In deep rectifier neural networks, rectified linear units are employed as hidden
neurons, which apply the rectifier activation function max(0, x) instead of the
usual sigmoid one [5]. The main advantage of deep rectifier nets is that they can
be trained with the standard backpropagation algorithm, without any tedious
pre-training (e.g. [8]). We used our custom implementation, originally developed
for phoneme classification. On the TIMIT database, frequently used as a refer-
ence dataset for phoneme recognition, we achieved the best accuracy known to
us [17].

For the actual task, we trained our model on 31 consecutive neighbouring
frame vectors. (Due to shorter execution times, we were able to carry out more
experiments with neural networks than with AdaBoost.MH.) After preliminary
tests, we used five rectified hidden layers, each consisting of 256 neurons, and
we had neurons that used the softmax function in the output layer.

3.3 Frame-Level Likelihood Aggregation

After obtaining the frame-level likelihood estimates of our classifiers (the “raw”
scores), in the next part we will aggregate the values in the local neighbourhood
in order to improve the AUC scores. We chose the weighted form of the moving
average time series filter; that is, for a filter with a width of 2N + 1 we define
the weight values as w−N , w−N+1, . . . , wN ≥ 0 and

�N
i=−N wi = 1. Afterwards,

for the jth frame with the raw likelihood estimate aj we calculate

a�
j =

N�

i=−N

wiaj+i. (1)

(Here we used the simplification that, for an utterance consisting of k frames,
aj = a1 for ∀j ≤ 0, and aj = ak for ∀j > k.) We then optimized the wi weight
values using genetic algorithms. To test whether the (possible) improvements in
the AUC scores come from the actual weight vector and not from the fact that
we use some kind of aggregation, we also tested two simple approaches. In the
first one, we took the unweighted average of the raw likelihood estimates; that
is, we had wi = 1

2N+1 (constant filter). In the second approach we randomly
generated the wi values (random filter).

3.4 Applying Genetic Algorithms

We represented each time series filter by a vector of the wi weights (i.e. each gene
corresponded to a wi weight). We used filters of size of 129 (64 frames at both
sides), based on the results of preliminary tests. We supposed that the optimal
weights of the neighbouring frames are not completely independent of each other,
so we only stored one weight for every eight frames, while we linearly interpolated

236 G. Gosztolya

Table 1. The AUC scores for the laughter and filler events got by using the different
classification and aggregation methods.

ML method Filter type Dev. set Test set

Lau. Fil. Both Lau. Fil. Both

AdaBoost.MH — 94.0 94.9 94.5 91.9 87.9 89.9

Random 97.7 94.2 95.9 94.6 87.5 91.0

Constant 97.8 94.1 95.9 94.7 87.6 91.2

Genetic alg. 98.0 96.4 97.2 95.0 89.5 92.2

DNN — 92.9 95.5 94.2 91.3 87.9 89.6

Random 96.7 94.4 95.5 94.2 86.9 90.5

Constant 96.9 94.3 95.6 94.4 86.9 90.7

Genetic alg. 96.7 96.5 96.6 94.3 88.8 91.6

DNN + Prob. time series smoothing [9] 95.1 94.7 94.9 93.3 89.7 91.5

DNN + DNN [3] 98.1 96.5 97.3 94.9 89.9 92.4

ComParE 2013 baseline [16] 86.2 89.0 87.6 82.9 83.6 83.3

the weight values for the intermediate frames. This approach resulted in a more
compact weight vector (only 17 values overall instead of 129), which should be
easier to optimize.

We utilized the JGAP Java Genetic Algorithm Package [13]. The population
size was 250, while we evolved for 100 generations. We used averaging crossover,
while for mutation we randomly changed the value of one weight in the weight
vector (with the default probability value of 0.001). To keep the frame weight
values on the same scale, for each step we normalized each weight vector so that
the weights summed up to one. We optimized the filter of the laughter and the
filler phenomena independently; the fitness function was the AUC score of the
given phenomenon on the development set.

4 Results

Table 1 lists the output AUC and UAAUC scores we got for the two classifier
methods and the time series filter approaches. The first thing to notice is that the
raw scores (indicated by the “—” filter type) are quite competitive, compared
to the ComParE baseline, which were not smoothed over time either. As for the
two classifier methods, AdaBoost.MH performed somewhat better; the reason for
this is probably that we sampled the database during classifier model training,
therefore the distribution of the three classes (that of garbage, laughter and filler
events) was more balanced, resulting in more precise likelihood estimations for
the laughter and filler classes.

Upon examining the two basic smoothing approaches used for reference (fil-
ters “random” and “constant”), we can see that applying these approaches alone
brings a significant improvement over the raw likelihood scores. This indicates

Detecting Laughter and Filler Events by Time Series Smoothing 237

−64 −48 −32 −16 0 16 32 48 64
0

1

2

3

4

Frame indices

W
ei

gh
t v

al
ue

s
(x

 1
29

)

AdaBoost.MH
DNN

Fig. 1. The optimal filters found using the genetic algorithm for laughter events

that just by utilizing a smoothing filter of this width (which is over a second
long) we can noticeably improve the AUC values of the likelihood estimates.
Over these scores, however, the weight vectors optimized by the genetic algo-
rithm gives an additional 1% gain in AUC on the test set, which, in our opinion,
justifies our approach of utilizing a weighted average time series filter over the
raw likelihood estimates, and optimizing the weights using genetic algorithm.
Of course, the width of the filter has to be set carefully, which requires further
investigation, just as the number of weights in the weight vector (recall that
now for each eight frame we optimized only one weight, while the remaining
ones were linearly interpolated). Furthermore, the application of other crossover
operators besides the averaging one (for example single point crossover, or a
crossover operator which takes the mean of neighbouring filter weight values,
therefore smoothing the whole time series filter) could be tested as well, but this
falls outside the scope of this study.

4.1 The Time Series Filters Found

Figures 1 and 2 show the time series smoothing filters got by using a genetic
algorithm for the laughter and filler events, respectively. The weight values were
scaled up to 129 times for better readability (i.e. a weight value of 1 means ave-
rage importance for the given frame). The large straight sections are due to the
linear interpolation of the intermediate frames. It can be seen that the filters are
not really smooth themselves, which is probably due to the optimization tech-
nique used. Despite this, the two filters belonging to the two different machine
learning methods are quite similar to each other for both phenomena.

The filters found for the laughter events have slightly higher weight values
around the central frame than those further away (although this tendency is
disturbed by the noise present in the weight vectors, which is probably due to
the random population initialization of GA). However, what is quite interesting is
that the first and last weight values for both machine learning methods are quite

238 G. Gosztolya

−64 −48 −32 −16 0 16 32 48 64
0

1

2

3

4

Frame indices

W
ei

gh
t v

al
ue

s
(x

 1
29

)

AdaBoost.MH
DNN

Fig. 2. The optimal filters found using the genetic algorithm for filler events

high, being 3–4 times the average weight. For an explanation of this phenomenon
recall that our classifier models were trained using the feature vectors of the 8-
8 and 15-15 neighbouring frames on both sides for AdaBoost.MH and DNNs,
respectively. This means that the posterior estimate provided by a DNN for the
first frame in the smoothing filter already includes some information about the
15 preceding frame, and using the likelihood estimate of the last frame we can
“peek” into the 15 consecutive frames. This makes the first and last frames in
the averaged filter more important than the inner ones, while the values of the
inner frames are redundant to some extent.

This effect is present on the time series smoothing filters found for the filler
events, although surprisingly only at the end of the filter. Here, however, the
middle frames seem to be very important, having a relative importance of about
3.5 times that of an average frame. This holds for the filters found for both
machine learning methods.

5 Conclusions

In this study, we investigated the task of laughter and filler detection. As was
shown earlier, after some frame-level posterior estimation step performed via
some machine learning method, it is worth smoothing the output likelihood
scores of the consecutive frames; so we applied a weighted averaging time series
smoothing filter. To set the weights in the filter, we applied genetic algorithms,
using the development set of a public English dataset. Our AUC scores got on
the test set significantly outperformed both the unsmoothed likelihood values
and standard time series filters of the same size.

Acknowledgments. The Titan X graphics card used for this research was donated
by the NVIDIA Corporation.

Detecting Laughter and Filler Events by Time Series Smoothing 239

References

1. Beasley, D., Bull, D.R., Martin, R.R.: An overview of genetic algorithms: part 1,
fundamentals. Univ. Comput. 15(2), 58–69 (1993)

2. Benbouzid, D., Busa-Fekete, R., Casagrande, N., Collin, F.D., Kégl, B.: Multi-
Boost: a multi-purpose boosting package. J. Mach. Learn. Res. 13, 549–553 (2012)

3. Brueckner, R., Schuller, B.: Hierarchical neural networks and enhanced class pos-
teriors for social signal classification. In: Proceedings of ASRU, pp. 362–367 (2013)

4. Busa-Fekete, R., Kégl, B.: Fast boosting using adversarial bandits. In: Proceedings
of ICML, vol. 27, pp. 143–150 (2010)

5. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proceedings
of AISTATS, pp. 315–323 (2011)

6. Gosztolya, G.: On evaluation metrics for social signal detection. In: Proceedings of
Interspeech, Dresden, Germany, pp. 2504–2508, September 2015

7. Gosztolya, G., Busa-Fekete, R., Tóth, L.: Detecting autism, emotions and social
signals using AdaBoost. In: Proceedings of Interspeech, Lyon, France, pp. 220–224,
August 2013

8. Tóth, L., Grósz, T.: A comparison of deep neural network training methods for
large vocabulary speech recognition. In: Habernal, I. (ed.) TSD 2013. LNCS, vol.
8082, pp. 36–43. Springer, Heidelberg (2013)

9. Gupta, R., Audhkhasi, K., Lee, S., Narayanan, S.S.: Speech paralinguistic event
detection using probabilistic time-series smoothing and masking. In: Proceedings
of InterSpeech, pp. 173–177 (2013)

10. Hoffmann, I., Németh, D., Dye, C., Pákáski, M., Irinyi, T., Kálmán, J.: Temporal
parameters of spontaneous speech in Alzheimer’s disease. Int. J. Speech-Language
Pathol. 12(1), 29–34 (2010)

11. Knox, M.T., Mirghafori, N.: Automatic laughter detection using neural networks.
In: Proceedings of Interspeech, pp. 2973–2976 (2007)

12. Neuberger, T., Beke, A., Gósy, M.: Acoustic analysis and automatic detection of
laughter in Hungarian spontaneous speech. In: Proceedings of ISSP, pp. 281–284
(2014)

13. Rotstan, N.: JGAP: Java Genetic Algorithms Package (2005). http://jgap.
sourceforge.net/

14. Salamin, H., Polychroniou, A., Vinciarelli, A.: Automatic detection of laughter
and fillers in spontaneous mobile phone conversations. In: Proceedings of SMC,
pp. 4282–4287 (2013)

15. Schapire, R., Singer, Y.: Improved boosting algorithms using confidence-rated pre-
dictions. Mach. Learn. 37(3), 297–336 (1999)

16. Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, F.,
Chetouani, M., Weninger, F., Eyben, F., Marchi, E., Salamin, H., Polychroniou, A.,
Valente, F., Kim, S.: The interspeech 2013 computational paralinguistics challenge:
social signals, conflict, emotion, autism. In: Proceedings of Interspeech (2013)

17. Tóth, L.: Phone recognition with hierarchical convolutional deep maxout networks.
EURASIP J. Audio, Speech, Music Process. 2015(25), 1–13 (2015)

18. Tóth, L., Gosztolya, G., Vincze, V., Hoffmann, I., Szatlóczki, G., Biró, E., Zsura, F.,
Pákáski, M., Kálmán, J.: Automatic detection of mild cognitive impairment from
spontaneous speech using ASR. In: Proceedings of Interspeech, Dresden, Germany,
pp. 2694–2698, September 2015

