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DNN-based Feature Extraction
for Conflict Intensity Estimation from Speech
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Abstract—Over the past few years there has been an increasing
need to extract non-linguistic information from audio sources.
This trend has created a new area in speech technology known
as computational paralinguistics. A task belonging to thisarea is
to estimate the intensity of conflicts arising in speech recordings,
based only on the audio information. It was shown that the
human comprehension of conflict intensity is closely related to
speaker overlap; that is, when multiple persons are speaking at
the same time. This type of information can also aid automated
conflict intensity estimation. In this study we propose a simple,
DNN-based feature extraction step, and show that this approach
is superior to those introduced in the literature so far: by
combining our results with an efficient greedy feature selection
algorithm, we were able to outperform all previous results on
the SSPNet Conflict dataset, achieving a correlation coefficient
of 0.856 on the test set.

Index Terms—computational paralinguistics, conflict intensity
estimation, Deep Neural Networks, feature extraction

I. I NTRODUCTION

W ITHIN speech technology, an emerging area is com-
putational paralingustics, which seeks to detect, ex-

tract and locate non-linguistic information from the speech
signal. Notable examples for paralinguistic tasks are emotion
detection [1], detecting vocalizations such as laughter and
filler events [2], [3], [4], and various medical applications like
detecting Parkinson’s or Alzheimer’s disease or depression [5],
[6], [7].

A specific paralinguistic task is to estimate the level of
conflict from speech. Conflicts influence the everyday lives
of people to a significant extent, either in their public or
personal lives, and they are one of the main causes of
stress [8]. With the rise of socially intelligent technologies, the
automatic detection of conflicts could be the first step towards
handling them properly. Furthermore, conflict detection has
straightforward applications such as monitoring incomingcalls
in call centres, where a key feedback of the employees is how
they can handle conflicted situations [9].

The standard computational approach, developed over the
years on various paralinguistic tasks, is to extract several
thousand general, utterance-level features from the speech
excerpts, and use these to train general machine learning
methods such as Support-Vector Machines (SVM) or Deep
Neural Networks (DNNs) to perform classification or regres-
sion. Usually, however, other task-specific steps are required
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to achieve state-of-the-art performance, like feature selection
(e.g. [10], [11]), incorporating features which are widely-used
in other audio-based areas (e.g. i-vectors [12]), or developing
new features for the given specific task (e.g. [13], [14]).

For conflict detection, a specific phenomenon which might
aid detection is speaker overlap: in the heat of the debate,
people tend to interrupt each other quite frequently, and
speak while someone else is speaking. There were several
studies which exploited this observation for conflict intensity
estimation: Grèzes et al. [15] included the ratio of speaker
overlap as a new feature in the baseline feature set. Brueckner
and Schuller [16] used Deep Bidirectional Recurrent Neural
Networks to estimate speaker overlap and used it as a feature
along with other prosodic attributes; Caraty and Montacié[17]
detected speech interruptions to aid the detection of utterances
with a high level of conflict.

However, in our opinion these methods can only be applied
in a limited way. Grèzes estimated the amount of speaker
overlap by a simple procedure; using a BLSTM like Brueckner
et al. may be viewed as an overkill for detecting speaker over-
lap due to implementation difficulties, while the bidirectional
nature of his approach makes it unsuitable for real-time speech
processing; the workflow proposed by Caraty and Montacié
inherently works only for conflictclassification, and does not
allow finer intensity distinctions. In this study we propose
a simple-yet-efficient approach, where neural networks are
trained to detect local speaker overlap; then, for the next step,
several features are extracted from the outputs of the DNN.
We show that this approach leads to a better performance than
using either the manually annotated or the predicted (single)
speaker overlap values: by combining these predictions with
those obtained by our feature selection method introduced
earlier [18], we markedly outperform all previous results on a
public database containing political debates.

II. T HE SSPNET CONFLICT CORPUS

The SSPNet Conflict Corpus [19] contains recordings of
Swiss French political debates taken from the TV channel
“Canal9”. It consists of 1430 recordings, 30 seconds each,
making a total of 11 hours and 55 minutes. Each 30-second
long clip was tagged by 10 annotators; in the end each
recording was assigned a score in the range [-10, 10], 10
meaning a high level of conflict and -10 meaning no conflict
at all. Although the database contains both audio and video
recordings, in the recent experiments researchers focusedonly
on the audio information. To demonstrate the effectivenessof
our automatic speaker overlap detection method, here we will
also rely on the audio data, and discard the video track.
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Fig. 1. The proposed regression approach (upper path), the standard paralingustic process (lower path), and the calculation of the final predictions.

The audio clips of this dataset were then used in the
Conflict sub-challenge of the Interspeech 2013 ComParE Chal-
lenge [20]. Besides completely discarding video data, other
steps were made to standardize the work on this dataset, and
this setup has since been adopted by most researchers. Firstly,
separate training and test sets were defined instead of relying
on cross-validation, as was done by Kim et al. [19]; secondly,
a baseline feature set was defined and extracted from the
utterances by the tool openSMILE [21]. This 6373-long feature
set includes energy, spectral, cepstral (MFCC) and voicing
related low-level descriptors (LLDs), over which statistical
functions (e.g. mean, standard deviation, etc.) are computed
to provide utterance-level feature values.

The evaluation metrics used for this dataset were also de-
fined. Schuller et al. admitted that this was mainly a regression
task and used the correlation coefficient (CC) to measure the
performance. They, however, also converted the task into a
binary classification one, defining the classeslow and high
based on the sign of the conflict score [20]. Classification
accuracy was measured by the Unweighted Average Recall
(UAR) value; this metric was used both in the Challenge
(e.g. [10], [15]), and it has been used in research papers since
then (e.g. [11], [16], [17]). In our view, treating this taskas a
regression one is the proper approach, partly since describing
conflict intensity as a numeric value contains more information
than a binary class label, and also because optimizing for CC
led to more robust models than maximizing UAR. (For the
details, see [18].) Due to this, now we will use the CC metric.

Table I lists the notable scores published in the literature
for this dataset. We can see two trends: most attempts either
applied feature selection ([10], [11], [18]) or utilized the
amount of speaker overlap in some way ([15], [16], [17]). Next
we will propose a speaker overlap-based feature extraction
step, and combine this approach with our previous one [18]
where we used feature selection.

III. SPEAKER OVERLAP-BASED FEATURE EXTRACTION

A high level of conflict frequently coincides with multiple
persons speaking at the same time. Grèzes et al. demonstrated
experimentally that exploiting the speaker overlap could aid
the automatic estimation of conflict intensity: by extending
the baseline ComParE feature set with the (predicted) relative
amount of speaker overlap, they markedly outperformed the
baseline scores [15]. Indeed, on this corpus we measured a
correlation coefficient of0.70 between the conflict score of

TABLE I
CORRELATION COEFFICIENT(CC) AND UAR SCORES GIVEN IN THE

LITERATURE FOR THE TEST SET OF THESSPNET CONFLICT CORPUS,
FOLLOWING THE COMPARE 2013SETUP. HERE, ”—” MEANS THAT THE

GIVEN SCORE WAS NOT PROVIDED.

Method CC UAR

ComParE 2013 baseline ([20]) 0.816 80.8%

Speaker overlap (Grèzes, [15]) — 83.1%

Random Subset FS (Räsänen, [10]) 0.826 83.9%

Speaker overlap + prosodic feat. (Brueckner, [16]) 0.838 84.3%

SLCCA FS (Kaya, [11]) — 84.6%

Speaker Interruption (Caraty, [17]) — 85.3%

Greedy Forward FS (Gosztolya, [18]) 0.835 85.6%

Greedy Forward + Backward FS (Gosztolya, [18]) 0.842 85.1%

Ensemble Nyström method (Huang, [22]) 0.849 —

the utterance and the relative amount of time when multiple
speakers spoke at the same time (according to the manual
annotation), which implies a very close connection. Of course,
relying on amanually annotatedspeaker overlap value is not
an option in an application situation. If we seek to utilize the
amount of speaker overlap in the conflict intensity estimation
task, we should calculate it in some automatic way.

Many studies exist which deal with automatic speaker
clustering and diarization (e.g. [23], [24], [25], [26]); these,
however, focus on finding the time intervals where the same
speakers’ voice is present, which is clearly not our main focus
here. One can also argue that the amount of speaker overlap
is reflected in the volume of the utterance: when two or more
people are speaking at the same time, their (combined) volume
can be expected to exceed that of only one speaker, and this
local energy can be readily determined by signal processing
techniques. Another option might be the one proposed by
Grèzes et al. [15], who estimated speaker overlap from the
utterance-level, 6373-sized feature set via standard regression.

In this study we propose another approach; for the general
scheme of the proposed workflow, see Fig. 1. As the first step,
we train a DNN to predict the number of actual speakers for
each given frame. Then, in the second step, we extract a num-
ber of (utterance-level) features from the DNN outputs, which
are used to train a Support-Vector Regression (SVR [27]) to
predict the conflict intensity scores of the utterances. Lastly,
we combine the predictions with the ones obtained using stan-
dard utterance-level features. We will see that this approach
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Fig. 2. The mechanism of the proposed feature extraction process.

outperforms all previous results on this public dataset. We
will also show that the proposed approach is superior to using
either speaker overlap as an additional feature, or to extracting
utterance-level features from the energy of the utterance.For
comparison, we also test the automatic estimation procedure
proposed by Grèzes et al. [15].

A. DNN-Based Speaker Overlap Estimation

The first step of our proposed workflow is quite straightfor-
ward: we train a DNN with standard frame-level features (e.g.
MFCC [28]) as input, while the output neurons correspond to
the number of speakers in the given frame. In spontaneous
speech it is quite rare that three or more people are speaking
at the same time: according to the manual diarization, it does
not happen in the SSPNet Conflict corpus at all. Due to this,
we propose to use only two classes, corresponding to a zero-
or-one speaker, and a two-or-more speaker case.

B. DNN-Based Feature Extraction and Regression

Next, we extract features from the frame-level DNN outputs,
and these features will be used forutterance-levelregression.
Naturally, in general applications we should rather try to
perform this regression step for a specific time window instead
of the whole utterance. In the actual dataset, however, the
manual annotation of the level of conflicts is given at the
utterance level only, which does not permit continuous conflict
intensity evaluation. However, our approach can be easily
generalized into longer utterances by using sliding windows.

In the actual feature extraction phase, we seek to include
the amount of time where two people were speaking at the
same time. The most straightforward solution is to classify
each frame based on the DNN outputs, and count the ratio
of the frames classified as having multiple speakers present.
Since we have two classes, this is equivalent to thresholding
the corresponding DNN outputs with the value of 0.5 [29].
However, it is well known (see e.g. [30], [31]) that the poste-
rior estimates provided by a DNN carry valuable information,
and this information is lost if we simply examine whether they
exceed 0.5. Because of this, we propose to useseveraldifferent
threshold values. That is, using the step size parameters,
first we count the number of frames where the DNN output
corresponding to the two or more speakers case is greater than
or equal tos, we divide it by the total number of frames

in the utterance, and then use this value as the first newly
extracted feature. Next, we repeat this step using the values
2 ·s, 3 ·s, . . . , 1 as thresholds. Doing this for all the utterances,
we extract a new feature set for all the examples. This can be
used as a feature set to perform regression for the third step
by using some machine learning method like DNNs or SVR.

C. Regression Output Combination

Although using the amount of speaker overlap may prove
to be beneficial for conflict intensity estimation, we shouldnot
discard all other kinds of features. A combination of the two
approaches supposedly leads to better results. One possible
way of combining them is to merge thefeature vectorsof each
example, and train one classifier or regressor model. However,
often (e.g. [32]) it is more beneficial to train separate machine
learning models for different types of features, as these may
require different meta-parameter settings for optimal perfor-
mance. Therefore we suggest training one machine learning
method using the standard utterance-level features such asthat
proposed in [20], and train a separate one using the features
extracted as described in Section III-B. To combinethe outputs
of the two models, we suggest taking the weighted mean,
which is a simple-yet-robust technique (see e.g. [32]).

IV. EXPERIMENTAL SETUP

A. DNN Parameters

To predict the amount of speaker overlap, we trained a
DNN with 5 hidden layers, each containing 256 rectified
neurons [33]. We utilized our custom implementation for
Nvidia GPUs; we used 39 MFCC +∆ + ∆∆ [28] values
as feature vectors on a 15-frame wide sliding window.

B. Feature Extraction and Regression

For the next feature extraction step, we used a step size of
0.05 for the thresholds, resulting in 20 features overall. After
standardization (i.e. transforming the feature vectors soas to
have a zero mean and unit variance), we trained a Support-
Vector Regressor using the LibSVM [34] library. We applied
the nu-SVR method with linear kernel; the value ofC was
tested in the range10{−5,...,1}, just like that in our previous
paralinguistic studies (e.g. [18], [32], [35]). As the energy of
the speech signal might also be an indicator of conflict, we
performed the same thresholding feature extraction steps on
the frame-level energy values to get 20 features overall.
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C. Standard Paralinguistic Approach

We performed an estimation of conflict intensity scores
following the standard paralinguistic approach as well. For
this, we commenced with the default, 6373-long feature set
proposed by Schuller et al. [20]. This feature set has a lot
of redundancy, and also contains many irrelevant features for
this given task. Owing to this, we decided not to use the full
feature set for training the SVR, but used the restricted feature
set chosen by the method proposed by Gosztolya [18]. This
greedy forward-backward feature selection algorithm firstsorts
the features based on the absolute value of their correlation
coefficient with the target score in descending order; this way it
examines more correlated features first. Then it examines each
feature in this order, and decides whether this particular feature
should be selected or discarded based on whether it improved
the regression performance of SVR on the development set.
Next, a backward step is performed to prune this feature set
further. (For the details, see [18].) The resulting featureset
consisted of only 137 attributes out of the original 6373.

D. Prediction Combination

To combine the utility of different feature sets, we opted
for two approaches. In the first one, we merged the feature
sets, and trained only one SVR model for the combined
feature set. In the second one we trained three SVR models
using the three kinds of feature sets tested (i.e. the one got
by feature selection, and the two sets extracted following
Section III-B), and combined the predictions via a weighted
mean. We determined the weights by grid search, using a step
size of 0.05; we chose the weight vector that proved to be the
best on the training set, using 10-fold cross-validation (CV).

V. RESULTS

Table II shows the correlation coefficient values obtained
in the cross-validation setup and on the test set. We see
that by using the selected feature subset determined by the
greedy feature selection method, we can markedly outperform
the baseline score on the test set. (The indicated value is
slightly lower than the one published in [18] because now
we used ten-fold cross-validation instead of the development
set.) Surprisingly, using only the features extracted fromthe
DNN posteriors, we can almost match the baseline score: the
0.809 correlation coefficient measured on the test set is only
slightly lower than the baseline value of 0.816. However, when
we relied only on the energy of the speech signal, the results
were much lower than those got by using the other approaches.

When we extended the standard features with the newly
extracted ones, the CC values rose further. The speaker overlap
ratio estimated from the 6373 utterance-level features (“pre-
dicted speaker overlap”) did not help much when we used the
selected feature subset, and it did not affect conflict intensity
estimation performance when combined with the full feature
set at all. Using the energy-based features led to similarly
small improvements. However, the automatically extracted,
DNN-based speaker overlap feature set helped as much as
the manually annotated speaker overlap value did. On top of
these, using the energy-based attributes did not really help.

TABLE II
CORRELATION COEFFICIENTS OBTAINED BY THE APPROACHES TESTED.

Combination Feature Set CV Test

— Full feature set (baseline) [20] 0.830 0.816

—

Selected feature subset [18] 0.825 0.838

Speaker overlap 0.771 0.809

Energy 0.597 0.548

Feature set

Full + Predicted sp. overlap 0.830 0.816

Selected + Manual sp. overlap 0.837 0.846

Selected + Predicted sp. overlap 0.827 0.840

Selected + Sp. overlap 0.837 0.846

Selected + Energy 0.825 0.840

Selected + Sp. overlap + Energy 0.838 0.846

Prediction

Selected + Sp. overlap 0.837 0.856

Selected + Energy 0.826 0.837

Selected + Sp. overlap + Energy 0.837 0.855

We got the best results when we trained separate SVR
models for the different kinds of feature sets, and combined
the outputs instead. The energy-related features were again
of little use, but using the automatically determined speaker
overlap scores was a big help: the 0.856 correlation coefficient
obtained in this way on the test set is the highest such score
ever published on this dataset. In our opinion it is due to the
fact that we extracted a whole featureset describing speaker
overlap instead of one single ratio value, and it contained
more information. The optimal weight for the predictions
by the proposed method was 0.3, showing that the feature
selection approach is more important (its weight being 0.7),
but the speaker overlap was also essential for state-of-the-
art performance. This finding is also in accordance with the
correlation scores got by using the two methods independently.
These predictions had an UAR score of 84.7% on the test set,
which, given that we optimized all meta-parameters for CC,
is quite competitive. We would also like to note that the UAR
scores varied to a significant extent, which is probably due
to a number of predictions being close to zero, where their
sign (and therefore their binary class label) can change easily;
this, in our opinion, also supports our decision of utilizing CC
instead of the UAR metric in this particular task.

VI. CONCLUSIONS

In computational paralinguistic tasks we need to per-
form task-dependent steps to achieve state-of-the-art accuracy
scores. One such step that could aid conflict intensity estima-
tion from the audio data is to estimate the duration of when
two or more speakers were speaking at the same time. For
this, we proposed a simple DNN-based feature extraction step,
which not only returned the single value of the speaker overlap
estimated, but also a 20-sized vector which characterizes
speaker overlap in the utterance in a more sophisticated way.
By using this novel feature extraction step, followed by a
regression step and combining the prediction scores using a
weighted mean, we achieved a marked improvement in our
correlation coefficient scores: our 0.856 score is the highest
one published so far on the public SSPNet Conflict corpus.
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