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ABSTRACT

Computational paralinguistics is an area which contains di-
verse classification tasks. In many cases the class distribution
of these tasks is highly imbalanced by nature, as the phenom-
ena needed to detect in human speech do not occur uniformly.
To ignore this imbalance, it is common to measure the effi-
ciency of classification approaches via the Unweighted Aver-
age Recall (UAR) metric in this area. However, general clas-
sification methods such as Support-Vector Machines (SVM)
and Deep Neural Networks (DNNs) were shown to focus on
traditional classification accuracy, which might lead to a sub-
optimal performance for imbalanced datasets. In this study
we show that by performing posterior calibration, this effect
can be countered and the UAR scores obtained might be im-
proved. Our approach led to relative error reduction values of
4% and 14% on the test set of two multi-class paralinguistic
datasets that had imbalanced class distributions, outperform-
ing the traditional downsampling.

Index Terms— computational paralinguistics, classifica-
tion, posterior estimates, posterior calibration

1. INTRODUCTION

Computational paralinguistics, a subfield of speech technol-
ogy, focuses on extracting and predicting non-linguistic in-
formation present in human speech. Notable applications in-
clude the detection of laughter events [1, 2], emotion detec-
tion [3, 4], and various medical applications like early screen-
ing of Alzheimer’s or Parkinson’s disease [5, 6]. This area has
many classification tasks; still, practically no effort is devoted
for posterior probability calibration, which is a common tech-
nique in the machine learning literature (see e.g. [7, 8, 9]).
The aim of our current study is to show that, simple posterior
calibration technique is particularly beneficial in this area.

The goal of calibration is usually to turn the output scores
of a classifier into valid posterior class probability estimates.
It is usually employed when the learner method seeks to min-
imize quality measures such as the zero-one error, and this
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maximization does not demand precise posterior estimates.
Examples for this are the output scores of AdaBoost.MH [10]
or multi-class SVM [11]. This kind of inconsistency of
output scores has methodological roots and various cali-
bration techniques had been devised to handle it [12, 13].
Another situation where one might consider applying poste-
rior calibration is when the classifier method applied seeks
optimal classification accuracy, but we expect it to perform
well with a different evaluation criterion such as optimal F-
measure [14]. It is easy to see that this is just the case for
several computational paralinguistic tasks, where classifica-
tion performance is usually measured via the Unweighted
Average Recall (UAR) metric, being the mean of the class-
wise recall values. In cases where the class distribution is
imbalanced, classifiers trained to maximize accuracy might
provide suboptimal classification in terms of UAR scores.

There are some approaches which can be employed in
such cases. One method of choice can be to use training ex-
amples belonging to the rarer classes multiple times (upsam-
pling) or to discard examples belonging to the more frequent
classes (downsampling) during training. However, upsam-
pling leads to higher memory requirements, while downsam-
pling might lead to information loss, as discarding training
examples results in a degraded variance of the training data.
Some approaches modify the training method itself either
by employing more complicated sampling techniques such
as probabilistic sampling [15] or instance re-weighting [16];
these, however, are not that straightforward to use in standard
machine learning implementations.

We decided to apply a posterior calibration technique to
adjust the output posterior estimates of a standard classifier in
order to increase the UAR score of our predictions. This in
practice means that we apply a well-known posterior calibra-
tion approach called Platt scaling [12]; the parameters of this
method are tuned to achieve optimal UAR score. The moti-
vation of this approach is that the optimal prediction for UAR
depends on the fraction of the class conditional probabilities
and class priors (see Section 2.2), whereas standard calibra-
tion techniques aim at improving only the class conditional
probabilities.

Note that applying a calibration procedure is more impor-
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tant in multi-class setups than in two-class tasks. Assuming
that the calibration process fits a monotonic function to the
(raw) classifier outputs, in a binary problem calibration leads
to the same results as classifier output thresholding. Since this
is clearly not the case for multi-class problems, fitting more
complex functions to the raw classifier outputs makes sense.
Therefore, we will use two multi-class datasets in our exper-
iments, both of which have a significantly inbalanced class
distribution.

The structure of this paper is as follows. In Section 2,
we introduce the calibration algorithm we used in our experi-
ments (namely Platt scaling), explain our method of posterior
re-calibration, and describe our approach of parameter set-
ting. Then, in Section 3, we describe our experimental setup:
the two datasets we perform our experiments on, the way we
obtained our initial posterior estimates, and the technical de-
tails of posterior calibration. In Section 4, we present and
analyze the test results; lastly, we draw our conclusions.

2. POSTERIOR CALIBRATION

2.1. Platt Scaling

Platt proposed using a sigmoid function to map the outputs of
an SVM to posterior scores [12]. To get calibrated probability
values in the binary case (i.e. the label is either zero or one)
from some raw classifier output f : Rd 7→ R, we pass these
output scores through a sigmoid function. That is, we have

P (y = 1|x) = 1

1 + eaf(x)+b
(= s(f(x); a, b)), (1)

where the parameters a and b are fitted using maximum like-
lihood estimation on a calibration set. More concretely, a and
b are solutions to the minimization problem

argmin
a,b

−
n∑

i=1

yi log(pi(a, b)) + (1− yi) log(1− pi(a, b)),

(2)
where pi(a, b) = s(f(xi); a, b).

Given a multi-class datasetD = {(xi,yi)}i=1,...,n, where
yi = (yi,1, . . . , yi,m) with exactly one non-zero label, one
can also apply the likelihood principle to a raw multi-class
classifier in the form of f : Rd 7→ Rm to calibrate its output
based on class-wise sigmoid functions. The straightforward
generalization of Eq. (2) for the multi-class case is

argmin
a,b

−
n∑

i=1

m∑
j=1

yi,j log(pi,j(a,b)), (3)

where a = (a1, . . . , am),b = (b1, . . . , bm) and

pi,j(a,b) =
s
(
fj(xi); aj , bj

)∑m
`=1 s(f`(xi); a`, b`)

,

where fi(x) denotes the ith component of f(x). Note that
pi,j(a,b) is the estimate for the class conditional P (yj =
1|xi).

2.2. Optimal UAR

The Average Recall or Unweighted Accuracy (UAR) is the
average of the classwise recalls. Assume a multi-class clas-
sifier in the form of f : Rd 7→ {0, 1}m and a dataset D =
{(xi,yi)}i=1,...,n. Then the UAR score can be computed as

UAR(f,D) = 1

m

m∑
j=1

∑n
i=1 yi,jfj(xi)∑n

i=1 yi,j
, (4)

where fj(xi) is the prediction of f(xi) for class j. One might
be interested in the population level UAR for classifier f
which can be written as

E(x,y)∼P [UAR(f, (x,y)] =
1

m

m∑
j=1

E[yjfj(x)]

πj
(5)

where E[yjfj(x)] is the population level true positive rate of
f for class j, and πi = P(yi = 1) is the prior for class j.
Clearly,

∑m
j=1 πj = 1 in a multi-class case. Because of the

Law of large numbers, (4) converges to (5) almost surely.
Let us condition (5) on x, which yields

Ey∼P(.|x) [UAR(f,y)] =
1

m

m∑
j=1

E[yj |x]f(x)j
πj

(6)

By definition of conditional expectation, we have that

E(x,y)∼P [UAR(f, (x,y)] = Ex[Ey∼P(.|x) [UAR(f,y)]],

where Ex denotes the expectation with respect to the marginal
distribution of the feature vectors.

The classifier f∗ which maximizes (6) assigns a label

j∗x ∈ argmax
j∈1,...,m

E[yj |x]
πj

to x. In other words, for maximizing UAR, we need a fairly
good estimate for the fraction of the class priors and the class
conditional probabilities E[yj |x] = P(yi = 1|x) for each
class. On the one hand, to have an accurate enough estimate
for this fraction might be challenging for rare classes which
occur typically for imbalanced dataset. On the other hand,
the standard multi-class calibration given in (3) only aims at
having accurate class conditional estimates, which is not suf-
ficient in the case of UAR. This is why we devised a more
robust calibration for UAR, which we will present next.

2.3. Posterior Re-Calibration

A classifier method provides posterior estimates which are
usually already calibrated in some way. For example, when
using a Deep Neural Network (DNN), it is standard practice
to utilize neurons in the output layer which apply the softmax
activation function; this already ensures that the output scores
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Fig. 1. The general workflow of the proposed paralinguistic
posterior re-calibration process.

fall in the range [0, 1] and add up to one, while for a Support-
Vector Machine, Platt’s method is normally applied. In our
current study, we have posterior estimate scores as inputs,
and our aim is only to re-calibrate these posterior scores to
allow for a more balanced classification behaviour. Unfortu-
nately, most classifier implementations do not offer access to
the instance- and class-wise raw classifier output scores (i.e.
the fi(x) values, where f : Rd 7→ Rm), therefore we have to
find a way to perform posterior calibration from the already
calibrated posterior estimate values. Notice, however, that by
applying the inverse of the sigmoid function, we can obtain
a linear function of the raw classifier output scores from the
Platt-calibrated posterior estimates supplied by an SVM. That
is,

aifi(x) + bi = log
( 1

pi
− 1
)
, (7)

ai and bi being the original calibration parameters. Denoting
aifi(x) + bi by f ′i(x), next we apply Platt’s calibration func-
tion again, using the f ′ values as input and the new calibration

parameters a′i and b′i. That is,

p′i =
1

1 + ea
′
if

′
i(x)+b′i

=
1

1 + ea
′
i(aifi(x)+bi)+b′i

=
1

1 + e(a
′
iai)fi(x)+(a′

ibi+b′i)
.

(8)

Practically speaking, calibrating the f ′i values with Platt’s for-
mula (i.e. following Eq. (1)) leads to Platt-calibrated posterior
estimates of the original, uncalibrated classifier output values
(i.e. fis), without the requirement of having direct access to
these scores. We will exploit this finding in our experiments.

2.4. Obtaining Robust Calibration Parameters

Having the means of posterior re-calibration at our disposal,
we still need to find a way to determine the a′ and b′ vec-
tors which permit a higher-quality classification. A standard
solution for such parameter optimization is to fine-tune these
parameters on a development set or in a cross-validation set-
ting [13, 9]. Translating this approach to our task, it means
that we optimize the a′ and b′ vectors in order to get the high-
est UAR score; the robustness of this approach can be mea-
sured by transforming the posterior estimates of the test set
using the found a′ and b′ parameter vectors. To find these pa-
rameters, we tested two such optimization approaches in our
experiments.

To find these parameters, we tested two such optimization
approaches in our experiments. In the first one, we generated
random vectors and chose the one that led to the highest UAR
value. Though this may seem to be a primitive technique at
first glance, it was shown (see e.g. the study of Bergstra and
Bengio [17]) that this is a favorable method to grid search
for hyper-parameter optimization. The other optimization ap-
proach we applied is the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES, [18]) method. It is viewed
as a reliable and competitive method for both local and global
optimization [19]. . It has a further advantage that it requires
little or no meta-parameter setting for optimal performance.
We used the Java implementation with the default settings.

3. EXPERIMENTAL SETUP

3.1. The FAU AIBO Emotion Corpus

The FAU AIBO Emotion Corpus [20] contains audio files
recorded from German children while playing with Sony’s
pet robot Aibo. The children were told that the Aibo responds
to their commands, while it was actually remotely controlled
by a human. Overall, 51 children were involved in the study
from two schools; recordings from the Ohm school (9959 ut-
terances) are commonly used as the training set in a speaker-
wise cross-validation (CV) set-up, while data from the Mont
school (8257 recordings) serve as the test set.
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Fig. 2. The class distribution of the Emotion corpus.

From the original 11 emotional categories, later a 5-class
problem was created by merging emotional labels [21]. These
classes are: Angry (A, containing the original categories of
angry, touch and reprimanding), Emphatic (E), Neutral (N),
Positive (P, containing motherese and joyful) and Rest (R).
Fig. 2 shows the distribution of these five classes in the train-
ing and test sets. It is clear that class balance is quite uneven,
most of the utterances belonging to the Neutral category (56%
and 65%, training and test sets, respectively). This is under-
standable, though, since emotions do not have an equal distri-
bution in everyday conversations either.

3.2. The Munich-Passau Snore Corpus

The Munich-Passau Snore Corpus [22, 23] contains sounds of
828 snoring events from 219 subjects. The dataset contains
recordings of four types of snore events characterized based
on the excitation location; there are Velum (V), Oropharyn-
geal lateral walls (O), Tongue (T) and Epiglottis (E) types of
events [24], leading to four classification classes overall.

Although this corpus has a standard training, development
and test split, we performed cross-validation on the combined
training and development sets of this dataset as well. We did
this as the number of recordings in this dataset is quite small,
and using a separate development set would had halved the
number of actual training examples. This would mean that
the predictions would significantly differ for the development
and test sets, because test set predictions are made by training
a classifier on the training and development sets combined
(i.e. roughly 600 recordings). Thus we performed ten-fold
cross validation on the training and development sets com-
bined, and we made sure that the snore sounds of each speaker
appeared in one fold only.

The distribution of the examples belonging to each class
in this corpus can be seen in Fig. 3. We can observe that class
distribution is just as uneven for this corpus as it was for the
Emotion corpus, 60% of the examples belonging to class V.
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Fig. 3. The class distribution of the Snore corpus.

3.3. The Classification Process

Our classification process basically followed standard par-
alinguistic mechanisms (see e.g. [22, 25]): we used 6373 fea-
tures overall, extracted by using the openSMILE tool [26].
The feature set includes energy, spectral, cepstral (MFCC)
and voicing related low-level descriptors (LLDs), from which
specific functionals (like the mean, standard deviation etc.)
are computed to provide utterance-level feature values. Af-
ter standardization, we trained a Support-Vector Machine, us-
ing the LibSVM [27] library. We used the nu-SVM method
with a linear kernel; the value of C was tested in the range
10{−5,...,1}, just like in our previous paralinguistic studies
(e.g. [28, 29]).

3.4. Posterior Calibration

For both paralinguistic tasks, we optimized the a′ and b′ vec-
tors of Eq. (8) on the posterior scores obtained on the whole
training set in CV setup. This led to a 10-dimensional opti-
mization task for the Emotion corpus and an 8-dimensional
one for the Snore corpus. All the parameters were allowed
to take values in the [−10, 10] range. For the random opti-
mization method, we generated 10,000 random vectors, while
the CMA-ES method applied was allowed to optimize up to
10,000 iterations.

4. RESULTS

Table 1 contains the accuracy and UAR scores obtained on
the FAU AIBO Emotion corpus. It is clear that the baseline
approach had an uneven performance: the classification accu-
racy score of 64.5% is paired with a 33.3% UAR score. We
also notice that class imbalance and the classifier method fo-
cusing on traditional classification accuracy were significant
sources of the (relatively) low UAR scores, since downsam-
pling led to higher UAR and lower accuracy scores. the train-
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Fig. 4. Normalized confusion matrix of the test set of the FAU
AIBO Emotion corpus using the original posterior values; the
corresponding UAR score is 33.3%.

Table 1. The accuracy and UAR scores obtained on the FAU
AIBO Emotion corpus

CV Test
Method Acc. UAR Acc. UAR
SVM (baseline) 62.5% 37.7% 64.5% 33.3%
Downsampling 62.7% 43.4% 35.9% 37.8%
Division by priors 47.9% 46.5% 42.1% 42.2%
Calibration (Random) 56.9% 43.1% 54.1% 38.9%
Calibration (CMA-ES) 44.7% 45.3% 41.1% 42.4%

ing and test sets. (Note that we found upsampling to be im-
practical on this dataset, as it would have led to a huge number
of training examples.)

Regarding posterior re-calibration, we can see that a large
improvement can be achieved in the UAR values via this tech-
nique, even when we optimized the a′ and b′ parameter vec-
tors via random value generation: the UAR values improved
relatively via 9% and 8%, training and test sets, respectively.
Using the CMA-ES optimization algorithm led to the even
larger relative error reduction values of 12% and 14%. No-
tice that at the same time the accuracy scores decreased to the
level of the UAR scores; on the test set, using the original pos-
terior estimates produced a classification accuracy of 64.5%,
which fell to 41.1% when we used the CMA-ES method for
calibration parameter optimization. We, of course, do not
consider it as a drawback, but an indication of a more bal-
anced classification behaviour.

Examining the normalized confusion matrices got on the
test set of this corpus by using the original posterior estimates
(see Fig. 4) and the re-scaled ones after determining the pa-
rameters via CMA-ES (see Fig. 5), we can again notice this
more balanced behaviour. In the former case, most examples
were classified as neutral (N), being the most frequent class
in the dataset. This led to a recall score of 87% for this class,
but for the other classes we got much lower recall scores: for
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Fig. 5. Normalized confusion matrix of the test set of the
FAU AIBO Emotion corpus using the re-calibrated posterior
values; the corresponding UAR score is 42.4%.

Table 2. The accuracy and UAR scores obtained on the
Munich-Passau Snore corpus

CV Test
Method Acc. UAR Acc. UAR
SVM (baseline) 74.7% 57.2% 69.6% 53.9%
Downsampling 64.8% 57.6% 55.1% 45.9%
Upsampling 69.0% 55.0% 60.5% 47.3%
Calibration (Random) 75.8% 62.4% 69.2% 55.2%
Calibration (CMA-ES) 73.1% 64.3% 66.9% 55.8%

the R class this value was actually less than 1%. After poste-
rior re-scaling, for most classes the recall scores lay between
35 and 50%, and even for the R class we got a recall score of
over 19%.

Table 2 contains the accuracy and UAR scores obtained on
the Munich-Passau Snore Sound corpus. We observe simi-
lar trends as we saw in the case of the emotion dataset: using
the original posterior estimates led to relatively high classifi-
cation accuracy and low UAR scores on both sets. Downsam-
pling decreased both metric values by a significant amount.
This is understandable, though, since the T class had only
23 examples in the full training set for this dataset, there-
fore downsampling led us to train a classifier model on just
92 examples overall. Upsampling surprisingly led to similar
values. By posterior re-calibration, we were able to achieve
large improvements in the cross-validation setting, but on the
test set we got only 4% in terms of relative error reduction.
Examining the confusion matrix, we found that we got low
recall scores for the class T. Unfortunately, this class has only
16 instances in the test set, which makes it quite unreliable
for measuring the actual performance of a classification pro-
cess. In our opinion, however, this is a limitation of this par-
ticular dataset, also noted by Janott et al. [23]. However, the
proposed posterior re-calibration approach still proved to be
effective for improving the UAR scores on both multi-class
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computational paralinguistic datasets.

5. CONCLUSIONS

In computational paralinguistic classification tasks the de
facto standard evaluation metric is Unweighted Average Re-
call; however, machine learning methods tend to optimize
traditional accuracy. In this study we handled this inconsis-
tency via posterior calibration. We showed that for optimal
UAR, we can simply re-calibrate the posterior estimates from
the original posterior and prior values; but this holds only
if these values are sufficiently accurate, and this is unlikely
for rarer classes. Therefore we performed a re-calibration
of the original posterior estimates; we optimized the calibra-
tion parameters either by generating random values and by a
robust optimization algorithm. Our approach led to relative
error reduction values of 4% and 14% on the test set of two
multi-class paralinguistic datasets that had imbalanced class
distributions.
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[26] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile:
The Munich versatile and fast open-source audio feature
extractor,” in Proceedings of ACM Multimedia, 2010,
pp. 1459–1462.

[27] Chih-Chung Chang and Chih-Jeh Lin, “LIBSVM: A
library for support vector machines,” ACM Transactions
on Intelligent Systems and Technology, vol. 2, pp. 1–27,
2011.
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