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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that develops for years before clinical manifestation, while mild

cognitive impairment is clinically considered as a prodromal stage of AD. For both types of neurodegenerative disorders, early

diagnosis is crucial for the timely treatment and to decelerate progression. Unfortunately, the current diagnostic solutions are

time-consuming. Here, we seek to exploit the observation that these illnesses frequently disturb the mental and linguistic func-

tions, which might be detected from the spontaneous speech produced by the patient. First, we present an automatic speech recog-

nition based procedure for the extraction of a special set of acoustic features. Second, we present a linguistic feature set that is

extracted from the transcripts of the same speech signals. The usefulness of the two feature sets is evaluated via machine learning

experiments, where our goal is not only to differentiate between the patients and the healthy control group, but also to tell apart

Alzheimer’s patients from those with mild cognitive impairment. Our results show that based on only the acoustic features, we

are able to separate the various groups with accuracy scores between 74�82%. We attained similar accuracy scores when using

only the linguistic features. With the combination of the two types of features, the accuracy scores rise to between 80�86%, and

the corresponding F1 values also fall between 78�86%. We hope that with the full automation of the processing chain, our

method can serve as the basis of an automatic screening test in the future.
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1. Introduction

The number of patients suffering from different types of dementia is expected to multiply in the next few

decades (Prince et al., 2013). The most frequent reason behind dementia is Alzheimer’s disease (AD), which is diffi-

cult to diagnose due to the lack of sensitive screening methods. The most frequently used therapy is most effective

in the early, mild stage of AD (mAD), hence the timely recognition of AD patients in this stage of the disease would

delay the progress of the disease, which could improve the life conditions of the patients (Galvin and Sadowsky,

2012; Nelson and Tabet, 2015). However, the early recognition of dementia is difficult, while the ratio of early diag-

nosed cases is assessed to be rather low, partly because subjects visit mental clinics only when the dementia is

already in an advanced state.

The process of dementia may start around the age of forty with a mild cognitive impairment (MCI). There are sev-

eral screening tests in the international practice that target early detection, but they are either too time-consuming or

cannot diagnose preclinical states. Recognizing MCI is one of the most difficult tasks of gerontopsychiatry. There

are test procedures that are designed to help the diagnosis, but their effectiveness is limited and the different tests

often yield contradictory results. The currently used dementia filter tests (MMSE, Clock Drawing, ADAS-COG) are

not able to accurately recognize MCI (Folstein et al., 1975; Janka et al., 1988; K�alm�an et al., 1995; Patocskai et al.,

2014; Rosen et al., 1984). Of course, their results can be verified via other diagnostic tools such as volumetric

MRI (Scheltens et al., 2002; Zimny et al., 2011; Yin et al., 2013) or diffusion tensor imaging (Stricker et al., 2009;

Nakata et al., 2009; Matsuda et al., 2017); these, however, are very time-consuming and costly techniques to utilize

for early screening.

In MCI, only very subtle changes (e.g. short term memory, word finding or attention disturbances) can be

detected. Dementia is a persisting cognitive deficit in at least three areas of the following mental functions: memory,

language, spatial visual skills, abstraction, counting, judgment, emotional state/personality (Cummings and Mega,

2003; Reichman and Cummings, 1999). Recent studies point out that certain types of linguistic impairment can be

detected in MCI and mAD (for a summary, see Szatl�oczki et al., 2015), such as temporal changes in spontaneous

speech, word finding and word retrieval difficulties, verbal fluency difficulties, and reduction in productive and

receptive discourse-level processing. (For a short list of such studies, see Table 1.)

Recently, several studies sought to identify different types of dementia with Natural Language Processing (NLP)

and Automatic Speech Recognition (ASR) techniques. For instance, automatic speech recognition tools were

employed in detecting aphasia (Fraser et al., 2013b; 2013a; 2014), mild cognitive impairment (Lehr et al., 2012) and

Alzheimer’s disease (Baldas et al., 2010; Satt et al., 2014). Jarrold et al. (2014) relied on speech rate, mean and stan-

dard deviation of vowels and consonants in spontaneous speech samples. The lexical analysis of spontaneous speech

may also indicate different types of dementia (Holmes and Singh, 1996; Bucks et al., 2000; Lunsford and Heeman,

2015) and it may be exploited in the automatic detection of patients suffering from dementia (Thomas et al., 2005;

Shibata et al., 2016). dos Santos et al. (2017) made use of word embeddings to identify MCI patients based on their

speech transcripts. As for analyzing written language, changes in the writing style of people may also indicate
Table 1

A short list of studies pointing out various types of linguistic impairments in MCI and mild AD.

Linguistic changes Publications

Temporal changes in Forbes-McKay and Venneri (2005), Hoffmann et al. (2010), Roark et al. (2011),

spontaneous speech Meil�an et al. (2012), de Ipiena et al. (2013), Satt et al. (2014), Jarrold et al. (2014),

Laske et al. (2015), T�oth et al. (2015), and Vincze et al. (2016)

Word finding and Smith et al. (1989), Bayles (1993), Light (1993), Kempler and Zelinski (1994),

word retrieval difficulties Kemper et al. (2001), Garrard et al. (2005), Taler and Phillips (2008), Santos et al. (2011),

Cardoso et al. (2014), Fraser et al. (2014), Laske et al. (2015), and Garrard et al. (2014)

Verbal fluency difficulties Barth et al. (2005), Juncos-Rabad�an et al. (2010), Hoffmann et al. (2010),

Santos et al. (2011), Roark et al. (2011), Satt et al. (2014), and Jarrold et al. (2014)

Reduction in Hodges et al. (1992), Ripich (1994), Taler and Phillips (2008), Weiner et al. (2008),

productive and receptive Juncos-Rabad�an et al. (2010), Rapp and Wild (2011), Tsantali et al. (2013),

discourse-level processing and Cardoso et al. (2014)
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dementia (Garrard et al., 2005; Hirst and Wei Feng, 2012; Le et al., 2011). Finally, eye-tracking data has also been

used for detecting MCI in a scenario where patients were required to read short texts (Fraser et al., 2017).

Besides English, there are studies that aim to identify dementia in native speakers of e.g. Portuguese (dos Santos

et al., 2017), Japanese (Shibata et al., 2016) and Swedish (Kokkinakis et al., 2017; Fraser et al., 2017). Concerning

the automatic detection of MCI in Hungarian subjects, T�oth et al. (2015) experimented with speech recognition tech-

niques, while Vincze et al. (2016) sought to identify MCI patients based on linguistic features gained from the tran-

scripts of spontaneous speech recordings.

Here, we focus on the analysis of the temporal characteristics of speech, which allows us to examine the cognitive

processes during operation, and it helps us to explore the connections between language and memory. In our investi-

gations, we mainly focus on the various forms of hesitations, since MCI is known to manifest itself in longer hesita-

tions and a lower speech rate (Roark et al., 2011; Jarrold et al., 2014). While hesitation is defined as an absence of

speech, it can be divided into two categories: silent pauses and filled pauses, the latter being vocalizations like uhm,

er, etc. Our overall goal here is to create a software application that can perform a pre-filtering of the possible

patients, which could then be followed by a diagnosis by a medical expert. We would like to add that we do not wish

to create the final diagnosis of the subjects, as this is the task of medically trained personnel.

Concerning the automatic detection of MCI, our previous study experimented with speech recognition

techniques (T�oth et al., 2015), while later we attempted to identify MCI patients based on linguistic features acquired

from the transcripts of spontaneous speech recordings (Vincze et al., 2016). Here, we extend our experiments to

involve both mAD and MCI patients, and we are interested to see whether the proposed techniques are able to distin-

guish between these two categories as well. Furthermore, we also combine the low-level acoustic features extracted

from the speech signal with the higher-level linguistic features extracted from the speech transcripts in the hope that

these two groups of features are complementary, and hence their combination will improve the performance of our

machine learning-based classifiers.

The structure of the paper is as follows. In Section 2, we present the MCI-mAD database we used in our experi-

ments. Then, in Section 3, we describe the acoustic markers we extracted from the spontaneous speech of the sub-

jects, and show the test results using these acoustic features. Next, in Section 4, we present the linguistic features

used, and perform dementia identification experiments using these attributes. Lastly, in Section 5, we fuse the two

approaches and show that the acoustic and linguistic markers can support each other: we achieved our best results by

combining the two different types of features.

2. The Hungarian MCI-mAD database

Our database was recorded at the Memory Clinic at the Department of Psychiatry of the University of Szeged,

Hungary. The study was approved by the Ethics Committee of the University of Szeged, and it was conducted in

accordance with the Declaration of Helsinki. Written informed consent was obtained from all participants. We col-

lected utterances from three categories of subjects: those suffering from MCI, those affected by early-stage AD, and

those having no cognitive impairment at the time of recording (i.e. the control group). The three categories of sub-

jects were matched for age, gender and education. The exclusion criteria were drugs or alcohol consumption, being

under pharmacological treatment affecting cognitive functions, and visual or auditory deficits. Anyone who had pre-

viously suffered from head injuries, depression or psychosis was also excluded. MCI and mAD patients were

selected after a medical diagnosis concurrently supported by CT, MRI, and cognitive tests (Mini-Mental State Exam-

ination (MMSE, Folstein et al., 1975), the Clock Drawing Test (CDT, Freedman et al., 1994) and ADAS-Cog (Rosen

et al., 1984)).

All our previous studies (Hoffmann et al., 2010; T�oth et al., 2015; Gosztolya et al., 2016b) and studies performed

by other groups (e.g. Taler and Phillips, 2008; Roark et al., 2011; Satt et al., 2014) found that MCI and AD affect the

spontaneous speech of the patients more than their planned speech. This is because in the case of planned speech,

speakers usually have some time in advance to think about what they would like to say, hence difficulties in word

finding (due to memory decline) cannot be reliably detected. However, in the case of spontaneous speech, speakers

are required to speak on the spot, i.e. without any time to prepare their speech, which might truly reflect their difficul-

ties in word finding. Therefore, our aim was to record spontaneous speech. This is why our experimental setup for

recording was as follows (for the details, see Hoffmann et al., 2010). After the presentation of a specially designed

one-minute-long animated film, the subjects were asked to talk about the events seen on the film (immediate recall).
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After the presentation of a second film, the subjects were asked to talk about their previous day (previous day). As

the last task, the subjects were asked to talk about the second film (delayed recall). (For the instructions to the

patients, see Table 2.) Each recording was edited: parts before the subject started to speak and after his last phoneme

uttered were removed. Hence, we had three recordings for each subject, each containing spontaneous speech, but the

tasks performed were different. Of course, it may turn out that some tasks are less useful for detecting MCI or mAD

than others, but this cannot be known in advance.

Our database of MCI and AD patients is continuously growing; at the time of writing we had recordings taken

from more than 150 persons. For various reasons (poor sound quality, controversial diagnosis, etc.) we had to filter

out some patients; furthermore, since we insisted on matching the three groups of speakers by age, gender and level

of education, we could not use some of the recordings, which otherwise fulfilled our requirements of having a clear

diagnosis and an acceptable sound quality. Therefore, in the end we used the recordings of 25 speakers for each

speaker group, resulting in a total of 75 speakers and 225 recordings. We applied one-way ANOVA to check if there

were significant differences among the different groups. F and p-values can be seen in Table 3.

2.1. Subject classification by machine learning

We used the Weka tool (Hall et al., 2009), which is a free, open-source collection of machine learning algorithms.

We applied Support-Vector Machines (SVM Sch€olkopf et al., 2001) with a linear kernel, utilizing the SMO imple-

mentation in Weka. Each speaker was characterized by one feature vector, i.e. the acoustic markers calculated based

on the three recordings containing the speech of the subject were concatenated.

From a machine learning perspective, having only 75 examples (i.e. subjects) is an extremely small dataset. How-

ever, the number of diagnosed MCI and mAD patients is limited, collecting recordings of their speech and obtaining

a medical diagnosis is time-consuming. The similar studies we found involved fewer than 100 patients (Satt et al.,

2014; Jarrold et al., 2014; Lehr et al., 2012; Roark et al., 2011; Fraser et al., 2013b; Weiner et al., 2016).

Having so few examples, we did not create separate training and test sets, but opted for cross-validation (CV). In

order to guarantee that each fold had the same number of speakers from each speaker group, we used 5-fold cross-

validation: we always trained on the features extracted from the speech of 60 speakers, from which 20 had MCI, 20

had mAD and 20 were control subjects. In the next step, this machine learning model was evaluated on the remaining

15 speakers. We repeated this for all speakers, and we then aggregated the results into one final score.

The C complexity meta-parameter was determined by a technique called nested cross-validation (Cawley and

Talbot, 2010). That is, in each case we trained on the data of 4 folds (consisting of 60 subjects), we performed

another cross-validation session. In this 4-fold cross-validation, we chose the C value which led to the highest aver-

age AUC score of the MCI and/or mAD classes; then we trained an SVM model with the selected complexity meta-

parameter on the data of all the 60 speakers, and this model was evaluated on the remaining 15 speakers. This way

we ensured that there was no peeking, which would have created a bias in our scores if we had used standard cross-

validation.
2.2. Evaluation

The choice of evaluation metric is not a clear-cut issue for this task. First of all, we can use the traditional classifi-

cation accuracy score, since the class distribution is balanced for this dataset. However, besides indicating how well
Table 2

The instructions to the patients when recording the three utterances.

(1) “I am going to show you a silent movie lasting about a minute. Try to remember the story, the actors, the objects and the places, paying attention to the details.”

(2) “Now, I would like to ask you to tell me about your day yesterday in details.

(3) “Now, I am going to show you another clip. Try to remember the story, the actors, the objects and the places, paying attention to the details. OK, I am going to start it now.”

The Patient watches the clip. If he starts talking about it, he is reminded that he is not yet allowed to talk about it. When the clip ends:

“Now we will take a one-minute break.”

If the Patient starts talking during the break, he is reminded that it is still break time, and he has to wait until the minute is over. After the one-minute break is over:

“Right, could you please tell me what you saw in the clip?”



Table 3

Demographic data (i.e. age and education) and the results of the MMSE, CDT and Adas-Cog tests of

the three subject groups.

Subject groups Statistics

Control (n = 25) MCI (n = 25) mAD (n = 25) F(2;74) p

Age (mean § SD) 70.72 § 5.004 72.4 § 3.594 73.96 § 6.846 2.321 p = 0.105

Years of education (mean § SD) 12.08 § 2.326 10.84 § 2.304 10.76 § 2.818 2.202 p = 0.118

MMSE score (mean § SD) 29.24 § 0.523 27.16 § 0.898 23.92 § 2.488 76.213 p < 0.001

CDT score (mean § SD) 8.88 § 2.007 6.44 § 3.429 5.88 § 3.244 7.254 p = 0.001

Adas-COG score (mean § SD) 8.575 § 2.374 12.044 § 3.205 18.675 § 5.818 38.35 p < 0.001
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the subjects were identified as the members of each category, this task can also be viewed as a detection task, where

we are interested in whether the speaker has any sort of cognitive disorder, i.e. treating the MCI and mAD categories

together. As in this case the class distribution becomes imbalanced (25 control subjects and 50 subjects having some

kind of cognitive disorder), we will also report (two-class) classification accuracy scores, but using the Unweighted

Average Recall score (UAR, calculated as the mean of the class-wise recall scores) also makes sense. We can also

use the standard Information Retrieval metrics of precision and recall. As there is evidently a trade-off between these

two scores, they are usually aggregated together by the F-measure (or F1-score), which is the harmonic mean of pre-

cision and recall. Medical studies tend to report sensitivity and specificity instead, sensitivity being equivalent to

recall, while specificity being practically the recall of the negative class (in this case, healthy controls). In the experi-

ments we will present (3-class) accuracy scores and all the five 2-class scores (i.e. accuracy, UAR, precision, recall

and F-measure).

2.3. Two-class evaluation

Of course, in a real application not all kinds of mis-classifications are of equal importance. It may be worth inves-

tigating how efficiently the different speaker groups can be differentiated from each other. Although analyzing the

confusion matrix of the classifier may serve as a basis of such an investigation, we think that binary (class-wise) per-

formance can be evaluated most reliably by the performance of binary classifiers specifically trained to distinguish

the two appropriate classes. Therefore, in our experiments, we also trained binary classifiers in four variations. In the

first case we used the data of all the 75 speakers, but patients diagnosed with either MCI or mAD were treated as

members of the same class. In the other three cases, we used only the 25�25 speakers of two speaker groups. Note

that when we sought to differentiate MCI from mAD, we calculated precision, recall and F-measure by considering

mAD as the positive class.

2.4. Demographic attributes

Gender and age are both the most influential risk factors of MCI (Sachdev et al., 2012). These two attributes were

also available for our training set, so we added them to the feature set along with the number of years of education,

resulting in 27 and 84 features for the basic and extended feature sets, respectively. While fairly reliable techniques

exist to automatically assess the age and gender from the speech signal (see e.g. Kockmann et al., 2010; Meinedo

and Trancoso, 2011; Kumar et al., 2016; Grzybowska and Kacprzak, 2016), in the planned application we can simply

ask the subjects to provide these data when commencing the test.

To provide reference scores, we performed classification experiments by using only these three demographic

attributes; these tests followed our experimental setup described in Section 2.1 in every way. In this experiment, 3-

class accuracy turned out to be 40%, only slightly exceeding 33.3% achievable by random guessing in a (balanced)

3-class task.

From the resulting scores (see Table 4) we can see that the demographic attributes help to differentiate the mild

AD patients from healthy controls the most. When we try to determine if the speaker has any sort of dementia (i.e.

Control vs. MCI + mAD case), the accuracy and F1 scores look fine at first glance; notice, however, the 59% UAR

and the 53.3% specificity values which barely exceed 50%, which is the straightforward baseline scores in a 2-class

setup. This also indicates that the 68% accuracy was mainly achieved due to the imbalanced class distribution in this



Table 4

The various accuracy scores obtained by using only the demographic informa-

tion (i.e. age, gender and education) in the 2-class machine learning cases. The

3-class accuracy score was 40.0%.

Speaker groups Accuracy UAR Precision Recall Specificity F1

Control vs. MCI + mAD 68.0% 59.0% 71.7% 86.0% 53.3% 78.2

Control vs. MCI 60.0% 60.0% 61.9% 52.0% 58.6% 56.5

Control vs. mAD 68.0% 68.0% 73.7% 56.0% 64.5% 63.6

MCI vs. mAD 52.0% 52.0% 52.2% 48.0% 51.9% 50.0
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case. As for the remaining two cases, in our opinion the results show that these demographic features allow the iden-

tification of MCI patients (versus healthy controls) only at a low rate, while we cannot distinguish MCI patients

from mAD ones at all.
3. Extracting acoustic markers from spontaneous speech

The analysis of the time course of speech has been shown to be an especially sensitive neuropsychological

method for investigating cognitive processes such as speech production and planning (Hoffmann et al., 2010). Inves-

tigating the temporal parameters of spontaneous speech is vital because it can provide sensitive measures of a sub-

ject’s speech and language skills (Baum et al., 1990; Illes, 1989).

In a study for Hungarian, the following parameters of speech were measured for AD patients and a normal control

group: articulation rate, speech tempo, hesitation ratio, and rate of grammatical errors. The results indicated that

these parameters of speech may have a diagnostic value for mild-stage AD and therefore could be a useful aid in

medical practice (Hoffmann et al., 2010). Other scientific studies have also confirmed that speech analysis could be

a useful method in examining, or even diagnosing mild AD (Roark et al., 2011; Satt et al., 2014; Jarrold et al., 2014;

Illes, 1989; de Ipiena et al., 2013; Meil�an et al., 2014). In addition, lexical decision reaction time studies showed a

longer overall latency in AD and MCI patients than in normal controls (Taler and Jarema, 2006; Cuetos et al., 2003;

Walla et al., 2005). These results also confirm that speech analysis can contribute to the effective diagnosis of

dementia. Many studies (e.g. Barth et al., 2005; Juncos-Rabad�an et al., 2010) noted that the presence of dementia

increases the amount of hesitation present in spontaneous speech. Following our previous studies (T�oth et al., 2015;

Gosztolya et al., 2016b), our experts first calculated eight acoustic markers manually by using the Praat software.

These speech-related markers were: articulation rate (1), speech tempo (2), length of utterance (3), duration of silent

and filled pauses (hesitation) (4�5), number of silent and filled pauses (6�7) and hesitation rate (8). Hesitation was

defined as the absence of speech for more than 30 ms (G�osy, 1998). We should add that the absence of speech does

not necessarily mean silence, but includes filled pauses as well. Table 5 summarizes the eight basic acoustic markers

and how they were calculated.

3.1. Automatic acoustic marker extraction using ASR

As calculating the above acoustic markers manually is quite expensive and requires skilled labor, it would be ben-

eficial to automate this step. One way of automating it is to use signal processing techniques. For example, Satt et al.

employed the Praat software to segment the utterance into voice/silent and periodic/aperiodic parts (Satt et al.,

2014). However, these simple techniques cannot extract all the features of Table 5; most importantly, they cannot
Table 5

A description of the eight acoustic markers found to correlate with MCI by Hoffmann et al. (2010).

(1) Articulation rate was calculated as the number of phones per second during speech (excluding hesitations).

(2) The speech tempo (phones per second) was calculated as the number of phones per second divided by the total duration of the utterance.

(3) The length of utterance, given in milliseconds.

(4�5) The duration of silent and filled pauses was calculated as the total duration of filled and silent pauses.

(6�7) The number of silent and filled pauses is calculated as the absolute occurrence of silent and filled pauses, respectively.

(8) The hesitation rate characterizes the ratio of pauses and speech, which was calculated by dividing the length of the utterance by the total duration of pauses (both silent and filled).



G. Gosztolya et al. / Computer Speech & Language 53 (2019) 181�197 187
distinguish filled pauses from speech. The second option is to apply ASR techniques. However, an off-the-shelf ASR

tool (like the one employed by Fraser et al. (2013a)) may be suboptimal. This is because standard speech recognizers

are trained to minimize the transcription errors at the word level, while here we seek to extract non-verbal acoustic

features like the rate of speech or the duration of silent and filled pauses. Furthermore, while the filled pauses do not

explicitly appear in the output of a standard ASR system, our feature set specifically requires them to be found. And

lastly, by examining the speech of dementia patients it was observed that the amount of agrammatical sentences and

incorrect word inflections increases (Fraser et al., 2014). It is almost impossible to build a standard ASR system to

handle these unpredictable errors.

However, notice that the basic speech-related markers listed in Table 5 do not require the correct identification of

the phonemes: we need only to count them. The only phenomena we need to take special care of are the two forms

of hesitation: silent and filled pauses. For these reasons we decided to use a speech recognizer that just provides a

phone sequence as output (including filled pause as a special ‘phoneme’). This allows us the automatic extraction of

acoustic markers, which can then be utilized to perform automatic subject categorization via machine learning tech-

niques. For the scheme of our workflow, see Fig. 1.

Unfortunately, recognizing the spontaneous speech of elderly people is known to be difficult (Ramabhadran et al.,

2003). Doing this without a vocabulary, only at the phonetic level clearly increases the number of errors. However,

as we pointed out, not all types of phone recognition errors harm the extraction of our acoustic markers. In our previ-

ous experiments (T�oth et al., 2015) we found that this kind of automatic feature extraction was useful for distinguish-

ing speakers having MCI from healthy controls. In the current study we will use the same acoustic features and the

same automatic extraction method. However, here were are interested to see whether the same approach is useful in

distinguishing three speaker categories instead of just two.
3.2. Extending the set of speech-related markers

In the study that served as our starting point, we examined the eight acoustic features shown in Table 5. The rea-

son for this was that calculating and evaluating the features manually required an expensive workload. However, in

Section 3.1 we introduced an approach to automatically obtain the time-aligned phoneme sequence of the utterances,

serving as the basis of speech marker extraction. Hence, we can readily extend the feature set by using other features

that can be calculated via the phone labels, as it can be done quite cheaply at this point. Therefore, we looked for fur-

ther features that we assumed could support the machine learning method applied in the second phase. This extended

feature set was calculated as follows.

Firstly, we kept all the original features of Table 5. However, features (6) and (7) were altered slightly: instead of

calculating the raw number of silent and filled pauses, we normalized them by dividing them by the total number of

phones in the utterance. Furthermore, as we already have the length of each occurrence of silent/filled pauses, it was

easy to extend the feature set with the mean and standard deviation of the lengths for these label occurrences. In

addition, we observed that the ASR system often confused filled pauses with certain phones. For example, the most

frequent sound uttered during hesitation is a schwa, which is easily confused with the vowel [ø]. Another example is

substituting the hesitating word “hmm” with the phone [m]. Thus, we conjectured that an increase in the number and

cumulative duration of these phones in the ASR output might indicate the presence of mis-recognized filled pauses.
Delayed
Recall

Previous Day

Immediate
Recall Manual

Annotation
Features Classification

(SVM, C4.5, etc.)

Diagnosis
hypothesis

Speech
Recognition

Time-aligned
phoneme
sequence Feature

Extraction
Features Classification

(SVM, C4.5, etc.)

Diagnosis
hypothesis

Recordings from the patient

Manual method

Automatic method

Fig. 1. The steps of MCI detection using manual (upper path) or ASR-based (lower path) acoustic marker extraction.



Table 6

The four additional statistical descriptors (T�oth et al., 2015).

(1) The number of occurrences of the given phoneme divided by the total number of phoneme occurrences.

(2) The total duration of occurrences of the given phoneme divided by the duration of the utterance.

(3) The mean length of the occurrences of the given phoneme.

(4) The standard deviation of the length of the occurrences of the given phoneme.
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This led us to extend our feature set with features that describe the distribution of these phones in the utterance. More

precisely, for the phones [m], [n] and [ø] we added the following four statistical features to the feature set: cumula-

tive duration (divided by the duration of the utterance), the number of occurrences (divided by the number of pho-

nemes in the utterance), and the mean and standard deviation of the phone duration (see Table 6.) With these

extensions we obtained a set of 81 features, which will be referred to as the ‘extended’ feature set in the experi-

ments.

3.3. ASR parameters

Our automatic speech recognizer was trained on the BEA Hungarian Spoken Language Database (G�osy, 2012).
This database contains spontaneous speech that is similar to the recordings collected from our patients. We used

roughly seven hours of speech data from the BEA corpus, mainly recordings from elderly persons, in order to match

the age group of the targeted audience. To make sure the annotation suited our needs, we added filled pauses, breath

intakes and exhales, laughter, coughs and gasps to the transcriptions in a consistent manner.

The ASR system was trained to recognize the phones in the utterances, where the phone set included the special

non-verbal labels listed above (i.e. filled pauses, coughs, breath intakes etc.). We used a workflow based on

HTK (Young et al., 2006); for acoustic modeling we used a standard feed-forward Deep Neural Network

(DNN) (T�oth, 2015). The DNN had 3 hidden layers, each consisting of 1000 ReLU neurons, while we used softmax

neurons in the output layer. We used 39 MFCC+D þ DD vectors as features on the frame level; to improve model

accuracy, we evaluated our model on a sliding window of feature vectors with a width of 15 frames. As a language

model we employed a simple phone bigram (again, including all the above-mentioned non-verbal audio tags).

The output of the ASR system is the phonetic segmentation and labeling of the input signal, which includes both

silent and filled pauses. Based on this output, the acoustic markers described in Sections 3.1 and 3.2 can be easily

extracted via simple calculations.

3.4. Results

Table 7 shows the subject classification accuracy scores obtained using the various acoustic feature sets. The 3-

class accuracy scores might seem somewhat low at first glance, but recall that we had a three-class machine learning

model trained with equal class distribution, therefore chance level is equivalent to an accuracy score of 33.3%; fur-

thermore, these values significantly exceed the 40% obtained when using only the demographic information. Noting

this point, we consider the 61.3% 3-class accuracy score obtained by manual feature calculation a good result. When

translating this performance into a 2-class detection problem, we can see that we got quite high scores, indicating

that perhaps the main source of error in the 3-class case was the confusion between the MCI and mAD classes.

Calculating the same feature set automatically led to much lower metric scores both in the 2-class and in the 3-

class cases. Turning to the extended feature set, however, increased all the metric values: most values are slightly
Table 7

The various accuracy scores obtained using the different acoustic feature sets in the 3-class case.

3-class 2-class

Feature extraction Feature set Accuracy Accuracy UAR Precision Recall Specificity F1

Manual Basic 61.3% 76.0% 74.0% 83.3% 80.0% 63.0% 81.6

Automatic Basic 50.7% 64.0% 60.0% 73.5% 72.0% 46.2% 72.7

Extended 58.7% 73.3% 74.0% 85.7% 72.0% 57.6% 78.3



Table 8

The various accuracy scores obtained using the “extended” acoustic feature set

in the 2-class machine learning cases.

Speaker groups Accuracy UAR Precision Recall Specificity F1

Control vs. MCI +mAD 74.7% 72.0% 81.6% 80.0% 61.5% 80.8

Control vs. MCI 78.0% 78.0% 85.0% 68.0% 73.3% 75.6

Control vs. mAD 82.0% 82.0% 78.6% 88.0% 86.4% 83.0

MCI vs. mAD 76.0% 76.0% 72.4% 84.0% 81.0% 77.8
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lower than in the manual case, but the same UAR score of 74% indicates that the difference is mainly due to the dif-

ferent types of mis-classifications. In our opinion, these scores indicate that the automatic feature extraction process

proved to be less precise than the manual one; however, the additional attributes calculated from the ASR output

with a negligible computational cost could counter this effect, allowing practically the same machine learning per-

formance.

Table 7 suggests that the extended feature set works the best among the two tested automatic ones, therefore we

used only these speech-related markers when training binary classifiers. Table 8 shows the results obtained. When

using the data of all the 75 speakers, we got results similar to when we trained a 3-class SVM model and merged the

predictions of the two classes associated with dementia: besides a slightly higher accuracy score (74.7% instead of

73.3%), we got slightly lower UAR and precision, while recall and F1 rose by a small amount. The following rows

give the performance of the classifiers trained for each class pair: control subjects and those having mild Alzheimer’s

are the easiest to distinguish, being on the two endpoints of the cognitive disorder scale in our study. Determining

whether the subject has MCI or he is a healthy control, and distinguishing the two types of dementia turned out to be

similarly difficult, although the accuracy scores of 76��78% reflect a good performance.
3.5. Summary

Based on our previous studies of MCI detection, we created an acoustic feature set which focuses on articulation

rate, speech tempo, and other descriptors of silent and filled pauses present in the speech of the subject. We showed

that using this set of indicators is useful for detecting both MCI and mild AD, and that they can be calculated in an

automatic way using ASR techniques, which allows for a similar quality distinction between the speaker groups

examined. We also demonstrated that this feature set can be extended with other indicators with a negligible addi-

tional computational cost, and that using these indicators is beneficial for MCI and mAD detection performance.

Next, we will use completely different kinds of markers: those of linguistic features.
4. Detecting MCI and mAD by linguistic features

In order to distinguish MCI, mAD and healthy subjects, we also made use of the transcripts of the recordings. For

our investigations, we relied on the methodology described in our previous study (Vincze et al., 2016); the main dif-

ference is that earlier we sought to distinguish only control subjects and those having MCI, while now we used all

three speaker groups.

The recordings were manually transcribed by linguists. These transcripts reflect several characteristics of sponta-

neous speech. They contain several forms of hesitations and silent pauses, also marked in the transcripts. Moreover,

they abound in phenomena typical of spontaneous Hungarian speech such as phonological deletion (mer instead of

the standard form mert “because” or ement instead of the standard form elment “(he) left”) and lengthening (ut�anna
instead of the standard form ut�ana “then”). There are duplications (ez ezt “this this-ACC”) and neologisms created

by the speaker (feltk�ava, which probably means fo��tt k�av�e “brewed coffee”).
Fillers also deserve special attention when studying transcripts. Besides hesitations, we treated words and phrases

referring to some kind of uncertainty together with indefinite pronouns as fillers such as ilyen “such”, olyan “such”,

iz�e “thing, gadget”, �es azt�an “and then”, valamilyen “some kind of”, valahogy “somehow”, valamerre “somewhere”.

Thus, MCI patients often seem to substitute content words with fillers or indefinite pronouns, and they also appear to

use lots of paraphrases, which also indicate uncertainty just like egy ilyen bagolyszeru��s�eg a kind of owl-likeness
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“something similar to an owl” or az olyan d�elelo��tt volt that such morning was “it happened some time in the

morning”.

Transcripts were first morphologically and syntactically analysed with magyarlanc, a linguistic preprocessing

toolkit developed for Hungarian (Zsibrita et al., 2013). For classification, we exploited morphological, syntactic and

semantic features extracted from the output of magyarlanc.

Recall that in our recording protocol, each subject was asked to produce spontaneous speech in three distinct

ways. As both MCI and mAD are strongly related to memory deficit, we think that the order of the tasks might also

influence performance, hence we processed each transcript separately. Thus, for each person, features were calcu-

lated separately for the three transcripts and all of them were exploited in the machine learning system.

4.1. Experiments

In our experiments, we employed features of spontaneous speech and morphological and semantic features

derived from the transcripts and their automatic linguistic analyses. When defining our features, we took into account

the fact that the speech of MCI patients may contain more pauses and hesitations than those of healthy controls (T�oth
et al., 2015) and they are also supposed to have a restricted vocabulary due to cognitive deficit, which may affect the

choice of words and the frequency of parts of speech (Croot et al., 2000) and might even produce neologisms. We

also made use of demographic features that were at our disposal.

Our feature set contained the following features:

Morphological features: number of tokens and words; number and rate of lemmas; number of punctuation marks;

number and rate of nouns, verbs, adjectives, pronouns and conjunctions; number of first person singular verbs; num-

ber and rate of unanalyzed words, i.e. those with an “unknown” POS tag.

Spontaneous speech-based features: number of filled and silent pauses; number and rate of hesitations compared

to the number of tokens; number of pauses that follow an article and precede content words; number of lengthened

sounds.

Semantic features: number and rate of uncertain words compared to the number of all tokens; number and rate of

words/phrases related to memory activity (e.g. nem eml�ekszem not remember-1SG “I can’t remember”); number of

negation words; number and rate of content words and function words; number of thematic words related to the con-

tent of the films, based on manually constructed lists.

Demographic features: gender; age; education. We always included these features in our feature set.

When detecting uncertain phrases, we applied list matching methods, based on the lists defined by Vincze (2014).

Lists for memory activity were compiled by linguists. The lists of related words to the films were also constructed

by linguists who watched the films and collected terms (together with their synonyms) that describe their content.

Each mention was counted separately. Of course, this feature was not employed for the open ended task, i.e. recalling

the events of the previous day.

Our machine learning set-up was quite similar to those used in Section 3 and described in details in Section 2.1.

As above, we again compared results of differentiating all the three classes of patients and of aggregated results for

the MCI and mAD patients, contrasted with healthy controls. We also conducted experiments to study which group
Table 9

The various accuracy scores obtained using the different linguistic feature sets in the 3-class

case.

3-class 2-class

Feature set Accuracy Accuracy UAR Precision Recall Specificity F1

Morphological 56.0% 70.7% 66.0% 76.9% 80.0% 56.5% 78.4

Speech-based 60.0% 70.7% 69.0% 80.4% 74.0% 55.2% 77.1

Semantic 56.0% 76.0% 74.0% 83.3% 80.0% 63.0% 81.6

Morph. + Speech-based 66.7% 80.0% 79.0% 87.2% 82.0% 67.9% 84.5

Morph. + Semantic 58.7% 73.3% 69.0% 78.9% 82.0% 60.9% 80.4

Speech-based + Semantic 62.7% 81.3% 81.0% 89.1% 82.0% 69.0% 85.4

All 60.0% 77.3% 74.0% 82.4% 84.0% 66.7% 83.2



Table 10

The various accuracy scores obtained using all linguistic features in the 2-class

machine learning cases.

Speaker groups Accuracy UAR Precision Recall Specificity F1

Control vs. MCI +mAD 80.0% 78.0% 85.7% 84.0% 69.2% 84.9

Control vs. MCI 76.0% 76.0% 84.2% 64.0% 71.0% 72.7

Control vs. mAD 82.0% 82.0% 80.8% 84.0% 83.3% 82.4

MCI vs. mAD 68.0% 68.0% 68.0% 68.0% 68.0% 68.0

G. Gosztolya et al. / Computer Speech & Language 53 (2019) 181�197 191
of linguistic features seems to have the most added value to the identification task, i.e. what the most effective fea-

tures are.
4.2. Results

Table 9 contains our results obtained by using the different linguistic feature subsets. Making use the subsets inde-

pendently led to mixed results: 3-class accuracy turned out to be highest for the speech-based attributes, but when

measuring performance by 2-class accuracy or F1, we got the lowest values with these features as well. When com-

bining two feature subsets, combining either morphological or semantic features with the speech-based ones led to

even higher scores; however, all 3-class scores were better when we used only the semantic features than when we

also included the morphological attributes in our feature set (with the exception of precision). All in all, each group

of features seems to considerably outperform the baseline results. Thus, various linguistic features are able to effec-

tively distinguish MCI and mAD patients and healthy controls, which might reflect that there are linguistic differen-

ces among the three groups at several linguistic layers, involving phonetics and phonology, morphology and

semantics.

What we find particularly interesting is the good performance of the semantical attributes. Semantic-based fea-

tures include the usage of words referring to memory activities, e.g. “I can’t remember”, “I have forgotten”. Cogni-

tive abilities decline over time, which leads to the unability of remembering and recalling events as well as to

problems with word finding. Patients often verbalize their mental efforts to find words or to remember things, which

manifests in the usage of memory-related terms. Moreover, issues with word finding can also be found in using

vague and uncertain words (e.g. “maybe”, “I guess”, “something like a bird”): when the patient is unsure about his/

her memories due to cognitive decline, s/he often avoids exact and specific phrasing and signals the possibility of

recalling his/her memories incorrectly. Healthy controls usually have no such problems, which explains why seman-

tic features can effectively distinguish the groups.

Tables 9 and 10 show our results for 2-way and 3-way classifications, respectively. As can be seen from compar-

ing the last row in Table 9 and the first row in Table 10, 2-way classification proves to be slightly more efficient.

This result is in harmony with our previous experiments, hence it is highly probable that our method’s main contribu-

tion is to distinguish healthy controls from patients with different stages of dementia. It is also justified by our results

that the cognitive gap is bigger between healthy people and mAD patients than healthy people and MCI patients as

we could achieve higher scores for distinguishing the former groups than the latter ones. We should also mention

that the linguistic features tested performed the worst when the task was to distinguish MCI patients from mAD

patients.
4.3. Summary

In our experiments we utilized automatically extracted linguistic features from the manual transcripts of the

recordings. We also analyzed the usefulness of different feature sub-types for the separation of MCI and mAD

patients and control subjects. We found that our feature set, developed to detect mild cognitive impairment, is also

useful for detecting mild Alzheimer’s disease. Next, we are going to investigate whether the combination of acoustic

and linguistic features can improve our results in identifying patients with dementia.
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5. Combining acoustic and linguistic features

Previously in Section 3 we found experimentally that hesitation can be observed in the speaker’s spontaneous

speech, and that our automatically extracted, hesitation-related acoustic features can be utilized for MCI and mAD

detection. In Section 4 we analyzed the speakers’ speech by extracting linguistic features from the transcripts of the

recordings. Since the two approaches are different by nature, we expect that using both of them may reinforce their

strong points, leading to more accurate MCI and mAD detection. Therefore next we will present the results of our

experiments with fusing the two types of feature sets.

From the acoustic feature sets we will use the extended one, as this led to the highest-quality predictions. How-

ever, among the linguistic features, we will test all subsets and possible subset combinations (described in Section 4).

The main reason for this is that the type and applicability of the linguistic feature groups is quite different. The

speech-based indicators, for example, describe similar phenomena present in the patient’s spontaneous speech as the

acoustic indicators do (i.e. they focus on silent and filled pauses), therefore using both feature sets might turn out to

be unnecessary. Still, the semantic features focus on the presence of specific words and expressions, which indicate

the speaker’s uncertainty. Although our current study relies on the manual transcription of the recordings, these key-

word occurrences might even be detected automatically by some form of spoken term detection

technique (Junkawitsch et al., 1996; Gosztolya and T�oth, 2011; Lee et al., 2016), without having to obtain the com-

plete transcription of the utterance.

5.1. Classifier fusion

To combine the predictions achieved via two or more feature sets, two basic approaches are available. The first

possible way (called early fusion (Snoek et al., 2005)) is to merge the feature vectors of each example, and then train

a common classifier model. However, it is often more beneficial to train separate machine learning models for differ-

ent types of features, as these may require different meta-parameter settings for optimal performance. Therefore we

utilized the second approach called late fusion (Snoek et al., 2005), where we train separate machine learning meth-

ods for each feature set. To combine the outputs of the two models, we suggest taking the weighted mean of the pos-

terior probabilities, which we found to be a simple-yet-robust technique (see e.g. Gosztolya et al., 2016a; Gosztolya

et al., 2017). Since, in general, the linguistic features led to higher accuracy scores than the acoustic features did, we

will compare the scores obtained via feature set fusion with the scores obtained by using the linguistic attributes (see

Tables 9 and 10).
5.2. Results

Table 11 shows the various accuracy values obtained using late classifier fusion. We can see that 3-class classifi-

cation accuracy improved in every case. When we combined all the linguistic features with the acoustic indicators,

we obtained the highest scores: the 3-class accuracy score of 69.3%, in our opinion, reflects a good classification per-

formance, while the binary F1 value of 86.3% is also quite high. Note, however, that a very similar performance
Table 11

The various accuracy scores obtained by combining the “extended” feature set with the different lin-

guistic feature subsets via late classifier fusion, in the 3-class task.

Feature set 3-class 2-class

Acoustic Linguistic Accuracy Accuracy UAR Precision Recall Specificity F1

Morphological 61.3% 74.7% 74.0% 84.4% 76.0% 60.0% 80.0

Speech-based 66.7% 78.7% 79.0% 88.6% 78.0% 64.5% 83.0

Semantic 62.7% 80.0% 81.0% 90.7% 78.0% 65.6% 83.8

Extended Morph. + Speech-based 68.0% 80.0% 79.0% 87.2% 82.0% 67.9% 84.5

Morph. + Semantic 61.3% 76.0% 74.0% 83.3% 80.0% 63.0% 81.6

Speech-based + Semantic 68.0% 82.7% 83.0% 91.1% 82.0% 70.0% 86.3

All 69.3% 82.7% 83.0% 91.1% 82.0% 70.0% 86.3



Table 12

Accuracy values obtained by combining the “extended” feature set with all lin-

guistic features in the 2-class machine learning tasks.

Speaker groups Accuracy UAR Precision Recall Specificity F1

Control vs. MCI +mAD 81.3% 80.0% 87.5% 84.0% 70.4% 85.7

Control vs. MCI 80.0% 80.0% 85.7% 72.0% 75.9% 78.3

Control vs. mAD 86.0% 86.0% 84.6% 88.0% 87.5% 86.3

MCI vs. mAD 80.0% 80.0% 75.9% 88.0% 85.7% 81.5

Table 13

Accuracy values obtained by combining the “extended” feature set with the

semantic linguistic features in the 2-class machine learning tasks.

Speaker groups Accuracy UAR Precision Recall Specificity F1

Control vs. MCI +mAD 80.0% 74.0% 80.7% 92.0% 77.8% 86.0

Control vs. MCI 86.0% 86.0% 87.5% 84.0% 84.6% 85.7

Control vs. mAD 84.0% 84.0% 81.5% 88.0% 87.0% 84.6

MCI vs. mAD 78.0% 78.0% 73.3% 88.0% 85.0% 80.0
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could be achieved by using the acoustic, speech-based and semantic attributes, i.e. omitting morphological features.

This, in our opinion, indicates that from all the feature types tested in our current study, morphological attributes are

the least useful ones for detecting MCI and mAD; this hypothesis is also supported by the other rows of Table 11.

Table 12 lists the results obtained via training binary classifiers, combining the output of the models got using all

the linguistic features and the extended acoustic feature set. These scores display similar tendencies as those pre-

sented earlier: the proposed method of classification can distinguish subjects having some sort of dementia from con-

trol subjects with quite high efficiency, achieving a 81.3% accuracy score, 80% UAR score and a 85.7% F1 score.

Subjects having mild Alzheimer’s and those belonging to the control group can be distinguished relatively easily,

which is reflected in the 86% accuracy and 86.3% F-measure scores; the other two class pairs are somewhat harder

to distinguish, but we consider the accuracy score of 80% for both cases to be quite high.

Repeating the same series of experiments but with the semantic features only (see Table 13) led to similar,

although usually slightly lower scores: control subjects and those being in the early stages of Alzheimer’s were the

easiest to differentiate, but the accuracy scores were above 78% and the F-measure scores around 85% in most cases.

Notice that, even though we used just the semantic attributes from the linguistic ones, our scores still exceeded both

those obtained by using the acoustic features (see Table 8) and those got by all the linguistic markers, but without

the help of the acoustic attributes (see Table 10). We find this result especially interesting, because the semantic

attributes mostly consisted of the number of occurrences of specific keywords and expressions that reflect the uncer-

tainty of the speaker. By using spoken term detection techniques (see e.g. Junkawitsch et al., 1996; Gosztolya and

T�oth, 2011; Lee et al., 2016), such keywords can be located with high accuracy, allowing the automatic extraction of

these attributes. This, however, is the subject of future work.

6. Conclusions

Alzheimer’s disease is a very distinct neurodegenerative disorder that develops for years before clinical manifes-

tation, while mild cognitive impairment is clinically considered as a prodromal stage of AD. For both types of neuro-

degenerative disorders, early diagnosis is crucial in order to allow timely treatment to decelerate progression. In this

study, extending our previous studies, we sought to differentiate the three speaker groups (i.e. healthy controls, those

having MCI and those having mild AD) by relying on automatically extracted acoustic markers from the spontane-

ous speech of the subjects. We also utilized various morphological, speech-based and semantic linguistic features,

calculated from the transcription of the spontaneous utterances. However, we got the best results when we combined

the two different feature types. One promising finding of our study was that, by making use of only the semantic lin-

guistic attributes, the accuracy scores obtained decreased only slightly relative to the case of using all the linguistic



194 G. Gosztolya et al. / Computer Speech & Language 53 (2019) 181�197
features. Since these semantic attributes express the presence of specific keywords or key expression in the utterance,

we may expect that they may be easily estimated by spoken term detection techniques in the future.
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