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Abstract

The 2019 INTERSPEECH Computational Paralinguistics Chal-

lenge (ComParE) consists of four Sub-Challenges, where the

tasks are to identify different German (Austrian) dialects, es-

timate how sleepy the speaker is, what type of sound a given

baby uttered, and whether there is a sound of an orca (killer

whale) present in the recording. Following our team’s last year

entry, we continue our research by looking for feature set types

that might be employed on a wide variety of tasks without al-

teration. This year, besides the standard 6373-sized ComParE

functionals, we experimented with the Fisher vector represen-

tation along with the Bag-of-Audio-Words technique. To adapt

Fisher vectors from the field of image processing, we utilized

them on standard MFCC features instead of the originally in-

tended SIFT attributes (which describe local objects found in

the image). Our results indicate that using these feature repre-

sentation techniques was indeed beneficial, as we could outper-

form the baseline values in three of the four Sub-Challenges;

the performance of our approach seems to be even higher if we

consider that the baseline scores were obtained by combining

different methods as well.

Index Terms: ComParE 2019 Challenge, Fisher vector repre-

sentation, Bag-of-Audio-Words

1. Introduction

Besides linguistic information (meant in a strict sense), hu-

man speech incorporates a wide range of non-verbal content as

well, encoding a huge variety of information about the physical

and mental state of the speaker, and which enriches his mes-

sage. The Interspeech Computational Paralinguistics Challenge

(ComParE), held regularly at the Interspeech conference over

the last decade, focuses on the automatic identification of this

‘paralinguistic’ (that is, ‘beyond linguistic’) aspect of human

speech. The tasks set over the years covered dozens of differ-

ent human speech aspects, ranging from emotion detection [1]

through estimating blood alcohol level [2], and determining the

speaker’s age and gender [3].

A trend over the past few years among the challenge par-

ticipants was to develop task-dependent features and/or tech-

niques, such as extracting features from the middle of vow-

els [4], the amount of time when multiple subjects speak at

the same time [5], intonation modeling and emotion-specific

language models [6]. However, there is also a growing inter-

est in developing general, task-independent approaches, which

can be employed in a wide variety of tasks with slight or even

no alteration (e.g. [7, 8]). The rise of such general approaches

is also reflected in the challenge baselines: recently, the tradi-

tional, 6373-sized feature set (‘ComParE functionals’) was ex-

tended by utilizing Bag-of-Audio-Words feature representation

(BoAW, [9, 10]) and end-to-end learning [11], and from 2018,

sequence-to-sequence autoencoders were applied as well [12].

Following the latter trend, in our contribution to the 2019

ComParE Challenge [13], we experiment with three different

types of feature representation. The first one is the classic,

6373-sized paralinguistic feature set developed by Schuller et

al. and taking its final form in 2013 [14], which was proved to

be a well-performing acoustic representation for a wide range

of tasks over the years. As for the second feature set, we apply

Fisher vectors [15]: this technique is well known in the im-

age processing field (see e.g. [16, 17]), but it is used for audio

processing tasks quite rarely (for some notable exceptions, see

e.g. [18, 19, 20]). As the last feature extraction approach, we

apply Bag-of-Audio-Words.

This year’s ComParE Challenge [13] consists of four Sub-

Challenges: in the Styrian Dialects Sub-Challenge, the task

is to identify which of the three south-eastern Austrian di-

alects the speaker belongs to. In the Continuous Sleepiness

Sub-Challenge, we have to automatically estimate the speaker’s

sleepiness on the Karolinska Sleepiness Scale (from 1 to 9). In

the Baby Sounds Sub-Challenge, the vocalizations of children

in the age range 2 to 33 months have to be categorized. Lastly,

in the Orca Activity Sub-Challenge, the presence of orcas (or

killer whales) have to be detected from digitized underwater

sounds.

Following the Challenge guidelines (see [13]), we will omit

the description of the tasks, datasets and the method of evalu-

ation, and focus on the techniques we applied. We shall treat

all four Sub-Challenges in the same way, except, of course, re-

garding evaluation metrics: the Styrian Dialects and the Baby

Sounds sub-challenges are standard classification tasks, where

the performance is measured via the Unweighted Average Re-

call (UAR) metric. However, as the Continuous Sleepiness Sub-

Challenge is a regression task, there Spearman’s Correlation

Coefficient is used to rank the machine learning models; while

for the Orca Activity Sub-Challenge, the Area Under the Curve

(AUC) of the positive class is used for this purpose.

2. The Feature Representations Tested

Next, we briefly describe the three different feature representa-

tion approaches we utilized in the ComParE 2019 Challenge.

2.1. ‘ComParE functionals’ Feature Set

Firstly, we used the 6373 ComParE functionals (see e.g. [14]),

extracted by using the openSMILE tool [21]. The feature set

includes energy, spectral, cepstral (MFCC) and voicing related

frame-level attributes, from which specific functionals (like the

mean, standard deviation, percentiles and peak statistics) are

computed to provide utterance-level feature values.
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Figure 1: Workflow of the Fisher vector representation used for audio processing.

2.2. Fisher Vector Representation

The aim of the Fisher vector representation is to combine the

generative and discriminative machine learning approaches by

deriving a kernel from a generative model of the data [15]. First

we describe the original version, developed for image represen-

tation; then we turn to the application of Fisher vectors to audio.

The main concept of the Fisher Vector (FV) representation

is to take a set of low-level feature vectors, extracted from the

image, and model them by their deviation from the distribution.

That is, let X = {x1, . . . , xT } be d-dimensional low-level fea-

ture vectors extracted from an input sample, and let their distri-

bution be modelled by a probability density function p(X|Θ),
Θ being the parameter vector of the model. The Fisher score

describes X by the gradient GX
Θ of the log-likelihood function,

i.e.

G
X
Θ =

1

T
∇Θ log p(X|Θ). (1)

This gradient function describes the direction in which the

model parameters (i.e. Θ) should be modified to best fit the

data. Notice that the size of GX
Θ is already independent of the

number of low-level feature vectors (i.e. of T ), and it depends

only on the number of model parameters (i.e. on Θ). The Fisher

kernel between the sequences X and Y is then defined as

K(X,Y ) = G
X
ΘF

−1

Θ G
Y
Θ , (2)

where FΘ is the Fisher information matrix of p(X|Θ), defined

as

FΘ = EX [∇Θ log p(X|Θ)∇Θ log p(X|Θ)T ]. (3)

Expressing F−1

Θ
as F−1

Θ
= LT

ΘLΘ, we get the Fisher vectors as

GX
Θ = LΘG

X
Θ = LΘ∇Θ log p(X|Θ). (4)

In image processing, a varying number of low-level de-

scriptors such as SIFT descriptors (describing occurrences of

rotation- and scale-invariant primitives [22]) are extracted from

the images as low-level features. The p(X|Θ) distributions are

usually modelled by Gaussian Mixture Models [16]; hence, as-

suming a diagonal covariance matrix, the Fisher vector repre-

sentation of an image has a length of twice the number of Gaus-

sian components for each feature dimension (since each Gaus-

sian component models each feature dimension with the help of

two parameters: the mean and standard deviation).

To adapt Fisher vectors to audio processing, it is straightfor-

ward to use the frame-level features (e.g. MFCCs) of the utter-

ances as the low-level features (i.e. X). Similar to image clas-

sification, the distribution of the frame-level components can be

modelled by GMMs. For GMMs, using MFCCs is a plausible

choice, since their components are quasi-orthogonal; therefore

we can reasonably assume that the covariance matrix will be

a diagonal one. A parameter of the method is N , the number

of Gaussian components. For the workflow for using the FV

representation for audio processing, see Figure 1.

We used the open-source VLFeat library [23] to fit GMMs

and to extract the FV representation; we fitted Gaussian Mixture

Models with N = 2, 4, 8, 16, 32, 64 and 128 components. As

the input feature vectors, we utilized MFCCs, extracted by the

HTK tool [24]. We experimented with using the 12 MFCC vec-

tors along with energy as frame-level features, while also tried

adding the first and second order derivatives (i.e. MFCC+∆
and MFCC+∆+∆∆). We will also call these frame-level fea-

ture sets “MFCC13”, “MFCC26” and “MFCC39”.

2.3. Bag-of-Audio-Words Representation

The BoAW representation also seeks to extract a fixed-length

feature vector from a varying-length utterance [9]. Its input is

a set of frame-level feature vectors such as MFCCs. In the first

step, clustering is performed on these vectors, the number of

clusters (N ) being a parameter of the method. The list of the

resulting cluster centroids will form the codebook. Next, each

original feature vector is replaced by a single index representing

the nearest entry in the codebook (vector quantization). Then

the feature vector for the given utterance is calculated by gener-

ating a histogram of these indices. To eliminate the influence of

utterance length, it is common to use some kind of normaliza-

tion such as L1 normalization (i.e. divide each cluster count by

the number of frames in the given utterance).

To calculate the BoAW representations, we utilized the

OpenXBOW package [10]. We tested codebook sizes of 32,

64, 128, 256, 512, 1024, 2048, 4096, 8192 and 16384. We

employed random sampling instead of kmeans++ clustering for

codebook generation since it was reported that it allows a simi-

lar classification performance, and it is significantly faster [25].

We employed 5 parallel cluster assignments; otherwise, our

setup followed the ComParE 2019 baseline paper (i.e. [13]): we

used the 65 ComParE frame-level attributes as the input after

standardization and taking the logarithm of the values, and a

separate codebook was built for the first-order derivatives.

3. Experiments and Results

3.1. Utterance-level Classification

Our experiments followed standard paralinguistic protocols.

After feature standardization (carried out on all the feature sets),

we used nu-SVM with a linear kernel for utterance-level clas-

sification, using the LibSVM [26] library; the value of C was

tested in the range 10{−5,...,1}. The optimal meta-parameters

(C for SVM and N for Fisher vectors and BoAW) were deter-

mined on the development sets. Final predictions on the test set
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Table 1: Results obtained for the Styrian Dialects Sub-

Challenge; the performance is measured in terms of accuracy

% and Unweighted Average Recall (UAR) %

Dev Test

Feature set Acc. UAR Acc. UAR

ComParE functionals 45.9 39.1 — 36.3

FV MFCC13 49.0 45.2 — —

FV MFCC26 47.5 40.5 — —

FV MFCC39 48.2 41.4 — —

BoAW 46.1 41.4 — 30.4

ComParE + FV MFCC13 49.9 45.6 — 29.0

ComParE + FV MFCC26 47.5 40.6 — —

ComParE + FV MFCC39 48.5 41.6 — —

ComParE + BoAW 46.1 41.4 — 30.4

ComParE + FV + BoAW 49.9 45.6 — 29.0

ComParE baseline — — — 47.0

Table 2: Results obtained for the Continuous Sleepiness Sub-

Challenge; the performance is measured in terms of Pearson’s

(“Pea”) and Spearman’s (“Spe”) correlation coefficient

Dev Test

Feature set Pea Spe Pea Spe

ComParE functionals 0.327 0.326 — —

FV MFCC13 0.351 0.353 — —

FV MFCC26 0.355 0.355 — —

FV MFCC39 0.353 0.350 — —

BoAW 0.300 0.309 — —

ComParE + FV MFCC13 0.367 0.366 — —

ComParE + FV MFCC26 0.366 0.365 — 0.382

ComParE + FV MFCC39 0.361 0.356 — —

ComParE + BoAW 0.346 0.347 — —

ComParE + FV + BoAW 0.368 0.367 — 0.383

ComParE baseline — — — 0.343

were made by training an SVM model using these parameter

values on the training and development sets combined. Fol-

lowing preliminary tests, we employed downsampling for the

two corpora with the classification tasks (repeated 25 and 100

times, Styrian Dialects and Baby Sounds sub-challenges, re-

spectively). In each downsampling iteration, training samples

were chosen randomly, and the resulting posterior estimates

were averaged out over all iterations. As the last step, we em-

ployed late fusion to combine the different feature representa-

tions: we took the weighted mean of the posterior estimates

(classification) or predictions (regression); the weights were de-

termined on the development set with 0.05 increments.

3.2. Results

Table 1 shows the accuracy and UAR scores we got for the

Styrian Dialects Sub-Challenge; “—” denotes the scores which

were not reported. We can see that, by using the Fisher vector

representation, we outperformed the ComParE functionals on

the development set; we got the best results when relying only

on the 13 original feature dimensions. Combining this model

Table 3: Results obtained for the Baby Sounds Sub-Challenge;

the performance is measured in terms of accuracy % and Un-

weighted Average Recall (UAR) %

Dev Test

Feature set Acc. UAR Acc. UAR

ComParE functionals 49.5 56.5 — —

FV MFCC13 37.8 43.3 — —

FV MFCC26 44.8 49.3 — —

FV MFCC39 45.9 51.5 — —

BoAW 45.3 52.3 — —

ComParE + FV MFCC13 50.2 57.1 — —

ComParE + FV MFCC26 50.8 57.1 — —

ComParE + FV MFCC39 50.3 58.0 — 59.5

ComParE + BoAW 49.6 57.8 — —

ComParE + FV + BoAW 48.1 58.7 — —

ComParE baseline — — — 58.7

Table 4: Results obtained for the Orca Activity Sub-Challenge;

the performance in measured in terms of the AUC score of the

“orca” class

Feature set Dev Test

ComParE functionals 0.824 —

FV MFCC13 0.775 —

FV MFCC26 0.799 —

FV MFCC39 0.793 —

BoAW 0.804 —

ComParE + FV MFCC13 0.833 —

ComParE + FV MFCC26 0.836 —

ComParE + FV MFCC39 0.837 0.875

ComParE + BoAW 0.836 —

ComParE + FV + BoAW 0.843 0.879

ComParE baseline — 0.866

with the one trained on the ComParE functionals led to a slight

improvement, but on the test set we ended up with a UAR score

of 29%. This is not only below the baseline, but it is also below

the 33.3% UAR score achievable via simple random guessing.

On the Continuous Sleepiness Sub-Challenge (see Ta-

ble 2) we can see similar trends on the development set. (Recall

that, since this task is a regression task, the performance is mea-

sured via Spearman’s correlation coefficient (CC).) FV encod-

ings outperformed the ComParE functionals approach for each

case, but now the measured CCs appeared to be quite similar.

Late fusion of the two kinds of approaches brought a small im-

provement on both the development and on the test sets; adding

the estimations obtained by using the BoAW features brought

a further slight improvement. Note that the baseline score was

also achieved via a combination of three approaches.

On the Baby Sounds Sub-Challenge (see Table 3), how-

ever, our results (at least on the development set) suggest that

using the standard ComParE functionals is more efficient than

employing Fisher vectors. This is not that surprising, how-

ever, if we examine the UAR values reported in the Challenge

baseline paper [13]: there the ComParE functionals led to sig-
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Figure 2: Optimal weights found in late fusion.

nificantly higher UAR scores than either Bag-of-Audio-Words

or sequence-to-sequence autoencoders did, and combining the

three approaches improved this score by only a little bit. In

our case, the combined UAR values on the development set ex-

ceeded the ‘ComParE functionals’ case only by 0.6-1.5% ab-

solute; the best-performing combination, however, was slightly

above the baseline 58.7% UAR score on the test set, giving a

0.8% absolute improvement (2% relative). For this particular

task, in our experience, using the BoAW representation as well

was not beneficial, as it had a late fusion weight of 0.00 when

combining all three approaches tested.

As for the Orca Activity Sub-Challenge, the Fisher vec-

tors again produced similar AUC scores regardless of whether

we used the first and second order MFCC derivatives, although

these values slightly lagged behind those of the ComParE func-

tionals. This similarity persisted after combination as well: we

measured AUC values in the range 0.833-0.837. This hybrid

model also outperformed the baseline score on the test set, al-

though the difference is probably statistically not significant. In-

corporating the BoAW predictions brought a further slight im-

provement, leading to AUC values of 0.843 and 0.879 for the

development and test sets, respectively.

3.3. Late Fusion Weights

We can gain an insight into the utility of Fisher vectors and

Bag-of-Audio-Words by examining the late fusion weights (see

Fig. 2). In the Styrian dialects Sub-Challenge, due to the over-

confidence (overfitting?) of the classifiers trained on the Fisher

vectors, the ComParE functionals had a weight of only 0.05-

0.10 for the three FV models. In the Continuous Sleepiness

Sub-Challenge, when we used the first and/or the second-order

derivatives of the MFCCs (i.e. models “FV26” and “FV39”),

they had a weight of 0.70. This, in our opinion, means that

although Fisher vectors turned out to be the more descriptive

feature types, the ComParE functionals also represent a valu-

able ingredient in the final, combined classifier for this partic-

ular task. In the Baby Sounds Sub-Challenge the two feature

types had similar weights (in the range 0.45-0.55), while for

the Orca Activity Sub-Challenge, ComParE functionals had a

weight value of 0.65, suggesting that it was found to be the

(slightly) more valuable feature set. Interestingly, these hy-

potheses mirror the tendency of the UAR values given in the

ComParE challenge baseline paper [13].

Regarding the BoAW features, on the Continuous Sleepines

Sub-Challenge it was assigned a much smaller weight than

Fisher Vectors did, while for the Orca Sounds it had a somewhat

larger one. Lastly, on the Baby Sounds Sub-Challenge, when

we just combined it with the ComParE functionals, BoAW was

assigned a weight of just 0.1. Surprisingly, when we combined

all three methods, the very same predictions produced a weight

of 0.65, which we cannot regard as anything else but overfit-

ting. Clearly, even the reported results of the Challenge base-

line paper indicate that the Bag-of-Audio-Words approach suf-

fers from its stochastic nature: the codebook size which gave

an optimal performance on the development set led to a metric

value on the test set which was significantly below the optimal

one (see [13]). Based on our experimental results, we consider

Fisher vectors a much more robust approach in this aspect.

3.4. Building an Ensemble of Classifiers

By our recent experience, the Bag-of-Audio-Words approach is

inherently stochastic due to the randomness being present in its

clustering step (for our initial findings, see [7]). Our hypothe-

sis was that this also holds for the Fisher vector representation,

since fitting GMMs also involves clustering. Therefore, to in-

crease the robustness of our predictions, we extracted the FV

and the BoAW features using ten different random seed val-

ues, trained our SVMs on all of them, and simply averaged out

the predictions we got (Continuous Sleepiness Sub-Challenge)

or posterior estimates (Baby Sounds and Orca Activity sub-

challenges). Unfortunately, due to time limitations, we were

unable to finish these experiments for the Styrian Dialects Sub-

Challenge. In the other three tasks, however, we obtained fur-

ther slight improvements over the single-seed case (when com-

bining all three feature sets): for the Continuous Sleepiness

Sub-Challenge, Spearman’s CC increased to 0.387 (from 0.383)

on the test set; on the Baby Sounds Sub-Challenge, we ob-

tained an UAR value of 59.9%, while for the Orca Activity Sub-

Challenge, the AUC value of the “orca” class rose from 0.879

to 0.884.

4. Conclusions

In our contribution to the INTERSPEECH 2019 Computational

Paralinguistic Challenge (ComParE), we tested general-purpose

feature representations on all four sub-challenges. Besides

the now standard ComParE functionals, we employed Bag-of-

Audio-Words, and utilized the Fisher vector representation to

construct fixed-size utterance-level feature vectors from record-

ings of varying lengths. In the end, we managed to outperform

the Challenge baselines in three tasks out of four. Besides show-

ing that using Fisher Vectors is an efficient way of representing

utterances in paralinguistic tasks, we also found that building

an ensemble of classifiers (based on either FV or BoAW feature

sets) could improve the robustness of predictions.
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