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1 Institute of Informatics, University of Szeged, Szeged, Hungary
tothl@inf.u-szeged.hu

2 MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
ggabor@inf.u-szeged.hu

Abstract. Although the Deep Neural Network (DNN) technology has
brought significant improvements in automatic speech recognition, the
technology is still vulnerable to changing environmental conditions. The
adversarial multi-task training method was recently proposed to increase
the domain and noise robustness of DNN acoustic models. Here, we apply
this method to reduce the inter-speaker variance of a convolutional neural
network-based speech recognition system. One drawback of the baseline
method is that it requires speaker labels for the training dataset. Hence,
we propose two modifications which allow the application of the method
in the unsupervised scenarios; that is, when speaker annotation is not
available. Our approach applies unsupervised speaker clustering, which
is based on a standard feature set in the first case, while in the second
case we modify the network structure to perform speaker discrimination
in the manner of a Siamese DNN. In the supervised scenario we report
a relative error rate reduction of 4%. The two unsupervised approaches
achieve smaller, but consistent improvements of about 3% on average.

Keywords: Convolutional neural network · Siamese neural network ·
Multi-task · Adversarial training · Unsupervised training

1 Introduction

Since the introduction of Deep Neural Network-based technologies, the error rate
of speech recognition systems has decreased significantly [8]. However, improving
the robustness of the recognizers is still an active area of research, as even these
DNN-based systems are sensitive to various adversarial environmental condi-
tions such as background noise, reverberant environments, and different speaker
accents. The sensitivity to these factors can partly be explained by the fact that
neural networks are inclined to overfit the actual training data, and generalize
poorly to cases that were not seen during training. Among other options, regular-
ization methods are routinely applied to tackle this overfitting phenomenon [6].
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For example, it is known that presenting multiple tasks to the network at the
same time – known as multi-task training [3] – also has a regularization effect.
That is, having to solve two (or more) similar, but slightly different tasks at the
same time forces the network to find a more general and more robust inner rep-
resentation. Multi-task training has been shown to reduce the speech recognition
error rate in several studies [2,14].

While multi-task training seeks to minimize the error of both tasks, there is a
newer variant of the method known as adversarial multi-task training [5]. Here,
we maximize the error of the secondary task. With this modification, we expect
the network to prefer inner representations that are invariant with respect to the
secondary task. In speech technology, adversarial multi-task training has mostly
been applied to enhance the domain independence (i.e. noise robustness) of DNN
acoustic models [4,15]. But we also found examples where it is used to make the
system less sensitive to other factors like the accent of the user [16]. In this
study, we seek to apply the adversarial multi-task training method to alleviate
the sensitivity of speech recognizers to the identity of the actual speaker. Our
starting point will be the recent study of Meng et al. [12]. The approach they
described requires a training data set that contains speaker annotation. However,
most of the current large training databases contain only transcripts of the text
spoken without any speaker labels, which renders the method of Meng et al.
inapplicable in practice. Here, we experiment with two possible extensions that
do not require speaker annotation, and hence these methods are unsupervised
in terms of the speakers. For the experimental evaluation we use the TIMIT
database, which contains brief samples from significantly more speakers than the
corpus used by Meng et al, so the task is presumably more difficult. Moreover,
as TIMIT contains a speaker identifier for each file, we can directly compare the
supervised approach with the proposed unsupervised methods.

2 Multi-task and Adversarial Multi-task Training

The typical Y-shaped architecture of a multi-task deep neural network is shown
schematically in Fig. 1. The network has a dedicated output layer for both tasks
(addressing more tasks is also possible, but here we shall assume there are just
two tasks). Typically, the uppermost hidden layers are also arranged into task-
specific counterparts. Both output layers have a corresponding error function,
which are denoted in the figure by LCD and LS , while the corresponding parame-
ters (weights) are denoted by θCD and θS . Although the network has two output
layers, it has only one input layer, and the lower layers are also shared between
the two tasks. This forces the network to find a hidden representation in these
shared layers which is useful for both tasks. During error backpropagation, the
errors coming from the two branches are combined by a simple linear combina-
tion. We can perform this using equal weights, but typically the accuracy of one
of the tasks is more important for us than that of the other. We can express this
importance using a λ weight in the combination formula (see Fig. 1). In our case,
the more important main task will be speech recognition (the recognition of the
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Fig. 1. Schematic structure of an (adversarial) multi-task neural network.

Hidden Markov Model states), while the secondary task will be the recognition
of the actual speaker. Note that the secondary task is added only during train-
ing, as we expect it to help learn the main task. However, the actual accuracy
score attained by this branch of the net is used only for verification purposes,
and this branch is discarded in the evaluation phase.

Besides λ, another parameter of the model is the depth where the two
branches should join. Intuitively, more different tasks require more task-specific
and fewer shared layers (see, e.g. [18]), but the optimal configuration can be
found only experimentally. Likewise, it is impossible to tell in advance whether
a certain secondary task will help learn a given main task, but intuitively, the
secondary task should be related, but slightly different from the main task.

To our knowledge, multi-task training was first applied in speech recognition
in a study by Lu et al., where the secondary task was to clean the noisy speech
features [11]. In the deep learning framework it was first applied by Seltzer
and Droppo, who used the recognition of the phonetic context as a secondary
task along with the main phone recognition task [14]. A similar solution was
implemented by Bell and Renals, who combined the tasks of context-dependent
and context-independent modeling [2].

Multi task-learning has a variant called adversarial multi-task learning [5].
Instead of preferring a hidden representation that helps handle both tasks, adver-
sarial multi-task learning seeks to find a hidden representation that is invariant
with respect to the secondary task, meaning that it contains no information that
would allow the identification of the secondary targets. In adversarial training
the Y-shaped network structure is the same as that for the standard multi-task
model. However, we will try to maximize the error of the secondary task instead
of minimizing it. Technically, it is realized by still minimizing the secondary error,
but using a negative value for λ. This way, the task-specific secondary branch
tries to solve the secondary task, but the shared layers will seek a representation
that works against this (performing a sort of ‘min-max’ optimization [16]).
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The adversarial multi-task training approach was first used in speech tech-
nology in 2016 [15]. Most authors mainly applied it to make the neural network
‘domain-invariant’ ([4]); that is, insensitive to the actual background noise, but
we know of examples where the domain corresponds to speaker accent [16], or
the identity of the actual speaker [12].

Shinohara recommends introducing adversarial training gradually, by slowly
increasing the weight of the adversarial branch in each iteration [15]. Following
his recommendation, we configured λ so as to attain its final value after 10
iterations, setting its absolute value in the kth iteration to

λk = min(
k

10
, 1) · λ.

3 Experimental Set-Up

We used the English TIMIT speech dataset for our experiments. Though this
dataset is now considered tiny for speech recognition purposes, we chose it
because it also contains speaker annotations. Moreover, it is ideal in the sense
that is contains samples from a lot of speakers in a uniform distribution. The
train set consists of 8 sentences from 462 speakers, while the core test set com-
prises 24 other (independent) speakers. As the development set, we randomly
separated 44 speakers from the train set, and we evaluated the models on the
core test set.

For the recognition, we applied a standard Hidden Markov Model - Deep
Neural Network (HMM/DNN) hybrid [8]. The neural network component was
trained on a mel-spectrogram, and it contained convolutional neurons in its low-
est layer (performing frequency-domain convolution) [1]. The convolutional layer
was followed by two additional fully connected layers, which together formed the
shared part of the network. The task-specific parts of the network consisted of
1-1 hidden layers, as this was found optimal in preliminary experiments. All
the hidden layers contained 2000 rectified (ReLU) neurons. In the speech recog-
nition (or main) branch, the output layer consisted of 858 softmax neurons,
corresponding to the states of the HMM. In the speaker recognition (or sec-
ondary) branch, the 462 softmax neurons had to identify the speakers of the
database. The network was trained using standard backpropagation, applying
the frame-level cross-entropy function as the loss function for both output layers.

4 Results with Supervised Adversarial Training

In the first adversarial training experiment we trained the network in a super-
vised manner; that is, using the original speaker labels as training targets for
the secondary task. To find the optimal value of λ, we varied it between −0.05
and −0.25 with a step size of 0.05. Table 1 shows the frame-level error rates got
for both branches. It should be mentioned that for the secondary task we have
scores only for the train set, and we listed these scores only to verify the behavior
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Table 1. The frame-level and phone-level error rates obtained for various values of λ,
using supervised training.

Parameter Frame error rate Phone error rate

λ (train, sec. task) (dev, main task) (dev. set) (test set)

0 (baseline) 24.7% 35.4% 16.6% 18.8%

−0.05 70.8% 34.7% 16.3% 18.4%

−0.10 77.2% 34.8% 16.0% 18.0%

−0.15 86.4% 34.9% 16.2% 18.1%

−0.20 89.3% 35.1% 16.3% 18.2%

of the network, as this branch of the network is not used by the final recognition
system. For the main task we listed the results on the independent develop-
ment set, as this tells us more about the generalization ability of the model. The
rightmost columns of the table show the phone recognition error rates on the
development and test sets, obtained after performing HMM decoding using the
state-level probabilities produced by the main branch of the network. The first
row contains the baseline result, which is obtained with λ = 0. We will call this
the ‘passive’ configuration, as in this case the secondary branch is allowed to
learn, but it cannot influence the shared hidden representation. The table shows
that by decreasing λ, the frame error rate of the secondary task rose consistently,
just as one would expect. The frame error rate of the main task decreased in
parallel until it reached its optimum point, then it started to rise again when λ
became smaller. The phone recognition error rate attained its optimum both for
the development and test sets at λ = −0.1, but the scores are consistently lower
than those for the baseline system for all parameter values tested. In the best
case the relative error rate reduction was 4.2% on the test set. As for Meng et
al., they reported an error rate reduction of 5% [12].

It is well known that adding a small disturbance to either the weights or the
input of the neural network can reduce overfitting, and bring a slight improve-
ment in the scores [6]. We wanted to verify that the improvement was not simply
due to this effect. Hence, we calculated the variance of the recognition scores
with respect to the speakers, and we found that it decreased by about 10%,
compared to the baseline model. This confirms that the adversarial training
method indeed makes the model less speaker-sensitive – although the model is
still far from being ‘speaker-invariant’. Meng et al. themselves reported addi-
tional improvements by applying speaker adaptation after adversarial training
[12]. We found earlier that the application of CNNs instead of fully connected
DNNs reduces the inter-speaker variance by about 5.7% [17]. As we used CNNs
here, the reduction of 10% was obtained in addition to this previously reported
improvement.
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Table 2. The error rates obtained using the conventional speaker clustering method.

No. of Parameter Frame error Phone error rate

clusters λ rate (dev) (dev) (test)

– 0 (baseline) 35.4% 16.6% 18.8%

50 −0.10 34.8% 16.4% 18.6%

100 −0.15 34.6% 16.0% 18.0%

150 −0.10 34.8% 16.0% 18.3%

200 −0.10 34.8% 16.2% 18.4%

250 −0.10 34.6% 16.0% 18.3%

5 Unsupervised Training Without Speaker Labels

The approach we presented in the previous section has a big drawback, namely
that it requires the annotation of the speakers. Though this is available in the
case of the TIMIT dataset, nowadays we train our systems on much larger
corpora, which are usually recorded under more natural conditions. For these
databases a precise speaker-level segmentation and labelling is typically not
available, which means that our adversarial training method cannot be directly
applied. Here, we propose two approaches to overcome this limitation. These
methods do not require speaker annotation, but they create the training targets
for the speaker classifier branch of the network in an unsupervised manner. The
only assumption is that there is no speaker change within a file, so each file
belongs to exactly one speaker. This is a much weaker constraint in general than
that of the availability of a speaker annotation.

5.1 Conventional Speaker Clustering

Not having speaker labels, we can apply a clustering method to group the files
into clusters, according to the similarity of the speakers’ voices. Many conven-
tional algorithms exist for this, and we chose a hierarchical clustering method
that was accessible to us. The original algorithm applies a bottom-up, agglom-
erative hierarchical cluster method, which merges clusters based on the gener-
alized likelihood ratio of Gaussian models fit on standard acoustic features like
mel-frequency cepstral coefficients (MFCCs) [7]. Various modifications of the
algorithm were later suggested by Wang et al. [19] and Kaya et al. [9].

When using the clustering algorithm, the number of clusters becomes an
additional parameter. We tried to vary this value between 50 and 250 with a
step size of 50. We applied the adversarial training method just as before, but
the speaker labels were replaced by the automatically found cluster identifiers.
Table 2 lists the recognition results obtained in this case. For each cluster size
we report only the λ value that gave the best score on the development set.
On the development set we attained the same error rate (16.0%) as that with
the supervised approach for several cluster sizes. However, the improvement did
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Fig. 2. Illustration of the architecture of a Siamese neural network.

not carry over to the test set, where the best supervised score (18.0%) was
achieved only in one configuration. Disregarding the cluster size of 50 (which
gave an inferior performance), the average score on the test set was 18.25%,
which corresponds to a 3% relative error rate reduction over the baseline.

5.2 Clustering Using a Siamese Multi-task Network

The conventional speaker clustering method we applied is built on MFCCs and
Gaussian modelling, but our acoustic model is a CNN that uses mel-frequency
energy features. This means that we calculate two types of features and two
types of models, which is a waste of resources. We could do better if we adjusted
our network (more precisely, its speaker classifier branch) to the unsupervised
task. The approach we applied is based on the method outlined by Ravanelli
and Bengio [13], but it is also closely related to the concept of Siamese neural
networks [20]. Siamese networks are usually applied to decide whether two images
depict the same object or not, and they consist of two main parts (see Fig. 2).
The upper, discriminator part is trained to discriminate a pair of input vectors.
In our case, the discriminator consists of one hidden layer and an output layer of
just two neurons, which try to decide whether two input speech frames belong
to the same speaker or not. The lower, encoder part seeks to find the optimal
representation for this discrimination. As we try to discriminate a pair of inputs,
the encoder is present in two copies in the network, but these are practically
identical (technically, this can be solved by weight sharing, for example).

In the case of our multi-task network, the lower, shared part will serve as the
encoder, and the network branch corresponding to the speaker classification task
has to be replaced by the discriminator. We had to solve two problems to achieve
this. First, the discriminator required two input vectors instead of just one.
Second, we had to create pairs that came from the same file (negative examples),
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Algorithm 1 . Constructing batches of data that allows the training of the
speaker discriminator and the classifier network branches in a multi-task fashion

Let N denote the batch size
f [k] (k = 1, ..., N) will store the batch of feature vectors
lc[k] (k = 1, ..., N) will store the training targets for state classification
ls[k] (k = 2, ..., N) will store the training targets for the speaker discriminator

j ← a randomly selected file index from the training file list
f [1] ← a randomly sampled frame from the jth file
lc[1] ← the state label of f [1]
ls[1] ← undefined � Not used during training
for (k=2; k ≤ N ; k++) do

if k is even then
f [k] ← a randomly sampled frame from the jth file
lc[k] ← the state label of f [k]
ls[k] ← 0 � f [k − 1] and f [k] are from the same file

if k is odd then
j ← a randomly selected new file index, different from the previous value of j
f [k] ← a randomly sampled frame from the jth file
lc[k] ← the state label of f [k]
ls[k] ← 1 � f [k − 1] and f [k] are from different files

Train the main network branch using f [k] and lc[k] (k = 1, ..., N)
Train the secondary branch using the < f [k −1], f [k] > pairs and ls[k] (k = 2, ..., N)

and pairs that came from different files (positive examples) in turn. We created
an algorithm that constructs the data batches in such a way that it allows one to
train the speech recognition and the speaker discriminator branches in parallel,
in a multi-task fashion (see Algorithm 1). That is, the N data vectors returned
by the algorithm can be used to train the speaker recognition branch directly,
while the N−1 pairs of neighboring vectors are alternating positive and negative
examples for the 2-class speaker discriminator branch. We should add that while
we want to discriminate the speakers, our implementation approximates this by
discriminating the files, as we have no access to speaker labels. However, as long
as the train set consists of many speakers, the chance of mislabelling a pair is
actually quite low (in this case, 8 files out of 418 belong to the same speaker).

In our preliminary tests the Siamese speaker discriminator branch of the
network attained an error rate of 18% in passive training mode. In multi-task
mode the error decreased to about 2%, which is similar to that reported by
Ravanelli and Bengio [13]. However, both in multi-task and in adversarial multi-
task training the discriminator branch had only a negligible influence on the
accuracy of the other branch. We think that deciding whether the speaker is the
same or different is a much weaker constraint on the hidden representation than
actually identifying the speakers.

As we were unable to apply adversarial training using the Siamese branch
directly, we opted for a two-stage approach. After training the network, we per-
formed a clustering on the training files, using the discriminator output as the
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Table 3. The error rates obtained using the Siamese network-based clustering method.

No. of Parameter Frame error Phone error rate

clusters λ rate (dev) (dev) (test)

— 0 (baseline) 35.4% 16.6% 18.8%

50 −0.10 34.9% 16.4% 18.4%

100 −0.35 34.8% 16.0% 18.3%

150 −0.30 34.6% 16.1% 18.4%

200 −0.50 34.7% 16.3% 18.3%

250 −0.55 34.8% 16.2% 18.2%

distance function. We applied complete-linkage agglomerative hierarchical clus-
tering [10], where the distance between two files was estimated in the follow-
ing way. The speaker discriminator branch outputs posterior estimates (scores
between 0 and 1) of whether two frames belong to the same file or not. We defined
the distance between any two files as the average of these posterior values over
ten randomly selected frame pairs. After we had performed the clustering, we
repeated the training of the adversarial multi-task network using the cluster
labels as training targets for the secondary branch.

The recognition error rates obtained with this clustering method are shown
in Table 3. Similar to the standard clustering method, the score obtained with 50
clusters is just slightly better than the baseline score. For larger cluster sizes, on
the development set the results are typically slightly worse than those got with
the standard clustering method. However, on the test set the average improve-
ment is not significantly different, corresponding to a relative error rate reduction
of about 3% relative to the baseline.

6 Summary

Here, we examined the applicability of adversarial multi-task training to reduce
the inter-speaker variance of CNN acoustic models. First, we investigated super-
vised training that requires speaker annotation, and then we proposed two unsu-
pervised solutions to generate training targets when speaker labels are not avail-
able. In the supervised case we reported relative phone error rate reductions of
4%, and both unsupervised approaches performed slightly worse, giving an error
rate reduction of about 3%. Currently both proposed methods require a clus-
tering step, but in the future we intend to modify the Siamese network-based
approach so that it can work in one training pass, without the need for clustering
and re-training.
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