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Abstract. Screening a cold may be beneficial in the sense of avoiding
the propagation of it. In this study, we present a technique for classi-
fying subjects having a cold by using their speech. In order to achieve
this goal, we make use of frame-level representations of the recordings of
the subjects. Such representations are exploited by a generative Gaus-
sian Mixture Model (GMM) which consequently produces a fixed-length
encoding, i.e. Fisher vectors, based on the Fisher Vector (FV) approach.
Afterward, we compare the classification performance of the two algo-
rithms: a linear kernel SVM and a XGBoost Classifier. Due to the data
sets having a high class imbalance, we undersample the majority class.
Applying Power Normalization (PN) and Principal Component Analysis
(PCA) on the FV features proved effective at improving the classifica-
tion score: SVM achieved a final score of 67.81% of Unweighted Average
Recall (UAR) on the test set. However, XGBoost gave better results
on the test set by just using raw Fisher vectors; and with this com-
bination we achieved a UAR score of 70.43%. The latter classification
approach outperformed the original (non-fused) baseline score given in
‘The INTERSPEECH 2017 Computational Paralinguistics Challenge’.

Keywords: Fisher vectors · Speech processing · SVM · XGBoost ·
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1 Introduction

Identifying cold or other related illnesses with similar symptoms may be benefi-
cial when assessing them; as it could be a way of avoiding the spread of a specific
kind of viral infection of the nose and throat (upper respiratory tract). Upper
respiratory tract infection (URTI) affects the components of the upper airway.
URTI can be thought as of a common cold, a sinus infection, among others.
Screening a cold directly from the speech of subjects can create the possibility of
monitoring (even from call-centers or telephone communications), and predict-
ing their propagation. In contrast with Automatic Speech Recognition (ASR),
which focuses on the actual content of the speech of an audio signal, computa-
tional paralinguistics may provide the necessary tools for determining the way
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the speech is spoken. Various studies have offered promising results in this field:
diagnosing neuro-degenerative diseases using the speech of the patients [6,7,10];
the classification of crying sounds and heart beats [13]; or even the estimation
of the sincerity of apologies [12]. Hence, we focus on finding certain patterns
hidden within the speech of the cold recordings and not on what the speakers
actually said.

Here, we make use of the Upper Respiratory Tract Infection Corpus
(URTIC) [26] to classify speakers having a cold. Previous studies applied var-
ious approaches for classifying cold subjects on the same corpus; for example,
Gosztolya et al. employ Deep Neural Networks for feature extraction for such
purpose [11]. Huckvale and Beke utilizated voice features for studying changes in
health [14]; furthermore, Kaya et al. [16] introduced the application of a weight-
ing scheme on instances of the corpus, employing Weighted Kernel Extreme
Learning Machine in order to handle the imbalanced data that comprises the
URTIC corpus.

In this study, frame-level features (Mel-frequency cepstral coefficients),
extracted from the utterances, are utilized to fit a generative Gaussian Mixture
Model (GMM). Next, the computation of low-level patch descriptors together
with their deviations from the GMM give us an encoding (features) called the
Fisher Vector. FV features are learned using SVM and XGBoost as binary clas-
sifiers, where the prediction is cold or healthy. In order to search for the best
parameters of both SVM and XGBoost, Stratified Group k-fold Cross Valida-
tion (CV) was applied on the training and development sets. Unweighted Average
Recall (UAR) scoring was used to measure the performance of the model. To
the best of our knowledge, this is the first study that uses a FV representation
to detect a cold from human speech.

In the next part of our study we also show that PN and L2-normalization
over the Fisher vectors have a beneficial effect on the SVM classification scores.
PN reduces the sparsity of the features; L2-normalization is a valid technique
that can be applied to any high-dimensional vector; and moreover, it improves
the prediction performance [25]. Likewise, PCA also affects positively to the
performance of Support Vector Machines (SVM) due to its effects of feature
decorrelation as well as dimension reduction.

The combination of all three feature pre-processing methods gave the best
scoring with respect to the SVM classifier. However, XGBoost did not produce
competitive scores when any kind of feature pre-processing was employed before
training the model. Namely, employing the same feature-treatments (PCA, PN,
L2-normalization) as SVM to the XGBoost classifier led to a decrease in per-
formance. Mentioned algorithm showed better results when learning from raw
features. Thus, there was no need for any feature processing prior to training,
owing to the fact that decision tree algorithms do not necessitate so. We show
that our system produces better UAR scores relative to the baseline individual
methods reported in the ‘The INTERSPEECH 2017 Computational Paralinguis-
tics Challenge’ [26] for the Cold sub-challenge.
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Fig. 1. The generic methodology applied in our work.

2 Data

The Upper Respiratory Tract Infection Corpus (URTIC) comprises recordings
of 630 speakers: 382 male, 248 female, and a sampling rate of 16kHz. Recordings
were held in quiet rooms with a microphone/headset/hardware setup. The tasks
performed by the speakers were as follows: reading short stories, for example, The
North Wind and the Sun which is well known in the phonetics area; producing
voice commands such as numbers or driver assistant controlling commands; and
narrating spontaneous speech. The number of tasks varied for each speaker.
Although the sessions lasted up to 2 hours, the recordings were split into 28652
chunks of length 3 to 10 seconds. The division was done in a speaker-independent
fashion, so each set had 210 speakers. The training and development sets were
both comprised of 37 subjects having a cold and 173 subjects not having a
cold [26]. The train, development, and test datasets are composed of 9505, 9596,
and 9551 recordings respectively.

3 Methods

As outlined in Fig. 1, our workflow is as follows:

1. MFCCs features are extracted from all the recordings.
2. The GMM is trained using the MFCCs belonging to the training dataset.
3. The FV encoding (Fisher vectors) is performed for all the MFCCs of each

utterance.
4. Classification:

(a) Fisher vectors are processed using Power Normalization and L2 normal-
ization; Support Vector Machines carried out the classification process
using the new scaled features.

(b) Raw Fisher vectors are fed to XGBoost for classification.
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3.1 Feature Extraction

The frame-level features we utilized were the well-known MFCCs. We used a
dimension of 20, plus their first and second derivatives, with a frame length of
25 ms and a frame shift of 10 ms.

3.2 The Fisher Vector (FV) Approach

This procedure can be viewed as an image representation that pools local image
descriptors, e.g. Scale Invariant Feature Transform (SIFT). A SIFT feature
is a selected image region with an associated descriptor (a descriptor can be
thought as of a histogram of the image). In contrast with the Bag-of-Visual-
Words (BoV, [22]) technique, it assigns a local descriptor to elements in a visual
dictionary, obtained utilizing a Gaussian Mixture Model. Nevertheless, instead
of just storing visual word occurrences, these representations take into account
the difference between dictionary elements and pooled local features, and they
store their statistics. A nice advantage of the FV representation is that, regard-
less of the number of local features (i.e. SIFT), it extracts a fixed-sized feature
representation from each image. Applied to this study, such approach becomes
quite practical because the length of the speech utterances are subject to vary.

The FV approach has been widely used in image representation and it can
achieve high performance [15]. In contrast, just a handful of studies use FV
in speech processing, e.g. for categorizing audio-signals as speech, music and
others [20], for speaker verification [30,34], for determining the food type from
eating sounds [17], and even for emotion detection [9]. These studies demonstrate
the potential of achieve good classification performances in audio processing.

Fisher Kernel (FK). It seeks to measure the similarity of two objects from a
parametric generative model of the data (X) which is defined as the gradient of
the log-likelihood of X [15]:

GX
λ = �λ log υλ(X), (1)

where X = {xt, t = 1, . . . , T} is a sample of T observations xt ∈ X , υ represents
a probability density function that models the generative process of the elements
in X and λ = [λ1, . . . , λM ] ′ ∈ RM stands for the parameter vector υλ [25]. Thus,
such a gradient describes the way the parameter υλ should be changed in order
to best fit the data X. A way to measure the similarity between two points X
and Y by means of the FK can be expressed as follows [15]:

KFK(X,Y ) = GX′
λ F−1

λ GY
λ . (2)

Since Fλ is positive semi-definite, Fλ = F−1
λ . Equation (3) shows how the

Cholesky decomposition F−1
λ = L′

λLλ can be utilized to rewrite the Eq. (2)
in terms of the dot product:

KFK(X,Y ) = GX′
λ GY

λ , (3)
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where
GX

λ = LλGX
λ = Lλ �λ log υλ(X). (4)

Such a normalized gradient vector is the so-called Fisher Vector of X [25]. Both
the FV GX

λ and the gradient vector GX
λ have the same dimension.

Fisher Vectors. Let X = {Xt, t = 1 . . . T} be the set of D-dimensional local
SIFT descriptors extracted from an image and let the assumption of independent
samples hold, then Eq. (4) becomes:

GX
λ =

T∑

t=1

Lλ �λ log υλ(Xt). (5)

The assumption of independence permits the FV to become a sum of normalized
gradients statistics Lλ �λ log υλ(xt) calculated for each SIFT descriptor:

Xt → ϕFK(Xt) = Lλ �λ log υλ(Xt), (6)

which describes an operation that can be thought of as a higher dimensional
space embedding of the local descriptors Xt.

Hence, the FV approach extracts low-level local patch descriptors from the
audio-signals’ spectrogram. Then, with the use of a GMM with diagonal covari-
ances we can model the distribution of the extracted features. The log-likelihood
gradients of the features modeled by the parameters of such GMM are encoded
through the FV [25]. This type of encoding stores the mean and covariance devia-
tion vectors of the components k that form the GMM together with the elements
of the local feature descriptors. The image is represented by the concatenation
of all the mean and the covariance vectors that gives a final vector of length
(2D + 1)N , for N quantization cells and D dimensional descriptors [23,25].

The FV approach can be compared with the traditional encoding method:
BoV, and with a first order encoding method like VLAD Vector of Locally Aggre-
gated Descriptors) [1]. In practice, BoV and VLAD are outperformed by FV due
to its second order encoding property of storing additional statistics between
codewords and local feature descriptors [28].

3.3 Classification with XGBoost and SVM

The classification of the data was carried out separately by two algorithms:
XGBoost and SVM. In this section, we describe in a general manner these two
approaches. SVM complexity parameter C was optimized by employing a Strat-
ified Group k-fold Cross Validation using the train and development sets com-
bined. For XGBoost parameters the same process was performed. Unweighted
Average Recall (UAR) is the chosen metric due to the fact that it is more com-
petent when having imbalanced datasets and also because it has been the de
facto standard metric for these kinds of challenges [24,27].
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As is widely known, a normal cross-validation gives the indices to split the
data into train and test folds. In contrast, a stratified cross-validation applies
the same principle but it preserves the percentage of samples for each class;
and, a group k-fold cross-validation also has the same basis but it tries to keep
the balance of different groups across the folds, so the same group will not be
present in two distinct folds. Here, utterances from one speaker are treated as
one group. The combination of these two different cross-validation approaches
meant we could avoid having the same speaker in more than one specific fold
while keeping the number of samples of each target class within that fold even.

Fig. 2. UAR CV and test scores as a function of Gc for SVM and XGBoost using FVs.

XGBoost. This library is an implementation based on Gradient Boosting
Machines (GBM) [8]. GBM is a regression/classification algorithm which makes
use of an ensemble of weak models, i.e. small decision trees, to make predic-
tions. A decision tree ensemble in XGBoost is a set of CARTs (Classification
and Regression Trees). Put simply, GBM sequentially adds decision tree models
to correct the predictions made by the previous models, and based on gradi-
ent descent, it minimizes the loss function. This is continued until the objective
function (training loss and regularization) finds that no further improvement
can be done [21]. Both XGBoost and GBM, basically act in the same manner;
however, the main difference between these two is that XGBoost, in order to
control over-fitting, employs a more regularized model than GBM does.

This algorithm is widely used in machine learning mostly due to its scaling
capability and model performance; it was designed to exploit the limits of the
computational resources for GBM algorithms [5]. Our decision to use XGBoost
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was also influenced by its advanced capability for performing model tuning. We
can see the performance of XGBoost in [19,32,33], where the authors report high
scores using such algorithm when applied to speech-related classification tasks.
In this study, we employed the Python implementation of XGBoost [5].

Support Vector Machines We relied on the libSVM implementation [3]. SVM
was found to be robust even with a large number of dimensions and it was
shown to be efficient when fitting them on FV [25,29]. To avoid overfitting due
to having a large number of meta-parameters, we applied a linear kernel.

4 Experiments and Results

The GMM used to compute the FVs operated with a different number of compo-
nents, Gc ranged from 2, 4, 8 to 128. Here, the construction of the FV encoding
was performed using a Python-wrapped version of the VLFeat library [31]. The
dataset suffers from high class-imbalance, which could affect the performance
of either of the classifiers. The training dataset comprises 9505 recordings: 8535
(89.8%) as healthy and the rest, 970 (10.2%) as cold. We relied on a random
undersampling technique that reduces the number of samples associated with all
classes, to the number of samples of the minority class, i.e. cold. We employed
imbalanced-learn [18], a Python-based tool which offers several resampling meth-
ods for between-class imbalance. For the SVM, the complexity value (C) was set
in the range 10{−5,−4,...,0,1}.

As a baseline, we utilized the ComParE functionals that were originally pre-
sented and described in [26]. As Table 1 shows, these representations achieved
an UAR score of 69.30% on the test set, which is slightly higher than the
score achieved with FV representations (67.81%). The SVM classifier gave bet-
ter results using FVs with Power Normalization (PN) and L2-Normalization,
along with PCA: UAR score of 67.81% (see Table 1). PCA was applied using the
95% of the variance, which apart from decorrelating the FV features, also helped
with both the computation (lower memory consumption) and the discrimination
task. This method is also described in [4]. We saw that PN helped to reduce the
impact of the features that become more sparse as the number of Gaussian com-
ponents increases. Meanwhile, L2-normalization helped to alleviate the effect
of having different utterances with distinct amounts of background information
projected into the extracted features, which attempts to improve the prediction
performance. Also, we employed a late fusion of the posterior probabilities. We
combined the ComParE functionals SVM-posteriors with those that gave the
highest scores when using SVM on FVs; the result was a better UAR score:
70.71%.

For XGBoost, we just utilized the non-preprocessed Fisher vector features
and performed a grid search to find the best parameters. To control overfitting,
we tuned the parameters that influence the model complexity: the gamma value,
which represents the minimum loss required to split further on a leaf; the maxi-
mum depth for each tree (the higher the value, the higher the complexity); and
the minimum child weight, that is, the minimum sum of weights needed in a
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child. Also, the learning rate and the number of estimators (number of trees)
were tuned, these two having an inverse relation: the higher the learning rate
the smaller the number of trees that have to be defined, and vice-versa.

As shown in Fig. 2, the classifiers discriminate better the data as the value
of Gc increases. However, the highest Gc did not give the best UAR score. SVM
classified better when the Fisher vectors were encoded using 64 Gaussian com-
ponents, while a smaller number of Gc was needed for XGBoost (32). Stratified
k-fold CV (on the combined train and development data) with k = 10 was
applied for the hyper-parameter tuning of both algorithms. Due to XGBoost
basically being an ensemble of regression trees, its posterior probability values
are not really meaningful, hence we did not perform any kind of fusion with them.
In spite of this, such algorithm achieved a score of 69.59% with the ComParE
feature set and 70.43% using the Fisher vector features; the former outperformed
the non-fused highest score of SVM (67.81%) and it is slightly lower than the
fused one (70.17%), while the latter surpassed both of them. Furthermore, these
scores surpassed the non-fused baseline and are around the fused baseline score
given in [26] (see Table 1).

Table 1. UAR scores obtained using XGBoost and SVM on the URTIC Corpus.

2* Features 2* GMM size Performance (%)

CV Test

SVM

ComParE – 64.20% 69.30%

Fisher vectors 64 63.98% 66.12%

Fisher vectors + PCA 64 64.72% 67.65%

Fisher vectors (+PN+L2) + PCA 64 64.92% 67.81%

Fusion: ComParE + FV(+PN+L2+PCA) –/64 63.01% 70.17%

XGBoost

ComParE – 62.19% 69.59%

Fisher vectors 32 63.71% 70.43%

5 Conclusions and Future Work

Here, we showed how well the Fisher vector encoding allows frame-level features
to classify speaking subjects with a cold. We utilized two different classification
algorithms (SVM and XGBoost) that used FV as input features. We showed
that such features trained on both algorithms outperform original baseline scores
given in [26] and they are highly competitive with those reported in [2,14]. More-
over, our approach offers a much simpler pipeline than the above-mentioned
studies. We found that we got a better SVM performance when we applied
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feature pre-processing before starting the train/classification phases. Namely, it
was shown that both L2-Normalization and Power Normalization produced an
increased prediction performance. Also, PCA played a relevant role in decorre-
lating the features and increasing the model’s performance. We demonstrated
the usefulness of the fusion of SVM posterior probabilities which yielded even
better UAR results. In contrast, XGBoost did not need any pre-processing or
any kind of fusion to achieve and surpass SVM scores in our study. Yet, one dis-
advantage of XGBoost was the significant number of parameters that have to be
tuned. This can slow down the parameter-tuning phase especially if there is no
GPU available. In our next study, we plan to apply the methodology presented
here on different kinds of paralinguistic corpora.
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