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Ensemble Bag-of-Audio-Words Representation
Improves Paralinguistic Classification Accuracy

Gábor Gosztolya and Róbert Busa-Fekete

Abstract—A recently introduced, effective feature extraction
technique for computational paralinguistics is that of Bag-of-
Audio-Words (BoAW), where we cluster the frame-level training
vectors, and represent each speech utterance based on the cluster
of its frames. Over the past few years, several improvements have
been proposed for the original BoAW approach, but none of them
has examined the impact of the stochastic nature of the clustering
step. In this study we demonstrate experimentally that the random
factor present in the BoAW clustering step is indeed propagated
into the next classification step, eventually leading to suboptimal
classification performance. As a solution, we propose to train an en-
semble of classifiers; that is, we repeat the BoAW codebook selection
step several times, train separate classifier models for these BoAW
representation versions and combine their predictions. Our results,
obtained for three different paralinguistic datasets, demonstrate
that this ensemble technique makes the whole paralinguistic clas-
sification process more robust, and it leads to improvements in the
classification performance. We tested this technique on three differ-
ent paralinguistic datasets, and achieved the highest Unweighted
Average Recall score reported so far on the iHEARu-EAT corpus.

Index Terms—Computational paralinguistics, classification,
Bag-of-Audio-Words representation, ensemble learning.

I. INTRODUCTION

COMPUTATIONAL paralinguistics, a subfield of speech
technology, consists of tasks that involve identifying phe-

nomena present in human speech besides the actual words
uttered. Notable tasks include emotion recognition [1]–[5],
conflict intensity estimation [6], [7] and various medical ap-
plications like detecting Alzheimer’s disease and Parkinson’s
disease [8]–[12].

One important technical aspect of these tasks is that, to per-
form utterance-level classification, we need fixed-length feature
vectors extracted from recordings of varying lengths. Several
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techniques have been proposed to solve this problem, such
as GMM supervectors [13], i-vectors [14], x-vectors [15] and
sequence-to-sequence autoencoders [16], [17]. A competitive al-
ternative to these methods is the Bag-of-Audio-Words (BoAW)
representation scheme, inspired by Natural Language Process-
ing and image (video) processing. In the BoAW approach we
take the frame-level feature vectors (e.g. MFCCs) of the ut-
terances of the training set and cluster them. Then, for the
next step, each frame-level feature vector is replaced by its
cluster; utterance-level feature vectors are then calculated as
the (normalized) histogram of the clusters corresponding to the
frame vectors of each utterance [18]. We can directly use these
histograms as feature vectors to perform utterance-level classi-
fication and evaluation; for example by using a Support-Vector
Machine (SVM, [19]). BoAW representations have been used in
various audio processing tasks such as emotion recognition [20],
[21], snore sound classification [22] and acoustic event detec-
tion [23], achieving competitive results in each case.

Unfortunately, this basic version of the BoAW process is quite
sensitive both to the number of audio words (i.e. cluster centers)
and to the number of training samples. The former can affect
classification accuracy, as using too few clusters may not allow
us to represent the utterances in sufficient detail, while too many
clusters may lead to overfitting if the clusters are too specific
for some actual training utterances. Although computational
paralinguistic datasets tended to be only dozens of minutes long,
recently larger corpora have been introduced (see e.g. [24]–[26]).
This means that, to create the BoAW features, first millions or
even tens of millions of frames have to be clustered, leading to
enormous execution times.

In order to keep the time requirement of the BoAW code-
book creation (i.e. clustering) process within manageable limits,
many improvements and simplifications have been proposed.
Rawat et al. found that using simple random sampling of the
input frames as codewords leads to similar accuracy scores as
those using clustering for codebook creation [27], while it is
evidently significantly faster. Schmitt et al. applied the cluster
center initialization method of k-means++ for codebook con-
struction [28]. In this method, the first codebook vector is chosen
randomly, then each additional center is chosen as the input
vector that is the farthest away from the already chosen cluster
centers [29]. Following these studies which seek to speed up
the codebook construction step, nowadays selecting the cluster
centers by random sampling is the most common approach in
computational paralinguistics [20], [30]–[32], although some
studies employ k-means [33] or GMM clustering [23] as well.
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We would like to point out, however, that regardless of what
algorithm variation we choose to calculate the BoAW represen-
tation of the utterances, it will be sensitive to the randomness
involved in the process. Simple random sampling is, without a
doubt, a highly stochastic procedure; k-means is reported to be
sensitive to cluster center initialization [34]; and the k-means++
initialization step sampling strategy may also prove to be sensi-
tive to the randomly chosen first cluster center, especially for
smaller codebook sizes. Although this might seem obvious,
surprisingly, earlier studies did not consider this stochastic
behaviour as a potential source of suboptimal classification
performance. In fact, we found no study at all that investigated
the effect of randomness present in the BoAW process. This
is why in this paper we will focus on the non-deterministic
behaviour of the Bag-of-Audio-Words process.

Our study consists of two key parts. Firstly, we will demon-
strate experimentally that paralinguistic classification is indeed
adversely affected by the random noise introduced by the BoAW
representation. To the best of our knowledge, this is the first
study where this is even raised as a hypothesis. Secondly, we will
also demonstrate that by training an ensemble learning method
(by repeating the BoAW codebook construction process several
times), we can make the utterance-level classification process
more robust, leading to significant improvements in the classi-
fication performance on the test set. In order to demonstrate the
above points at the general level, we performed our experiments
on three databases, differing greatly in their acoustic conditions,
in the phenomenon which had to be detected in them, and in the
language of the speakers (German, Hungarian and Australian
English).

II. FEATURE EXTRACTION METHODS IN

PARALINGUISTIC TASKS

Next, to put our work into context, we describe some of
the related work of feature extraction approaches utilized in
paralinguistic tasks.

In the classification (or regression) step of computational
paralinguistic tasks, one speech utterance corresponds to one
example. To apply standard machine learning techniques for
classification (such as SVM, random forest or DNN), we have
to provide a fixed-size feature representation for each utterance.
Practically speaking, it involves mapping (and also compress-
ing) a variable-length frame-level feature vector sequence into
a fixed-dimensional space.

One of the most widely-used utterance-level feature extraction
methods in this area is the ‘ComParE functionals’ approach.
It employs utterance-level statistical functions (mean, standard
deviation, percentiles, peak statistics etc.) over the frame-level
feature vectors to perform length-normalization. Although it
tends to contain several correlated and irrelevant attributes, this
set was employed in a wide variety of tasks [6], [35], [36] (even
if just to provide a baseline).

Of course, even before the field of ‘computational paralinguis-
tics’ was defined, there were similar tasks within speech technol-
ogy. For example, both the speaker identification (i.e. recogniz-
ing the actual speaker from a pre-defined list of speakers [37])

and the language identification [38], [39] tasks might fit into
the general paralinguistic scheme. For these tasks, several tech-
niques were developed, which share the motivation with Bag-
of-Audio-Words that they count the frequency of occurrences
of some discrete units such as language-dependent or language-
independent phones [40], [41] or prosodic information [42].

Another, quite popular family of feature extraction ap-
proaches was developed originally for speaker recognition.
Perhaps the most well-known one of these methods, the so-
called i-vector technique [14], models ‘general speech’ by a
Gaussian Mixture Model (Universal Background Model, UBM),
and expresses speaker and session variability in a compressed
space for each speech chunk or utterance. Besides achieving
state-of-the-art performance in speaker recognition and speaker
identification in its time, i-vectors were also employed in other
tasks such as language recognition [43], age determination [35]
and detecting dementia from speech [12]. With the rise of deep
neural networks, DNN-based speaker recognition approaches
such as d-vector [44] and x-vector [15] were introduced; later,
these were also applied as feature extractors in paralinguistic (or
paralinguistic-like) tasks like age estimation [45], [46], emotion
recognition [47] and detecting Parkinson’s Disease [48].

III. BAG-OF-AUDIO-WORDS FEATURE EXTRACTION

Next, we introduce the Bag-of-Audio-Words representation;
for an overview of the BoAW workflow, see Fig. 1. For this, let
us denote the frame-level feature vector sequence of an utterance
by Xi = (xi,1, xi,2, . . . , xi,mi

), 1 ≤ i ≤ M , where xi,j are the
d-dimensional feature vectors, and mi is the length of the ith
utterance. First, we pool all the frame-level feature vectors of
the utterances of the training set; i.e. we define

X =

M⋃
i=1

mi⋃
j=1

{xi,j}. (1)

As for the next step, we determine the W = {w1, w2, . . . , wN}
set of codewords, also being d-dimensional vectors, based on
X (step codebook construction in Fig. 1), where |W | = N is a
hyperparameter of the BoAW method. For this codebook con-
struction step, multiple methods were defined such as clustering
by k-means [18], simple random sampling [27] and using the
initialization step of the k-means++ algorithm (usually denoted
as random++) [28]. Notice that, in the latter two cases,wi ∈ X
also holds.

Having obtained the W set of codewords, we can now cal-
culate the Bag-of-Audio-Words representation of any Xi =
xi,1, . . . , xi,mi

utterance. To do this, we first select the closest
codeword for each xi,j frame-level feature vector as

z(i, j) = arg min
l

‖xi,j − wl‖2. (2)

This step is usually called vector quantization (see Fig. 1). Next,
we construct a histogram vector of these values (which we also
normalizing by utterance length mi) as

Hi = (hi,1, hi,2, . . . , hi,N ), (3)
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Fig. 1. The schematic general workflow of the Bag-of-Audio-Words feature extraction process.

TABLE I
THE NUMBER OF SPEAKERS AND UTTERANCES IN THE TRAINING AND TEST SETS FOR ALL THREE DATABASES USED

where

hi,k =

∑mi

j=1 δ (z(i, j), k)

mi
(4)

and δ(x, y) is the Kronecker δ function, which takes the value
1 iff x = y and is 0 otherwise. That is, we calculate the ratio of
frame vectors in the current utterance which fall closest to each
cluster center. Notice that the size of Hi is independent of the
mi length of the actual utterance, but it is equal to the number
of codewords (i.e. N ) instead. Also notice that the above H
feature vector can be calculated both for utterances used during
the codebook construction step and for those not utilized in this
process (such as the utterances of the test set).

IV. THE DATABASES USED

We performed our experiments on three different datasets; for
the key properties of the corpora, see Table I. The first one was
the iHEARu-EAT database [49], which contains the utterances
of 30 people recorded while speaking during eating. Six types
of food were used along with the “no food” class, resulting in
seven classes overall. For each speaker and food type, seven
utterances were recorded; some subjects refused to eat certain
types of foods, resulting in a total of 1414 utterances in German.
Although this dataset can be used primarily to test machine
learning techniques, Hantke et al. anticipated several possible
future applications [49]. This dataset was also used in the Inter-
speech ComParE 2015 Eating Condition Sub-Challenge [50];
we used the official experimental protocol (e.g. training and test
set splits). We will refer to this corpus as the Eating Condition
dataset.

The Hungarian Emotion Database [51], used as the second
dataset in our experiments, contains sentences from 97 Hun-
garian speakers who participated in television programmes. A
large portion of the segments were selected from spontaneous
continuous speech rich in emotions (e.g. talk shows, reality
shows), while the rest came from improvised programmes. Note
that, although actors tend to overemphasize emotions while

acting, in improvisation their performance appears to be more
similar to real-life emotions [52].

In this corpus four emotion categories were defined: Anger,
Joy, Neutral and Sadness. Unfortunately, previous studies
(e.g. [51], [52]) relied on simple ten-fold cross-validation with-
out paying attention to the speaker independence of the folds, as
it was not a requirement at the time of recording. To follow the
recent trends and to guarantee that the utterances of each speaker
are present either during classifier training or evaluation, we
defined our custom training and test sets, assigning all utterances
of a speaker to either the training or the test set. Our training set
consisted of 831 segments, while the test set had 280 utterances.
Due to this re-partitioning, our results presented here cannot
be directly compared to those presented in the earlier studies
(i.e. [51], [52]), but authors reported classification accuracy
scores around 66-70%. We will refer to this corpus as the
Emotion dataset.

The third dataset we used was the Cognitive Load with
Speech and EGG database [53]; this dataset was created for
evaluating algorithms which detect the cognitive load and work-
ing memory of speakers during speech. It contains the utterances
of native Australian English speakers performing ‘span’ tasks
which require the participants to recall a number of concepts
or objects in the presence of distractors. The speakers had to
perform three types of tasks. The first one (reading sentence)
required them to read a series of short sentences, indicate
whether each was true or false, and then remember a single letter
presented briefly between sentences. Three different cognitive
load levels were defined: low when recalling after one sentence,
medium when remembering after two sentences, and high after
the third, fourth and fifth sentences. The remaining two tasks
were variants of the Stroop test [54]: the speakers had to name
the font colour of words corresponding to different colour names.
In the Stroop time pressure task, at the high level the participants
had to do this in a very short period of time (0.8s), while in the
Stroop dual task they had to perform a tone-counting task at the
high level besides naming the font colour.
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Since the three tasks performed were inherently different, it
was advisable to train distinct classifier models for them (for
details, see [55]). However, due to the distribution of utterances,
this leads to fairly tiny datasets for the two Stroop tasks: from
the 1674 utterances of the training set, only 162-162 recordings
contain speech recorded during the two Stroop test variations.
After considering the tiny size of the two sub-tasks involving the
Stroop test, we decided to use only the reading sentence task in
our experiments.

This dataset was later used in the Interspeech ComParE 2014
Cognitive Load Sub-Challenge [55]; we followed the official
evaluation protocol of this dataset with one slight change: we
decided to merge the training and development sets (utterances
of 6-6 speakers), and we set the hyperparameters in speaker-
wise cross-validation. Therefore, our reported test set results are
comparable with those found in the literature. We will refer to
this database as the Cognitive Load dataset.

V. EXPERIMENTAL SETUP

Our classification pipeline has a standard structure. First,
we extract the frame-level attributes, calculate and standardize
the BoAW vectors. Then we choose the hyperparameter vector
based on cross-validation performance (over the training set),
and evaluate the classifier models on the test set. We also
experiment with combining the BoAW-based predictions with
those obtained using the ‘ComParE functionals’ features. Next,
we will describe the technical aspects of these steps.

A. BoAW Parameters

We utilized the OpenXBOW package (version 1.0) [56],
which is an open-source BoAW toolkit written in Java. It
supports various strategies of vector quantization, codebook
construction, and normalization of both the input frame-level
features and the calculated histograms. We tested codebook sizes
ofN = 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 and 16384.
For codebook construction, we applied the strategy of random
sampling from the frames of the training set. Furthermore,
following Pancoast and Akbacak, we assigned each frame-level
feature vector to the nearest five clusters, as it was shown to aid
classification performance [57].1

We used 12 Mel-Frequency Cepstral Coefficients (MFCCs)
along with energy as frame-level inputs; and following pre-
liminary tests, we also included the first-order derivatives. We
constructed codebooks for the original and theΔvalues indepen-
dently, and simply concatenated the two BoAW representations,
just as suggested by Schuller et al [17], [31]. This approach
is reported to improve classification performance, which was
reinforced by our preliminary tests. (For consistency, we will
always give the combined BoAW codebook size values; i.e.
N = 32 means 16 clusters for the original 13 MFCC vectors
and 16 clusters for the first-order derivatives.) We shall denote
this approach by ‘BoAW-MFCC’ later on.

1The command line parameters were -attributes n1[13]2[13] -a
5 -c random -norm 1 -size N (N being the codebook size).

B. Utterance-Level Feature Preprocessing

Before the classification step, we employed standardization
of the utterance-level features (i.e. the BoAW vectors); that is,
we applied a linear transformation to convert them so as to
have zero mean and unit variance. However, several studies
(see e.g. [50], [58], [59]) have demonstrated that, depending
on the actual task, speaker-wise feature standardization might
assist the subsequent classification step. As our preliminary tests
reinforced this finding for the datasets of Eating Condition and
Cognitive Load, we standardized all feature sets by applying this
approach on these two corpora. We made use of the annotated
speaker IDs for the training set, while the speakers of the test
set were determined by a standard speaker clustering method.
The clustering method of our choice was the Agglomerative
Hierarchical Clustering (for the details, see [60]). The number of
speakers was determined based on the difference of cluster dis-
tances. After speaker clustering, the transformation parameters
of the standardization step were calculated for the utterances of
each speaker separately; regarding the Emotion dataset, where
we employed global standardization, these transformation pa-
rameters were determined on the training set and then applied
to the test set with the same parameters.

C. The Classification Process

Our classification process followed standard paralinguistic
procedures (see e.g. [31]): we applied Support Vector Ma-
chines for utterance-level classification, utilizing the LibSVM
library [61]. We used the C-SVC method with a linear kernel;
the value of C was tested in the range 10{−5,...,1}.

Hyperparameters (BoAW codebook size N and SVM com-
plexity C) were tuned in speaker-wise cross-validation (CV)
based on the training set. That is, for a given hyperparameter
vector, we withheld the training examples corresponding to the
utterances of one speaker during SVM training, and evaluated
the trained model on these withheld examples. Repeating this
process for all the speakers of the training set, we obtained
predictions for all the utterances, which allowed us to evaluate
classification performance on the full training set. Next, the
hyperparameters (i.e. N and C) leading to the highest-quality
classification were used to train a classifier model on the whole
training set, which was finally evaluated on the test set. Un-
fortunately, the Emotion dataset had a fairly large number of
speakers, and many of them uttered only a few sentences.
Therefore, for this particular dataset we split the training set into
10 (speaker-independent) folds, and set the hyperparameters in
10-fold cross-validation.

We measured the classification performance via the Un-
weighted Average Recall metric (UAR, [62]), being the mean
of the class-wise recall scores. That is, for a confusion matrix
C = ci,j for K classes (1 ≤ i, j ≤ K), where ci,j corresponds
to the number of utterances belonging to class i and classified
as class j, we define

Recalli(C) = ci,i∑K
j=1 ci,j

. (5)
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Following this, we can write

UAR(C) = 1

K

K∑
i=1

Recalli(C). (6)

The Eating Condition and the Cognitive Load datasets had
fairly balanced class distributions, but the Emotion corpus was
found to be seriously imbalanced class-wise. We overcame this
by employing upsampling for this particular corpus: we repeated
the training samples of the rarer classes in the training set to
match the size of the most frequent class. We did this for all
SVM model training steps, i.e. even during cross-validation.

D. The ComParE Functionals Feature Set

As the standard paralinguistic solution, we utilized the 6373-
sized ‘ComParE functionals’ attribute set (see e.g. [50]). We
used the openSMILE tool [63] (version 2.3.0) to extract the
features, utilizing the IS13-ComParE configuration file. This
feature set led to UAR scores of 74.3%, 54.5% and 62.9% in CV,
and 74.8%, 60.3% and 63.4% on the test set, Eating Condition,
Emotion and Cognitive Load datasets, respectively.

E. Prediction Combination

From our experiences (e.g. [64]) we know that it might
be beneficial to use multiple different (utterance-level) feature
sets, as these might represent the individual utterances from a
different aspect, thus aiding classification. To make use of both
the ComParE functionals and the Bag-of-Audio-Words feature
sets, we decided to opt for late fusion [65]; that is, we trained
separate SVM models for the different types of features, and
combined the predictions in the second step. Again, following
our previous paralinguistic studies, we took the weighted mean
of the two posterior estimates; weights were chosen as the ones
that led to the best UAR score in cross-validation, determined
by a grid search with 0.05 increments.

VI. EXPERIMENTAL RESULTS

Next, we present and analyze our test results on the three
paralinguistic datasets.

A. Results

First, we focused on the variance introduced by the Bag-
of-Audio-Words representation by examining the classification
UAR scores obtained by training our SVM models on BoAW
representations extracted with identical hyperparameters. A high
variance also has a clear negative impact on classification per-
formance: since the selection of the hyperparameters – the
BoAW codebook size N and the SVM complexity C – is done
based on classification performance in cross-validation, a high
variance of the models means that we are likely to choose a
hyperparameter vector which leads to a suboptimal, or even a
sub-average classification performance on the test set.

To measure this variance, we created the BoAW codebooks
(for each tested codebook size N ) repeated for 10 times, each
time using a different random seed. We determined the C value

for the SVMs by an exhaustive search using BoAW models for
three random seed values. Therefore, the trained SVM models
differed only in the random seed value used during the BoAW
codebook construction process.Fig. 2 shows the average UAR
scores we got as a function of codebook size; the error bars
indicate the minimal and maximal values. Although it is clear
that the scores follow a general trend, it can also be seen that
their variance is quite high, even for higher values of N . For the
Eating Condition dataset, the scores are increasing along with
a higher N value, but in cross-validation the difference between
the minimal and maximal value is usually between 2.8% and
4.9% (absolute), and for N = 64 it is actually 9.9%. (For the
test set, these values lie between 1.7% and 6.8%, while for
N = 32, we got a difference of 9.3% between the best and
the worst BoAW-based model.) In the case of the Emotion
database, the best (average) performance was measured in the
range 256 ≤ N ≤ 1024, but the individual UAR scores varied
to a great extent: even in this interval, the difference between
the best and worst measured UAR value is between 6% and
9%, while for lower N values it even reached 11%. For the
Cognitive Load dataset, the score deviation in general is lower,
but the absolute difference is between 2% and 6% in all cases,
and for the best region (i.e. N = 2048 and N = 4096) it is
above 4% for the test set, which is actually a large difference
for this particular database. These differences support our initial
hypothesis that the stochasticity of BoAW codebook construc-
tion also leads to a high variance in classification performance,
both in cross-validation and on the test set.

When we examine how the UAR values behave after (late)
fusion (see Fig. 3 for the average of the fused scores; the error
bars again indicate the minimal and maximal UAR values),
we might notice that, in contrast with Fig. 2, the scores are
generally quite high for most N values. This is obviously so
because the combination with the ‘ComParE functionals’ ap-
proach increased the robustness of the (combined) predictions
(again, compared to the previous experiment, i.e. Fig. 2). Still,
there is a relatively high variance of the UAR scores for each N ,
although it is somewhat smaller than for the original scores.

Table II summarizes the best UAR scores measured. Besides
the ‘ComParE functionals’ approach, we list four variations of
BoAW-MFCC. ‘Single’ refers to the typical setup when using
Bag-of-Audio-Words: using only one BoAW model, calculated
by using only one single random seed value (in our experi-
ments simulated by taking the first random seed value tested2).
‘Average’ refers to the mean of the UAR values of the ten
BoAW models (extracted using the same N value, but with a
different random seed). Finally, ‘maximal (CV)’ and ‘maximal
(test)’ denote the cases where we choose the classifier model
(practically the hyperparameters C, N and the random seed)
which give the highest UAR value in cross-validation and on
the test set, respectively.

We would like to point out that now we are interested in
the variance of the BoAW-based models, and we selected the
cases examined on this basis. Therefore, not all the listed cases
represent an approach which can be applied in practice; for

2It was 117441911
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Fig. 2. The average UAR scores obtained using the BoAW-MFCC representation for the different codebook sizes and for all three databases. The error bars
indicate the minimum and maximum values.

Fig. 3. The average UAR scores obtained by combining the ComParE and the BoAW-MFCC representations for the different codebook sizes and for all three
databases. The error bars indicate the minimum and maximum values.

TABLE II
THE UAR SCORES OBTAINED USING THE VARIOUS BOAW-MFCC APPROACHES, WITH AND WITHOUT A COMBINATION

WITH THE BASELINE COMPARE FUNCTIONALS APPROACH

example, choosing the classifier model which leads to the best
performance on the test set (‘BoAW-MFCC, maximal (test)’)
is clearly not something one could do in ordinary classification
experiments, but it makes sense to include this specific model
when investigating model variance.

Examining the values obtained (see Table II), we can see that
the approach ‘BoAW-MFCC, single’ (i.e. the typical approach
when using Bag-of-Audio-Words; practically, our baseline) in
fact led to similar UAR scores to those with the BoAW-based
models on average (line ‘BoAW-MFCC, average’), with a differ-
ence of 1.2% (absolute) in the CV setup and 1.6% on the test set

for the Eating Condition corpus. Choosing the BoAW model
which led to the highest CV UAR score (case ‘BoAW-MFCC,
maximal (CV)’), however, led to a sub-average performance on
the test set; while when we chose the best-performing model
(in fact, random seed) on the test set (an outstanding value of
83.1%), the CV performance was below average. We regard this
finding alone as an indicator of a high level of stochasticity.

Examining the results on the Emotion and on the Cognitive
Load datasets, we can draw similar conclusions. When we
combined our predictions with those obtained by using the
‘ComParE functionals’ feature set, we can find an even smaller
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Fig. 4. Absolute UAR scores in cross-validation and on the test set for the different BoAW models tested.

Fig. 5. UAR score differences compared to the average UAR score for the same codebook size in cross-validation and on the test set for the different BoAW
models tested.

connection among the UAR values in cross-validation and on
the test set: for example, the best-performing model on the test
set (line ‘maximal (test)’) was worse than the average score of
the ten models in cross-validation on all three datasets.

In our view, this behaviour is present because the random
factor affecting the BoAW codebook construction process af-
fects the final UAR scores in a random way as well. This means
that a slight performance increase in the CV setup due to a
different random seed does not guarantee a similar (or, in fact,
any) increase of the UAR score on the test set. This also means
that, if one uses only one BoAW model for each N value
and selects N as the one leading to the highest UAR value
in cross-validation (which is the standard practice), one might
end up with a suboptimal codebook size (in terms of test set
performance). To verify this hypothesis, we carried out another
experiment.

B. Relation of the Cross-Validation and Test Set Predictions

Fig. 4 shows the UAR scores obtained for the 100 models
(10 random seed values tested for each of the 10 codebook size
variations). At first glance, the values for the Eating Condition
and the Cognitive Load datasets seem to be highly correlated,
suggesting that a high performance in cross-validation also leads
to a well-performing model on the test set. (These values have

a Pearson’s correlation coefficient of 0.972 and 0.914, Eating
Condition and Cognitive Load tasks, respectively, also indicat-
ing a high level of correlation.) In contrast, for the Emotion
corpus we cannot find such a strong connection (correlation
coefficient: 0.418); this might be explained, however, by the
subjectivity of annotation leading to label noise, making this
task (and emotion detection in general) harder for automatic
methods. In contrast, the class labels of the other two datasets
were determined objectively.

Notice, however (see Fig. 2), that the number of audio words
(i.e. N ) has a great influence on the classification performance.
To eliminate this effect of codebook size, next we adjusted the
UAR scores: for each configuration, we reduced the measured
UAR values by the average UAR score obtained for the appro-
priate codebook size. (This way we measured how much better
or worse the performance of the given configuration was than the
average BoAW configuration with the same codebook size.) The
resulting difference values, showing the relative effect of each
given random seed value in cross-validation and on the test set,
can be seen in Fig. 5. Inspecting this figure, it is quite apparent
that there is no more than a slight connection among the relative
performance gain on the two database subsets. (We measured
Pearson’s correlation score of 0.454, 0.188 and 0.167 for these
values, for the Eating Condition, Emotion and Cognitive Load
tasks, respectively, which also reflect a low level of (linear)
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dependence.) In contrast, the mean UAR scores of the CV and
test UAR scores (measured for the different codebook sizes) had
correlation values of 0.996, 0.693 and 0.992.

Repeating this experiment for the combined models, we were
able to draw similar conclusions: after removing the influence
of the codebook size, we found that the UAR scores on the two
subsets are only loosely correlated, as we measured Pearson’s
correlation scores of 0.368, 0.056 and 0.049, Eating Condition,
Emotion and Cognitive Load datasets, respectively. We interpret
these results as they also support our hypothesis that the random
factor (inherently present in the BoAW codebook construction
step) adds some random noise to the performance of the next
classification step, which may affect the different examples,
hence the different database subsets independently. As model
and hyperparameter selection (i.e. BoAW codebook size, com-
bination weights) are typically carried out in cross-validation or
on a development set, this noise is likely to lead to a suboptimal
performance on the independent test set.

VII. ENSEMBLE BOAW REPRESENTATION

In the previous section we showed that by using the BoAW
procedure we inherently introduce some random noise into the
UAR scores, which makes model selection really challenging.
Next, we will show that the effect of this high model variance
can be reduced by training an ensemble of the models built using
different random seeds.

A. Ensemble Learning

The basic principle of ensemble learning is to train several dif-
ferent, but similar machine learning models, and combine their
outputs in some way. Perhaps the best-known such techniques
are bagging (or bootstrap aggregation) and boosting. Bagging
carries out the training of such similar models by randomly
selecting subsets of the training data [66]. Boosting, in contrast,
trains the next individual classifier model by focusing on training
instances which were mis-classified by previous models (e.g. by
using larger weights for these examples, [67]). Stacking, another
ensemble learning technique, is basically a two-step learning
scheme, where different classifier models (for example, different
algorithms) are trained on the whole training data, and their
outputs are combined via another machine learning method [68].
Notice that all these ensemble approaches use the same feature
representation, and the difference in the classifier models trained
are due to using some subsampled data or weighting.

Our approach differs from these ensemble approaches in
the sense that the individual learners use different feature sets,
which depend on some random initialization (i.e. generating the
codewords of BoAW). Due to this, we find the proposed mech-
anism more related to random projection instead. In random
projection, we map our feature vectors to a lower-dimensional
space in a controlled random manner, e.g. by multiplying them
with a Gaussian random matrix [69] or with a sparse random
matrix [70]. Since this process is stochastic by nature, if we
repeated this procedure multiple times, we would end up with
several different representations of the full training data, even-
tually leading to a difference in the classifier models trained on

them. We find the BoAW representation to be similar to random
projection because of the stochasticity inherently present in the
feature representation.

B. The Ensemble BoAW Model

Regarding the Bag-of-Audio-Words process in paralinguistic
audio classification, we propose calculating the BoAW code-
book several times using the same parameters, but each time
applying a different random seed. This eventually leads to a
number of different representations (“projections”) of the same
training data. Although in theory concatenating these feature
vectors and training only one classifier model might lead to
a more robust performance than relying on any of the indi-
vidual representations, we would end up with unrealistically
huge feature vectors, which might prove to be unfeasible in
practice. Therefore we chose to train separate classifier (e.g.
SVM) models on these BoAW representations in the next step.
Of course, as we showed in Section VI, we may expect the
performance of these models to have a high variance. To make
the predictions more robust (and thus, hyperparameter selection
more reliable), we suggest simply averaging out the posterior
scores got after classifier evaluation in an unweighted manner.
Formally, we calculate the posterior estimate provided by the
ensemble model as

Pe(ci|X) =
1

m

m∑
j=1

Pj(ci|X) =
1

m

m∑
j=1

Pj(ci|Hj), (7)

where ci denotes the ith class (1 ≤ i ≤ K), X is the frame-
level feature sequence of the actual utterance, Hj is the BoAW
representation of X calculated by the jth BoAW model, and
the Pj value is the individual posterior estimate provided by the
jth SVM model. We call this approach the ‘Ensemble BoAW
approach’.

In our experiments, the number of models in the ensemble
(m) was set to 10. We repeated this procedure for all three
datasets and all the testedN values. To set the complexity hyper-
parameter of SVM, first we performed the proposed procedure
with m = 3 classifier models, and then we chose the C value
that led to the best performance for the given codebook size in
cross-validation.

C. Bayesian View

Our approach can naturally be viewed as a Bayesian classi-
fier combination mechanism where the prior distribution μ is
determined by the random selection of the codewords W =
{w1, . . . , wN}. More precisely, let us denote the classifier
method (including the feature extraction step) by g. The function
g represents an end-to-end classification pipeline that maps the
input sequence of utterance to a score value. In our actual real-
ization, the g function represents the feature extraction carried
out by BoAW and, in addition to this, the classifier itself (which
is an SVM). The input parameters of function g, among many, is
the dictionary of codewords, therefore we shall write g(X;W ).
For the sake of presentation, the rest of the input parameters of
g, which are often called hyperparameters, are concealed. With
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Fig. 6. The UAR scores obtained using the ‘single’ and the ‘ensemble’ BoAW-MFCC approaches for the different codebook sizes and for all three databases.

Fig. 7. The UAR scores obtained by combining the ComParE and the ‘single’ and the ‘ensemble’ BoAW-MFCC approaches for the different codebook sizes and
for all three databases.

this notation in hand, our approach can be viewed as an estimate
of the following Bayesian mixture of classification methods in
the limit:

g(X) =

∫
g(X;W )μ(W ), (8)

where μ(W ) is a distribution of the possible codewords of N
elements. We believe that μ(W ) explains the vast part of the
variance in the performance of the classifiers using the BoAW
approach. Our empirical estimate of (8) which we used in our
experiments is

ĝ(X) =
1

m

m∑
i=1

g(X;Wi), (9)

where m is the number of models that are combined.

D. Classification Results

Fig. 6 shows the UAR scores achieved in cross-validation
and on the test set using one BoAW model (‘BoAW Single’)
and using the proposed, ensemble BoAW approach (‘BoAW
Ensemble’) for the three datasets used. It is quite apparent that
the proposed ensemble classification model outperforms the
single BoAW one: the UAR values we achieved are higher in

almost every case. When combining the BoAW predictions with
the ComParE ones (see Fig. 7), a similar trend is visible.

Examining the configurations which proved to be the best
in cross-validation (see Table III), the performance difference
is perhaps even more obvious. We can also see that combin-
ing the posterior values of the BoAW models calculated by
using different random seeds indeed stabilizes the predictions,
especially on the Eating Condition and on the Cognitive Load
corpora. Overall, we achieved absolute UAR improvements of
6.9%, 15.7% and 5.0%, corresponding to relative error reduction
(RER) values of 31%, 33% and 11% on the Eating Condition,
Emotion and Cognitive Load corpora, respectively. We also no-
tice that the combined score significantly outperformed the one
obtained by using the BoAW model with one random seed (line
‘ComParE + BoAW-MFCC single’): treating the latter value as
our baseline, we achieved relative error reduction scores of 22%,
12% and 3%, Eating Condition, Emotion and Cognitive Load
corpora, respectively. (We find this approach more appropriate
for use as a baseline than the average performance of the BoAW
models, because this is the standard solution described in the
literature.) We would also like to add that our UAR score of
86.2% achieved on the Eating Condition corpus is the highest
one published so far, significantly exceeding the UAR value of
83.1% obtained by Kaya et al. [58].
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TABLE III
THE UAR SCORES OBTAINED USING THE SINGLE AND ENSEMBLE BOAW-MFCC APPROACHES, WITH AND WITHOUT A

COMBINATION WITH THE BASELINE COMPARE APPROACH

Fig. 8. The average UAR scores obtained using the Ensemble BoAW approach with different number of models (m) combined. The error bars indicate the 5th
and 95th percentile values.

E. The Variance of The Ensemble Models

The proposed ‘Ensemble BoAW’, by combining the predic-
tions of individual BoAW-based classification processes, led to
improved scores by making the predictions more robust. Still,
since it is a combination of a finite number of classifiers, it
might be worth taking a look at the variance of the ensembles.
To do this, we took the same 10 SVM models for each N value
as before, and constructed ensembles of them with parameters
m = 5, m = 7 and m = 9 for every possible combination.

Fig. 8 shows the mean UAR values on the test set of the three
corpora as a function of codebook size N ; the error bars show
the 5th and 95th percentiles of the measured scores. Besides
noticing that the shown UAR scores have a similar tendency as
the ensemble scores form = 10, we can also see that the value of
m has little effect on the mean UAR score. The largest absolute
difference was only 1.6% for the Emotion dataset (N = 128),
while for the Emotion and the Cognitive Load corpora it was
less than 1% (N = 256 and N = 128, respectively).

However, we observed differences regarding model variance.
Firstly, increasing N leads to smaller differences among the
reported extreme values, even for the Emotion dataset (where
such differences tend to be larger than in the case of the other
two corpora). Secondly, increasingm leads to a smaller variance;
for example, for the Eating corpus, the difference between the
95th and the 5th percentile UAR was between 2.3% and 4.7%
for m = 5; for m = 7 it was 1.9% . . . 4.4%, while it dropped to
1.1% . . . 3.4% in them = 9 case. This, in our view, indicates that
by increasing the number of models in the ensembles, we can
reduce the level stochasticity, therefore making the predictions
more robust.

VIII. SUMMARY AND CONCLUSIONS

The Bag-of-Audio-Words (or BoAW) representation is an
audio feature extraction approach, which was previously em-
ployed in several computational paralinguistic tasks, and it
achieved competitive results. Although in the literature several
modifications and improvements have been proposed for the
BoAW scheme, none of them has altered its essentially stochastic
nature. Surprisingly, we found no study at all in the literature
that addresses the influence of the random factor of the BoAW
codebook construction process; on the contrary, our hypothesis
was that it might adversely affect the classification performance.

In this study we examined this stochasticity; we focused on
measuring the variance caused by the randomness propagated
to the next classification step. We found that, for three different
paralinguistic datasets, this noise was responsible for a 3-8%
absolute difference measured among identical models, differing
in the BoAW random seed only. Furthermore, we found that
the differences measured in cross-validation and on the test set
were practically unrelated, confirming that this is indeed just the
effect of stochasticity. We noted that this high variance, which
was observed regardless of the actual codebook size used, makes
model selection quite challenging.

In the next part of our study we noted the similarity be-
tween extracting the BoAW representation and applying random
projection, since the feature representation of the examples is
calculated in a non-deterministic way in both cases. To exploit
this, we proposed to train an ensemble of classifiers; that is, we
trained a separate SVM model for each BoAW variation, and
fused their predictions by averaging out their posterior estimates.
We showed that this way a significant performance increase
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can be obtained: we achieved relative error reduction scores
of 12-15% on two datasets, compared to relying on the BoAW
model with the first random seed value, while on the third corpus
we achieved a slight improvement (3%).

We presented our experimental results on three paralinguistic
datasets, differing in speaker tasks, recording conditions and
language as well as in the phenomenon we wish to detect. The
proposed ensemble BoAW approach brought improvements in
each case, which, in our view, confirms its general applicability,
utility and robustness. Although the Bag-of-Audio-Words pro-
cess has several hyperparameters, and it can also be used with
various frame-level feature sets as input, we have no reason to
suppose that the proposed ensemble BoAW technique does not
bring significant improvements for other settings. Moreover, the
proposed ensemble method could be applied on other, similarly
stochastic utterance-level feature representations such as Fisher
Vectors [5], [71]. This, however, is clearly the subject of future
work.
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