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A B S T R A C T

To detect social signals such as laughter and filler events in an audio recording, the most straightforward
way is to utilize a Hidden Markov Model — or these days a Hidden Markov Model/Deep Neural Network
(HMM/DNN) hybrid. HMM/DNNs, however, perform best if the DNN outputs are scaled by dividing them by
the a priori class probabilities first, before applying a dynamic or Viterbi beam search. These class a priori
probability values (or priors for short) are usually estimated by counting the frame occurrences of each class
in the training set and then dividing these totals by the total number of frames. These estimates, however,
may in fact be suboptimal for a number of reasons ranging from imprecise labeling to the overconfidence of
DNNs. In this study we show empirically that more reliable scaling factors can be obtained by optimization.
Using this approach, we managed to achieve a 6 − 9% relative error reduction both at the frame level and the
segment level, using a public database containing spontaneous English mobile phone conversations.
. Introduction

The classification and detection of different verbal cues such as
aughter and filler events (i.e. sounds like ‘‘um’’, ‘‘eh’’, ‘‘er’’ etc.) has a
elatively long history in speech technology. There were some attempts
ven in the early 1990s to identify speech excerpts as laughter or non-
aughter (Wheatley et al., 1992), and many further such studies have
een published since then (e.g. Kennedy and Ellis, 2004; Truong and
an Leeuwen, 2007; Kantharaju et al., 2018). The automatic detection
f filler events, however, has become popular only in the past decade
see e.g. Salamin et al., 2013; Gupta et al., 2013; Brueckner et al., 2017;
osztolya et al., 2019, 2020; Baur et al., 2020).

A simpler approach of identifying social signals is to cut segments
rom spontaneous speech recordings and seek to distinguish these
xcerpts as either the vocalization(s) in question (e.g. laughter, filler
vents), or miscellaneous speech/silence (Truong and van Leeuwen,
007; Neuberger and Beke, 2013). Many recent studies, however,
erformed evaluation only at the frame level (e.g. Gupta et al., 2013;
chuller et al., 2013; Gupta et al., 2016; Baur et al., 2020). A third
pproach, which in fact falls closer to real-life expectations, is to detect
ccurrences of the given phenomena within longer utterances, without
elying on possible locations provided by human annotators. In this
pproach, we have to solve the identification and the localization tasks
imultaneously. To do this, one may simply borrow techniques from the
rea of Automatic Speech Recognition (ASR); for example, to employ a

∗ Correspondence to: MTA-SZTE Research Group on Artificial Intelligence, ELRN, Szeged, Hungary
E-mail address: ggabor@inf.u-szeged.hu.

Hidden Markov Model (HMM) in order to fuse the local (i.e. frame-
level) likelihood estimates provided by a Gaussian Mixture Model
(GMM) into segment-level occurrence hypotheses. More recently, as
Deep Neural Networks (DNNs) were invented, HMM/GMMs have been
replaced by the so-called HMM/DNN hybrid models (Mohamed et al.,
2012) in ASR, and this technique can be straightforwardly applied in
this task as well. Nowadays, recurrent neural architectures (applying
units such as Long-short term memory (LSTM, Hochreiter and Schmid-
huber, 1997) and Gated Recurrent Units (GRUs, Cho et al., 2014)
as building blocks) have become state-of-the-art in ASR; nevertheless,
there are several reasons for still employing the HMM/DNN model
instead of applying a recurrent neural network. These include eas-
ier training, lower computational complexity and memory footprint;
furthermore, non-recurrent neural networks were shown to have a
competitive or even superior performance when the amount of training
data is limited (Panzner and Cimiano, 2016; Schmitt et al., 2019),
which is usually the case in social signal detection.

Before utilizing the DNN outputs in the Hidden Markov Model, first
we should transform them using Bayes’ theorem. This in practice means
that we have to divide them by the a priori probability values of the
classes (or the priors for short), which are usually estimated via simple
statistical methods. Unfortunately, in practice the estimates for both
the a posteriori and a priori probabilities are likely to be imprecise.
Artificial neural networks are known to underestimate the probability
of rarer classes and overestimate the probability of the more common
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ones (Hand and Yu, 2001; Tóth et al., 2005; Buda et al., 2018). As
regards the a priori probability estimates, one source of imprecision
is the finite nature of the training set (Kar et al., 2016), and there
could also be a distribution mismatch between the training set and
the development set or the test set (Saerens et al., 2002). Hence,
correcting the class a priori probability estimates might yield some
improvement in the recognition performance, while it also provides
us the opportunity to (linearly) correct a possible bias present in the
posterior values.

The need to fine-tune class a priori probabilities appears in many
scientific areas, mostly in those which focus on aggregated data in-
stead of dealing with the individual cases separately. Besides statistical
studies (King and Lu, 2008; Hopkins and King, 2010), it has been
applied in many machine learning areas such as natural language
processing (Chan and Ng, 2006), image processing (Buda et al., 2018)
and data mining (Forman, 2008; Esuli and Sebastiani, 2015). Because
of the heterogeneous nature of these areas, there are many equivalent
terms for the task of adjusting the class priors, such as quantifica-
tion (Kar et al., 2016), class prior estimation (Chan and Ng, 2006),
class probability re-estimation (Alaíz-Rodríguez et al., 2011), multi-class
hresholding (Buda et al., 2018; Johnson and Khoshgoftaar, 2019) and
earning of class balance (du Plessis and Sugiyama, 2012).

Clearly, searching for social signal occurrences via a HMM/DNN
ybrid model has several properties in common with these tasks; most
mportantly that estimating class distribution is not an end in itself,
ut it is rather used to improve the accuracy of higher-level tasks
uch as classification. In our case, DNNs are used primarily not to
lassify individual frames, but to estimate local likelihoods, which
re then combined over the time axis by a Hidden Markov Model.
urthermore, there may be a mismatch between training and test sets,
nd, similarly to the set-up of Balikas et al. (2015), we can expect to
ave a separate development set that could be used to fine-tune the
lass prior estimates.

To address the above-mentioned imprecision of both the a posteriori
nd the a priori probability estimates, we will treat the class prior
ectors as trainable parameters, and optimize them in order to improve
he detection of laughter and filler events in audio recordings. Since
n a HMM/DNN hybrid model we combine the frame-level posterior
stimates to form utterance-level hypotheses, we will also show that
t is worth incorporating the HMM search step in the optimization
rocess. To our knowledge, this is the first study that has fine-tuned
he class prior vector in speech technology, and also for Hidden Markov
odels.

The structure of this paper is as follows. First, we examine the
priori probability estimation procedure when looking for the oc-

urrences of laughter and filler events in audio recordings using a
MM/DNN hybrid. Next, we list the methods we applied for class
rior optimization. Then we describe our experimental setup, namely
he database used, the parameters used for training the deep neural
etwork and the evaluation metrics applied. Next, we present and
nalyze our results, and also examine the different class prior values
ested. Lastly, we draw our conclusions.

. Hidden Markov models for audio processing

In audio processing the standard way of handling the audio signal is
o divide it into the so-called frames, which are equal-sized small chunks
f usually 25 ms long with a 10 ms time step. (Therefore, there are 100
rames for each second of the audio.) A standard Hidden Markov Model
xpects the frame-level estimates of the class-conditional likelihood
(𝑥𝑡|𝑐𝑘) values for the given (and in this case, frame-level) observation
ector 𝑥𝑡 and for each class 𝑐𝑘 as its input. From these, it calculates
he most probable state sequence; that is, for each frame it supplies the
ost probable class 𝑐𝑘, taking account the whole utterance (i.e. frame

equence). In traditional ASR, this sequence is used to obtain the (word-

evel) transcript of the speech utterance with its time alignment (i.e. for t

2

ll words also its starting and ending time points within the utterance
re provided). In other tasks, for example when detecting social signals
n speech recordings, we can calculate the starting and ending points
f the social signals uttered.

The frame-level 𝑝(𝑥𝑡|𝑐𝑘) estimate values had been usually supplied
y Gaussian Mixture Models. In the case of HMM/DNN hybrid models,
owever, we replace the GMMs with Deep Neural Networks. Unlike
MMs, which are generative methods, DNNs are discriminative clas-

ifiers and as such, they are known to estimate 𝑃 (𝑐𝑘|𝑥𝑡). The 𝑝(𝑥𝑡|𝑐𝑘)
alues expected by the HMM can be obtained by employing Bayes’
heorem as

(𝑥𝑡|𝑐𝑘) =
𝑃 (𝑐𝑘|𝑥𝑡) ⋅ 𝑃 (𝑥𝑡)

𝑃 (𝑐𝑘)
. (1)

Therefore, in a HMM/DNN hybrid model, the posterior estimates pro-
vided by the DNN component are to be divided by the 𝑃 (𝑐𝑘) a priori
robabilities of the phonetic classes. This will supply us with the
equired likelihood estimates within a scaling factor (the combined
robability of the 𝑥𝑡 observation vectors); luckily, as this scaling factor
oes not influence the subsequent search process, it can be ignored.

To build a HMM/DNN system on an audio database and reliably
easure its performance, the given dataset has to be split into three
ifferent parts: to training, development and test sets. The training set
s utilized to train the frame-level DNN acoustic model; this requires
he presence of the frame-level class labels for the corresponding ut-
erances. By evaluating this neural network on the utterances of the
evelopment and test sets, we obtain the above-mentioned (frame-
evel) 𝑃 (𝑐𝑘|𝑥𝑡) posterior estimates. Additionally, the 𝑃 (𝑐𝑘) class prior
stimates are usually also calculated based on statistics of the training
et: they are typically calculated from the frequency of the frame-level
lass labels. Next, the development set is used to tune the hyperparam-
ters of the Hidden Markov model such as a state insertion penalty, the
eight of the language model, or, in our case, the optimized class prior
stimate values. This step, of course, relies on the posterior estimates of
he already trained DNN model. Lastly, the performance of the whole
MM/DNN hybrid model is measured on the test set; at this point, no

urther parameter adjustment is allowed.

. A priori probability optimization

Unfortunately, in practice the above-referenced probability esti-
ates are not precise, since many factors might affect the probability

stimation process and reduce the quality of values. The 𝑃 (𝑐𝑘|𝑥𝑡) a
osteriori values are primarily affected by a bias of DNNs towards
he classes having more training examples, and by the limited sizes of
raining sets. As regards the 𝑃 (𝑐𝑘) a priori scores, they are typically
etermined by counting the ratio of frames belonging to each class or
tate in the training set. These frame-level class labels used to come
rom a manual annotation of the training speech corpora, but this
rocedure was superseded by the application of an automated forced-
ligned process. Still, regardless of the source of the frame-level class
abels, they are prone to noise due to the imprecise positioning of
honetic boundaries (or, in our case, the occurrences of the social
ignals), and this noise is obviously propagated further to the 𝑝(𝑥𝑡|𝑐𝑘)
alues.

Furthermore, the datasets available for speech recognition purposes
ypically take up dozens of hours (nowadays hundreds of hours is fairly
ommon); yet, in the case of laughter detection, the available annotated
aterials are usually significantly smaller, taking up to only about ten

r twenty hours or even less (see e.g. Neuberger et al., 2014). Since
he a priori probability estimates are determined statistically on the
raining set, it is easy to see that the smaller the training set, the less
eliable the estimated 𝑃 (𝑐𝑘) scores will be.

Owing to these factors, both kinds of probability estimates are
ikely to be sub-optimal; adjusting the a priori estimates might lead

o a significant improvement in the recognition accuracy values. More
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Fig. 1. The general workflow of the prior optimization process.
Table 1
The distribution of laughter and filler events in the SSPNet Vocalization Corpus.

Set Total count Total duration (min:sec) Total duration (%)

Utterances Laughter Fillers Utterances Laughter Fillers Laughter Fillers

Training 1583 649 1710 289:18 9:53 14:10 3.4% 4.9%
Development 500 225 556 91:18 4:18 4:54 4.7% 5.4%
Test 680 284 722 124:04 4:00 5:55 3.2% 4.8%

Total 2763 1158 2988 504:40 18:11 24:59 3.6% 5.0%
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formally, in this study we will treat the a priori estimates as a hyper-
parameter vector 𝑃 ′(𝐜) (with two straightforward formal requirements
hat 𝑃 ′(𝑐𝑘) ≥ 0 and ∑𝐾

𝑘=1 𝑃
′(𝑐𝑘) = 1), and use the values

′(𝑥𝑡|𝑐𝑘) =
𝑃 (𝑐𝑘|𝑥𝑡)
𝑃 ′(𝑐𝑘)

(2)

s the input of the HMM instead of the ones derived following Bayes’
heorem (i.e. Eq. (1)). Notice that by adjusting the 𝑃 ′(𝐜) prior estimates,
e can also have the opportunity to correct a (linear) bias in the
osterior estimates as well.

To determine the optimal 𝑃 ′(𝐜) vector, the studies listed above (e.g.
alikas et al., 2015; Kar et al., 2016) sought optimal classification on
he development set. Translating this to our task means optimal frame-
evel classification. Now, however, we can go one step further. As the
xample-wise (i.e. frame-wise) likelihood estimates are combined to
orm event occurrence hypotheses by a Hidden Markov Model, it is
traightforward to look for the prior vector that leads to the highest
uality occurrences. This means that our optimized function should
nclude this HMM search step as well. (For the general workflow of
he proposed approach, see Fig. 1.)

.1. Optimization

Notice that the choice of the actual optimization algorithm was
ot considered as an inherent part of the proposed workflow: in the
rior optimization step described above we might utilize practically
ny method. When we have only two classes (the event we aim to
ocate, and everything else), even a simple grid search is sufficient, but
ith more classes, we might want to opt for some more sophisticated
ethods. In the experimental validation of our workflow proposed, we

ested two such approaches, which are different by nature.
The first method we employed is the quite simple approach of

enerating random values and choosing the prior vector which leads
o optimal social signal detection performance on the development
et. Although at first glance this might seem to be a primitive tech-
ique, it was shown that this approach is actually more efficient for
yper-parameter optimization than grid search is. (The reader is kindly
eferred to the study of Bergstra and Bengio (2012).) In our experiments
e generated random prior combinations, executed the search step
ith the Hidden Markov model on the development set, and picked

he prior probability vector with the highest 𝐹1 scores.
The other optimization method we employed was the Covariance
atrix Adaptation Evolution Strategy (CMA-ES, Hansen and Os-
ermeier, 2001). Evolution Strategies resemble Genetic Algorithms in

3

hat they mimic the evolution of biological populations by recombi-
ation and selection, therefore they can ‘‘evolve’’ efficient solutions
or real-world tasks. CMA-ES is reported to be a competitive and
eliable algorithm for badly conditioned, non-smooth (i.e. noisy) or
on-continuous problems. It is viewed as a reliable and competitive
ethod for both local and global optimization (Hansen and Kern,
004). It has a further advantage that it requires little or no meta-
arameter setting for optimal performance. This algorithm has been
mplemented in several programming languages such as Matlab, Java,
++, Octave and Python. Here we used the Java one with the default
ettings.

. The SSPNet vocalization corpus

We used the SSPNet Vocalization Corpus (Salamin et al., 2013),
onsisting of 2763 short audio segments from British English sponta-
eous telephone conversations involving 120 speakers, containing 2988
aughter and 1158 filler events. The total duration of this dataset is 8 h
nd 25 min, which makes it one of the largest corpora used for social
ignal detection. In this corpus only 3.6% of the duration consists of
aughter, and 5.0% corresponds to filler events, while the rest of the
ecordings (i.e. 91.4%) consists of miscellaneous speech (51.2%) and
ilence (40.2%). Unfortunately, in the publicly available annotation
nly the occurrences of the laughter and filler events are indicated,
herefore we had to merge the ‘‘miscellaneous speech’’ and the ‘‘si-
ence’’ categories, leaving us with three classes: ‘‘laughter’’, ‘‘filler’’
nd ‘‘miscellaneous’’ (meaning both silence and non-filler non-laughter
peech).

We used the standard division of the dataset into a training, a de-
elopment and a test set, introduced at the Interspeech Computational
aralinguistics Challenge (ComParE) in 2013 (Schuller et al., 2013). For
he key properties of this corpus and this division, the reader is referred
o Table 1. Roughly 60% of the 2763 clips (1583) formed the training
et, while 500 clips were assigned to the development set and 680 clips
o the test set. We would like to add that, although such relatively
arge development and test sets are required to reliably measure the
erformance of any classification method applied, this means that the
raining set is less than five hours overall.

. Experimental setup

.1. DNN parameters

As the DNN component of our HMM/DNN hybrid recognizer, we
pplied a deep network, consisting of rectified linear units as hidden
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neurons (Glorot et al., 2011; Tóth, 2013). Following the results of pre-
liminary tests, we used DNNs having five hidden layers, each containing
256 neurons and applying the ReLU activation function. The output
layer had three neurons (that is, the same as the number of our classes)
with the softmax activation function. Since DNN training is known
to be a stochastic procedure due to the random initialization of the
weights, we trained five DNN models, and averaged out the computed
metric scores. This was done both for the baseline models and in the
experiments performed using the optimized class priors.

We used the frame-level feature set introduced in the ComParE 2013
Challenge (Schuller et al., 2013), which consists of the 39 MFCC + 𝛥
𝛥𝛥 components together with voicing probability, harmonic-to-noise

atio (HNR), fundamental frequency (𝐹0) and zero-crossing rate, and
their first-order derivatives. These 47 attributes were extended with
their means and standard derivatives in a 9-frame-long neighborhood,
which led to a total of 141 frame-level features (Schuller et al., 2013).
We used the openSMILE tool (Eyben et al., 2010) to extract these
features. Again, following the results of preliminary tests, we trained
our neural networks on a 33 frame-wide sliding window by utilizing
the feature vectors of the 16 neighboring frames from both sides.

5.2. HMM state transition probabilities

Our Hidden Markov model consisted of only three states, each
one corresponding to a different acoustic event. In this scenario, the
HMM state transition probabilities practically correspond to a (simple)
language model. Following the study of Salamin et al. (2013), we
built a frame-level (state) bi-gram language model calculated based
on the training set. The probability values provided by this language
model were fused with the acoustic likelihoods (i.e. the DNN outputs
divided by the actual class priors) via weighted sum, where the optimal
language model weight was determined on the development set.

5.3. Standard approaches

Although the traditional approach of social signal detection by
HMM/DNNs is to divide the DNN outputs (i.e. the posterior esti-
mates) by the class priors, class imbalance can also be handled during
the DNN training step. To provide a wider comparison, we also test
two such sampling strategies: downsampling and uniform sampling. In
the downsampling approach, we discard examples from the majority
class(es) (Gupta et al., 2013; Buda et al., 2018; Gosztolya et al., 2020);
in our experiments, we realized this strategy by randomly discarding
samples from the far most frequent ‘‘miscellaneous’’ class to make its
frequency match that of filler frames. Although downsampling treats
the class imbalance issue efficiently, it also evidently reduces the
variance of the training examples. To this end, we decided to test the
approach of ‘‘uniform sampling’’ as well, where we select the same
number of training samples for each class within each DNN training
epoch. The main difference compared to downsampling is that here
we do not discard training examples at all, but samples belonging to
the more frequent classes are not used in each training epoch, while
the instances of minority classes might be used multiple times. Since
in both cases, the frequency of the training samples of all classes are
similar, there was no need to divide the DNN outputs by any sort of
class prior estimate.

5.4. Evaluation metrics

In the social signal detection task, where the distribution of the
classes is far from uniform, traditional classification accuracy has only
a limited reliability. A straightforward choice might be the Area-Under-
the-Curve (AUC) score of the frame-level posterior estimates of the
more important classes of interest (in our case laughter and filler
events) instead, which is indeed employed by several researchers in the
social signal detection task (see e.g. Gupta et al., 2013; Schuller et al.,
4

2013; Brueckner and Schuller, 2014). However, because the reliability
of frame-level AUC in this task has been questioned both theoretically
and experimentally (for the details, see Gosztolya, 2015), in our opinion
performance can be more reliably judged by measuring the quality of
event occurrence hypotheses at the utterance level (i.e. after employing
the Hidden Markov model).

Due to this, we first used a HMM to perform event occurrence
detection, and calculated our accuracy metrics based on these detected
occurrences. To decide whether the event occurrence hypothesis re-
turned by the HMM actually corresponds to a specific one marked by
a human annotator, we combined two approaches, requiring that they
both be fulfilled at the same time. In the first one (see e.g. Gosztolya,
2015; Pokorny et al., 2016), we expect that they refer to the same event
type (in our case both has to be laughter, or both has to be filler) and
also that their time intervals intersect. The second one was inspired by
the NIST standard for Spoken Term Detection evaluation (NIST, 2006);
following this, the center of the two occurrences has to be close (within
500 ms) to each other.

We applied the information retrieval metrics of precision, recall and
their harmonic mean, F-measure (or 𝐹1), which we regard as appropri-
ate and straightforward metrics for the current task. Since we have two
social signals, and these metrics are calculated for both of them, we
have to summarize them in some way; for this, we opted for macro-
averaging, meaning that we averaged the precision and recall scores of
the two phenomena, and calculated the 𝐹1 value from these averages.
As it is also common to calculate these metrics at the frame level, we
will measure the effectiveness of the prior optimization techniques by
using both values. We optimized the class prior vectors independently
for the two (evaluation) approaches used. Of course, due to the differ-
ence in the evaluation process, the 𝐹1 values cannot be compared to the
AUC scores reported in the previous works (e.g. in Gupta et al., 2013;
Brueckner and Schuller, 2013; Gupta et al., 2016).

5.5. Class prior optimization

Because we optimized the prior values of the three classes, we had
a three-dimensional optimization task. As explained in Section 3, we
optimized the prior vector on the development set, while the test set
was used for final model evaluation. Before performing a search via the
HMM, we normalized the prior probability estimates supplied by both
optimization methods to sum up to one. In the random optimization
process, we generated 1000 prior vectors overall, following a uniform
distribution. Regarding the CMA-ES method, it permits setting the
initial vector of the search process; we used the original class priors
(i.e. those calculated on the training set) for this purpose. The other
parameters of CMA-ES were kept on their default setting (i.e. initial
standard deviation was 0.2, initial population size was 25, while func-
tion tolerance (used in the termination criteria) was 10−9). We tuned
he language model weight for each class prior probability estimate
ector on the development set.

For reference, we also tested the method of choosing the a priori
stimate vector which leads to the best frame-level classification perfor-
ance of the development set. That is, after re-scaling the frame-level
NN outputs by Bayes’ theorem with the actual prior estimate, for
ach frame we select the class with the highest transformed likelihood;
fter this step, we simply take the traditional classification accuracy
n these frame-level class hypotheses, where ground truth frame labels
ome from the manual annotation. This is an approach that is similar
o those described in the literature (e.g. Kar et al., 2016; Balikas et al.,
015), where the prior estimates are tuned in order to achieve optimal
lassification.
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Table 2
Optimal averaged F-measure values for the standard approaches tested.

Evaluation DNN training sampling Prior probability estimation approach Development set Test set

Laughter Filler Avg. Laughter Filler Avg.

Segment-level
Full sampling Statistical (training set) 69.9% 77.1% 73.5% 60.1% 66.7% 63.4%
Downsampling No/uniform 67.3% 76.7% 72.2% 59.8% 66.5% 63.4%
Uniform sampling No/uniform 62.2% 74.2% 69.0% 59.5% 64.8% 62.6%

Frame-level
Full sampling Statistical (training set) 73.1% 70.6% 71.9% 61.4% 58.1% 59.8%
Downsampling No/uniform 72.2% 70.2% 71.4% 59.5% 58.1% 58.9%
Uniform sampling No/uniform 63.8% 66.0% 64.9% 58.0% 55.4% 56.7%
Table 3
Optimal segment-level averaged F-measure values when using different strategies for prior probability estimation.

Prior probability estimation approach Development set Test set

Laughter Filler Avg. Laughter Filler Avg.

No/uniform class priors 64.4% 75.0% 69.7% 63.9% 65.3% 64.8%

Statistical

Training set (baseline) 69.9% 77.1% 73.5% 60.1% 66.7% 63.4%
Training + dev. sets 69.9% 77.2% 73.6% 60.8% 66.9% 63.9%
Training + dev. + test sets 69.8% 77.1% 73.5% 60.3% 66.9% 63.6%
Test set (for reference only) 69.6% 76.9% 73.3% 59.4% 66.7% 63.1%

Opt. (Random) Average 63.9% 74.5% 69.4% 63.6% 64.6% 64.4%
Best 70.3% 77.0% 73.6% 65.1% 66.4% 65.8%

Opt. (CMA-ES) Classification 65.9% 75.1% 70.6% 64.9% 64.9% 64.9%
HMM (proposed) 72.5% 77.3% 75.3% 65.8% 66.4% 66.6%
6. Results

6.1. Standard approaches

Firstly, we investigated the standard approaches: besides full
database sampling DNN training, we tested the performance of down-
sampling and uniform sampling. As described in Section 5.3, we utilized
the standard, statistical method of counting the ratio of frames of
each class in the training set to transform the DNN outputs in the full
sampling case, while for downsampling and uniform sampling, there
was no need for such a transformation.

Table 2 shows the 𝐹1 scores averaged out for the five DNN models
for the laughter and the filler events, and the corresponding macro-
averaged F-measure values both on the development and on the test
set. Surprisingly, among the three baseline approaches, full sampling
led to the best scores, outperforming both downsampling and uniform
sampling. Since we found that neither downsampling nor uniform
sampling was able to balance the posterior estimates better than using
full database sampling and dividing the DNN outputs by the standard
class prior estimates, in the following we will use the latter approach
as our baseline.

6.2. Prior probability estimation strategies

Table 3 shows the segment-level 𝐹1 values we got for the laughter
nd filler events, averaged out for the five DNN models, and the cor-
esponding macro-averaged F-measure scores for all approaches tested.
e can see that, surprisingly, using the standard class prior vector (see

he baseline score) assisted the detection on the development set, but
n the test set the 𝐹1 values for the laughter and the combined case
ctually fell slightly.

The next interesting observation is that calculating the prior prob-
bility estimates on the training set alone yields worse (segment-level)
1 scores than when we utilize the development and test sets as well
although without the test set the 𝐹1 values obtained are slightly
etter). This, in our view, indicates that the training set by itself is just
oo small (290 min, taking up only 57% of the dataset), and extend-
ng it with the 91-minute development set and with the 124-minute
est set significantly improves the quality of the a priori probability
stimates. The slight drop measured when adding the test set to the

priori estimate calculation is probably due to a mismatch between

5

the development set and the test set of this particular database (see
Table 1). Note that we included the test set in the statistical prior
estimation process just for the sake of performance comparison; since
our study focuses on fine-tuning the prior estimates, we do not regard
this as peeking.

When we randomly generated the prior vectors, the average perfor-
mance was no better than when we used no priors at all, which is not
surprising. When choosing the vector which performed best, however,
we see a great improvement for the laughter events; and although the
𝐹1 value obtained for the filler events decreased slightly on both sets
(from 77.1% to 77.0% and from 66.7% to 66.4%, development and
test sets, respectively), it was countered by the improvements in the
laughter events (i.e. from 69.9% to 70.3% and from 60.1% to 65.1%),
leading to improvements in the average 𝐹1 scores. This, in our opinion,
means that it is indeed worth adjusting the class a priori prior estimates
on the development set, and that generating random values is a viable
way for such an optimization.

Using CMA-ES for classification optimization brought mixed results.
Although the 𝐹1 values were usually better than without using a priori
probabilities, they were only slightly higher than the baseline scores.
This accords with the fact that detecting laughter and filler events is
not a frame-level classification task, while this approach focused just
on frame-level classification. However, by incorporating the Hidden
Markov Model into the optimization process we could outperform both
the baseline scores and those obtained by the other approaches: the
combined 𝐹1 scores rose from 73.5% to 75.3%, and from 63.4% to
66.6%, development and test sets, respectively. This approach outper-
forms even the case of using the development and/or the test set as
well (𝐹1 values of 63.9% and 63.6% on the test set).

Our findings regarding the frame-level 𝐹1 values (see Table 4)
basically mirror the segment-level tendencies. The main difference is
perhaps that now using even the prior vector calculated in the tradi-
tional way (i.e. our baseline) led to better results than not using class
priors at all. Using random prior values, on average, did not improve
the performance, but choosing the vector which performed best on the
development set improved the F-measure value from 59.8% to 62.0%
on the test set. Seeking optimal (frame-level) classification actually
made all the 𝐹1 scores worse, but incorporating the HMM search step in
the CMA-ES optimization process led to the highest combined 𝐹1 value
on the test set at the frame level as well: the 62.2% achieved means a
relative error reduction score of 6% compared to our baseline.
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Table 4
Optimal frame-level averaged F-measure values when using different strategies for prior probability estimation.

Prior probability estimation approach Development set Test set

Laughter Filler Avg. Laughter Filler Avg.

No/uniform class priors 54.4% 67.4% 61.9% 53.8% 57.3% 56.5%

Statistical

Training set (baseline) 73.1% 70.6% 71.9% 61.4% 58.1% 59.8%
Training + dev. sets 73.5% 70.6% 72.1% 62.4% 58.2% 60.3%
Training + dev. + test sets 73.0% 70.9% 72.0% 61.6% 58.4% 60.0%
Test set (for reference only) 72.7% 70.5% 71.7% 61.1% 58.0% 59.7%

Opt. (Random) Average 54.2% 66.6% 61.4% 53.2% 56.7% 55.9%
Best 71.6% 72.3% 72.2% 63.6% 60.1% 62.0%

Opt. (CMA-ES) Classification 62.7% 67.8% 65.5% 59.5% 57.7% 58.8%
HMM (proposed) 73.2% 71.8% 72.9% 64.7% 59.0% 62.2%
Table 5
Optimal segment-level and frame-level averaged precision, recall and F-measure values for some chosen prior estimation strategies on the test set for the DNN models trained with
full database sampling.

Evaluation Prior probability estimation approach Laughter events Filler events Avg.

Prec. Rec. 𝐹1 Prec. Rec. 𝐹1 𝐹1

Segment-level
Statistical (training set) 58.0% 62.4% 60.1% 66.3% 67.1% 66.7% 63.4%
Opt. by random (HMM, best) 66.8% 63.6% 65.1% 65.2% 67.6% 66.4% 65.8%
Opt. by CMA-ES (HMM) (proposed) 71.2% 61.4% 65.8% 60.7% 73.4% 66.4% 66.6%

Frame-level
Statistical (training set) 54.6% 70.4% 61.4% 54.3% 62.6% 58.1% 59.8%
Opt. by random (HMM, best) 68.8% 59.3% 63.6% 58.1% 62.3% 60.1% 62.0%
Opt. by CMA-ES (HMM) (proposed) 68.0% 61.8% 64.7% 53.3% 66.2% 59.0% 62.2%
v

Table 6
Significance levels (‘‘𝑝’’) of the 𝐹1 improvements obtained by the different prior
ptimization strategies tested.
Level Prior probability estimation

approach
Significance (𝑝)

Lau. Fil. Avg.

Best random <0.01 – <0.01
Segment CMA-ES (classif.) <0.01 – <0.01

CMA-ES (HMM) <0.01 – <0.01

Best random <0.01 <0.01 <0.01
Frame CMA-ES (classif.) – – –

CMA-ES (HMM) <0.01 = 0.02 <0.01

Table 5 shows the precision and recall scores for the baseline
nd the best a priori probability estimation approaches for the test
et. We can see that, for laughter events, the improvements for both
ptimization approaches came from the higher precision score: the
egment-level baseline value of 58% rose to 66.8–71.2%, while recall
emained around the baseline value of 62.4%. At the frame level
he precision values rose even more, but there the recall scores fell
ignificantly (i.e. from 70.4% to 59.3% and 61.8%).

In the case of filler events, the 𝐹1 values remained roughly at the
ame level after both optimization approaches; we can see, however,
hat the precision and recall scores behave quite differently. When
e optimized the prior vectors by selecting random values, the pre-

ision scores remained at the baseline level, or, at the frame level, the
recision values rose slightly (i.e. from 54.3% to 58.1%). Regarding
he recall scores, using the CMA-ES method to optimize the prior
stimates led to higher values, but again the difference is not that high.
hese opposing trends, however, are probably only there because we
aximized the 𝐹1 values, hence a lower precision and a higher recall

core is fine as long as it leads to the same (or higher) F-measure value.

.3. Significance of the improvements

Recall that, to handle DNN random weight initialization, we trained
ive DNN models. Therefore, for each prior vector we get five 𝐹1 scores,

which allows us to test the significance of the improvements. Since we
cannot expect the F-measure values to follow a normal distribution,
we employed the Mann–Whitney 𝑈 test (Mann and Whitney, 1947)
6

(or Wilcoxon rank-sum test) to calculate the significance level for the
improvements achieved.

The significance (i.e. 𝑝) values for the improvements achieved in the
𝐹1 scores on the test set can be seen in Table 6; we denoted the cases
without any improvement by ‘‘—’’. We can see that all improvements
were significant at the level of 𝑝 < 0.01, with the exception of filler
events at the frame level when using the CMA-ES optimization method.
Still, in this case, 𝑝 appeared to be 0.0159, so our approach led to
significantly better scores at the level of 𝑝 < 0.05.

7. Discussion

First we focus on the results obtained for the standard approaches.
Among the three tested approaches, full database sampling performed
best; the (relatively) low performance of downsampling is probably due
to the low variance of the samples used for training. In our opinion,
uniform sampling suffered from the very same phenomenon, as only a
fraction of the ‘‘miscellaneous’’ training samples were used within each
training epoch, probably leading to the DNN model to overfit on the
actual examples of the two minority classes.

The distribution of the different events affected our results at further
points as well. By examining Table 1, we can confirm that there is
a mismatch between the development set and the test set of this
particular database: there are significantly more laughter events in the
development set (4.7% of the duration) than either in the training set
(3.4%) or in the test set (3.2%), and the filler events are somewhat
more frequent there as well. (It was also noted in previous studies,
e.g. in Gosztolya, 2015.) This phenomenon might explain why did the
application of any statistical-based prior values lowered the segment-
level scores, compared to not using any kind of class priors at all on
the test set (see Table 3), while the corresponding values improved on
the development set.

Another interesting observation was that the tendency of the scores
corresponding to the laughter events were opposing for the level of
segments and the level of frames. When using any of the statistical
prior estimation strategies, we experienced improvements in the frame-
level 𝐹1 scores on the test set (Table 4), but the exactly same prior
alues led to lower 𝐹1 scores on the level of segments (Table 3). This

difference between the two evaluation approaches, in our opinion, in-
dicates that the laughter occurrences themselves can be detected quite
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reliably without dividing the DNN outputs by the a priori estimates.
However, the starting and ending positions provided by this approach
are quite imprecise, and could be improved by using even the statistical
prior estimation strategy. This hypothesis is also supported by the
corresponding precision and recall values (see Table 5): since laughter
events are quite long, it is easy to find a part of them, which is regarded
as a detection by the segment-level criteria, but at the level of frames
missing parts of laughter events lead to a lower recall score. However,
it is probably necessary for avoiding false alarms, therefore improving
the precision values.

Overall, by employing the proposed method improved the combined
𝐹1 values both on the level of segments and on the level of frames. This
seems to indicate that the shortcomings of the baseline values do not
simply come from the mismatch between the training and test sets or
from the limited size of the training set alone. Another reason might be
the tendency of the a posteriori scores (like the DNNs overestimating
the probability of certain classes). Even using the original class priors
leads to suboptimal social signal detection performance, and more
reliable values can be obtained via optimization. Furthermore, it is ben-
eficial to incorporate the Hidden Markov Model into the optimization
process instead of focusing on simple frame-level classification.

7.1. Class prior values

Fig. 2 shows the prior estimates got by applying the methods
described above. When we calculated these values via the statistical
approach (see the first five cases), they appeared to be quite similar.
Still, we can see that when we used the training and development sets,
both prior estimates increased overall, but they fell when we made use
of the test set as well. This probably explains why the 𝐹1 values we got
fter applying the HMM also fell in this case.

Examining the prior estimates found by optimization, it is hard to
ee any general trend. (Recall that when we generated random vectors,
he same values proved to be optimal at both the frame level and
he segment level, so these two cases are shown as one in Fig. 2.) In
ur opinion, this is due to the limitations of the random optimization
ethod, which cannot explore the local context of a good hypothesis.
he two cases that involved applying the CMA-ES method, however,
gree in that the a priori probability estimate of the laughter class
hould be much higher (around 7%–8%) than their occurrence in
he dataset (about 4%). This was also reflected in the precision and
ecall scores (see Table 5): a higher prior estimate tends to reduce the
ransformed posterior scores, leading to fewer false alarms (i.e. higher
recision) but also lower recall values.

For the filler events, we found different optimal values at the
egment level and at the frame level, which indicates that it is relatively
asy to locate filler events, but their precise starting and ending points
re harder to determine. This is quite reasonable, though, as filler
vents can easily be confused with certain phonemes (see e.g. Gosztolya
t al., 2019), which is not the case with laughter occurrences.

. Conclusions

In this study, we examined the class a priori probability estimates
hen using the DNN output scores as input for a Hidden Markov
odel. First we raised theoretical objections about why we consider

he prior values computed in the usual way to be only rough estimates,
hen we experimentally adjusted the class priors in order to improve
egment and frame level accuracy scores. In the end, we found that
rior optimization is a viable way of improving accuracy: by generating
andom class prior vectors and choosing the one which leads to the
est accuracy score on the development set, we were able to reduce
he error scores on the test set by 5%–6%. By applying the state-of-the-
rt optimization method of CMA-ES, we were able to achieve further
mprovements, leading to relative error reduction values of 6%–9%,

ound to be significant with 𝑝 < 0.01. i

7

Fig. 2. The various a priori probability estimates determined by the different
approaches tested.

By analyzing the 𝐹1 values got by relying on the statistical approach,
e found that this improvement was not simply due to the small size
f training and/or development sets, but also due to the fact that we
ould also counter the bias present in the posterior estimates provided
y the DNNs.

We validated our approach on a single, although relatively large
atabase. Still, we do not think that it limits the potential applicability
f the proposed prior estimate optimization method. Our approach,
esides allowing to improve the efficiency of a social signal detection
ystem, also offers a way to adjust the behavior of a previously trained
MM/DNN hybrid model (for example, in real application scenarios).
eing an alternative to re-training the DNN acoustic model with a
ifferent class distribution or with new training data, our procedure of
ine-tuning the class prior estimates could be a lightweight-yet-efficient
olution for addressing this need as well.

Regarding the limitations of the method, we should mention that
t is based on the assumption that the development and test sets
re similar. Practically, by optimizing the prior vector we adjust the
peration of the whole HMM/DNN system to best fit the development
et. If the distribution of the specific events we seek to detect (in our
ase, laughter and filler events) is not similar in these two subsets (or
he development set is not representative to real-life conditions), our
erformance scores could even fall below that of the baseline on the test
et (or the HMM/DNN system would work suboptimally in the real-life
cenario). Of course, this is a limitation of practically all methods that
ave a statistical basis (for example, machine learning techniques).

Another potential limitation of the approach is related to the num-
er of classes. The size of the class prior vector is the same as the num-
er of classes, which in our case was three (corresponding to laughter
vents, filler events and a class representing any other speech event);
herefore, we performed the optimization step in a 3-dimensional space.
owever, the dimensionality of this search space increases proportion-
lly to the number of classes; therefore, when the number of events
s large, searching for the best prior vector becomes unfeasible. Such

setup, for example, is that of automatic speech recognition with
ontext-dependent tied states (Odell, 1995), where the number of states
i.e. classes) is typically in the thousands.

Despite this, the application areas of the method proposed is not
imited to that of social signal detection, or even to speech processing.
n fact, in our view it can probably be applied for any task where using a
idden Markov model is a straightforward option (of course, with the
bove-mentioned limitations in mind). These include, among others,
peech synthesis (Amrouche et al., 2019; Csapó et al., 2016), handwrit-

ng recognition (Choudhury et al., 2019), sleep stage classification (Jian
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et al., 2019), sign language recognition (Kumara et al., 2017) and
calculating the clear-sky index for solar panel deployment (Shepero
et al., 2019).
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