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Abstract. This paper addresses the classification of speech recorded
from subjects while wearing a surgical mask. Here, we employ two dif-
ferent types of feature extraction methods: the x-vectors embeddings,
which is the current state-of-the-art approach for Speaker Recognition;
and the Fisher Vector (FV), that is a method originally intended for
Image Recognition, but here employed to discriminate utterances. These
approaches make use of distinct frame-level representations: MFCC and
PLP. Using Support Vector Machines (SVM) as the classifier, we perform
a technical comparison between the performances of the FV encodings
and the x-vector embeddings for this particular classification task. We
find that the Fisher vector encodings provide better representations of
the utterances than the x-vectors do for this specific dataset. Moreover,
we show that a fusion of our best configurations outperforms all the
original baseline scores.

Keywords: speech recognition - computational paralinguistics - fisher
vectors, x-vectors - surgical mask

1 Introduction

The Computational Paralinguistics differs from Automatic Speech Recognition
in that the latter seeks to determine the content of the speech of an utterance,
while the former seeks to understand the way that the speech is spoken. There
are different types of techniques that attempt to solve this problem in Computa-
tional Paralinguistics. Methods such as the i-vector Approach, the Fisher vector,
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neural networks, among others, are being increasingly used by researchers to ad-
dress paralinguistic issues. This can be seen in studies like diagnosing neurode-
generative diseases using the speech of the patients [TI2I3]; the discrimination
of crying sounds and heartbeats [4]; or the estimation of the sincerity of apolo-
gies [5]. These studies aim to distinguish the latent patterns existing within the
speech of a subject and not the content of it.

The INTERSPEECH ComParE Challenge, annually organized since 2009 [6],
has provided a wide variety of Computational Paralinguistics problems each year.
These types of challenges seem to encourage its participants to use or devise
state-of-the-art techniques to handle the states and characteristics latent in an
audio signal. This year, the challenge offers three tasks; but here we will just
focus on one of them, namely, the Mask Sub-Challenge.

The 2020’s challenge involved speech recordings of German speakers while
wearing a surgical mask, and also while not wearing one. The task was to deter-
mine whether the utterance corresponds to a speaker whose speech was recorded
while wearing the mask or not. The baseline reported by the organizers is an
UAR (Unweighted Average Recall) score of 70.8%, which corresponds to a non-
fused score. And a 71.8% for the fusion of the best four configurations for the
Mask Sub-Challenge. Forensics and “live’ communication between surgeons may
benefit from a system that could determine whether a subject is wearing a mask
based on their speech [7].

Lots of speaker recognition systems these days are based on i-vectors [§].
The i-vector system utilizes a GMM-UBM (Universal Background Model) to
extract a fixed-dimension feature called i-vector. This is a robust technique that
was and still is the state-of-the-art for many speaker recognition/verification
approaches [9/10]. Also, i-vectors have been used in computational paralinguistics
and offer promising results when assessing Alzheimer’s from speech [I1], or at
the moment of classifying depressed speech [I2]. Nonetheless, there are more
meaningful features that seem to provide better representations of frame-level
features than the i-vectors do.

Embeddings extracted from a Feed-Forward Deep Neural Network are grad-
ually replacing i-vectors; such embeddings are called z-vectors. Regarded as the
new state-of-the-art technique for speaker recognition systems [I3], x-vectors
can capture meta-information such as the gender of the speaker, as well as
their speech rate (i.e. long-term speech traits). Researchers are increasingly using
such representations in their studies, especially in text-independent approaches
(see e.g. [TAIIHITOUTT]). Also, a-vectors have already been applied to paralinguis-
tics; studies like [I8IT9I20] reported high performances at classifying emotions,
Alzheimer’s, or age and gender of subjects.

As a contribution to the ComParE Challenge, here, we perform the chosen
task via two different methodologies. The Fisher Vector (FV) approach [21],
which is an encoding method originally developed to represent images as gradi-
ents of a global generative GMM of low-level image descriptors; mainly used in
image recognition [22]. And we also employ the DNN embeddings approach (i.e.
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Fig. 1. The generic methodology applied in this study.

z-vector system) where the role of the DNN is to perform a mapping between
variable-length utterances and fixed-dimensional embeddings.

The workflow proposed is the following. First, we use two types of frame-
level representations, i.e., MFCCs and PLPs extracted from the audio signals.
Second, we process the frame-level information obtained utilizing two different
techniques: the FV and the x-vector approaches. And third, we classify and
evaluate F'V and x-vector features individually. Finally, we opt for a late-fusion
of the best configurations.

2 Data

The Mask Augsburg Speech Corpus (MASC) comprises recordings of 32 German
native speakers. It has a total duration of 10 h 9 min 14 sec; segmented into
chunks of 1 sec. The recordings have a rate of 16 kHz. The total number of
utterances is 36554: 10895 for train, 14647 for development, and 11012 for test.
The subjects were asked to perform specific types of tasks and recorded their
speech while wearing and not wearing a surgical mask. (See more details in [7]).

3 Feature Extraction and Evaluation Methods

As depicted in Figure [I} the steps carried out in our study are as follows: (1)
Feature extraction (MFCCs and PLP); (2a) Train GMM-UBM using utterances
from the training set, (2b) Train the DNN for the x-vectors utilizing the training
set and its augmented version; (3a) Extract Fisher vector features from the
datasets employing the GMM-UBM model, (3b) Extract embeddings from the
DNN; and, (4a/4b) Independently classify the FV and x-vectors representations
using SVM.
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Table 1. DNN architecture of the x-vector system. It comprises five frame-level layers,
a statistics pooling layer, two segment-layers and a final softmax layer as output. N
represents the number of training speakers in the softmax layer. The DNN structure
here is the same as that shown in Snyder et al. [24].

Layer Layer context Tot. context In, Out

framel [t-2, t42] 5 120, 512
frame2 {t-2, t, t+2} 9 1536, 512
frame3 {t-3, t, t+3} 15 1536, 512
frame4 {t} 15 512, 512
frame5 {t} 15 512, 1500
stats pooling [0, T} T 1500T, 3000
segment6 {0} T 3000, 512
segment7 {0} T 512, 512
softmax {0} T 512, N

3.1 Frame-level features

Here, we used the well-known Mel-Frequency Cepstral Coefficients (MFCC) and
Perceptual Linear Predictions (PLP) frame-level representations. Both have 13
dimensions, a frame-length of 25ms and a sliding window of 3ms. Moreover,
since x-vectors are extracted from a DNN, an additional configuration for the
MFCCs called high-resolution (hires) was utilized. This allows us to maintain
all the cepstra while decorrelating the MFCCs. The MFCC-hires configuration
is intended for neural network training. This configuration has the same values
as those previously described, except that it extracts 40 cepstral coefficients, the
number of mel-bins is 40, and the low and high cut-off frequencies are 20 and
-400, respectively (see e.g. in [23]). Also, non-speech frames are removed from
all the representations employing VAD.

3.2 x-vectors

The x-vector approach can be thought as of a neural network feature extraction
technique that provides fixed-dimensional embeddings corresponding to variable-
length utterances. Such a system can be viewed as a feed-forward Deep Neural
Network (DNN) that computes such embeddings. Below, we will describe the
architecture of the DNN (based on [I3]) and the embeddings that are extracted
from it.

DNN structure Table [T outlines the architecture of the DNN. The frame-level
layers have a time-delay architecture, and let us assume that ¢ is the actual
time step. At the input, the frames are spliced together; namely, the input to
the current layer is the spliced output of the previous layer (i.e. input to layer
frame3 is the spliced output of layer frame2, at frames t — 3 and ¢ + 3). Next,
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the stats pooling layer gets the T frame-level output from the last frame-level
layer (framed), aggregates over the input segment, and computes the mean and
standard deviation. The mean and the standard deviation are concatenated and
used as input for the next segment layers; from any of these layers the z-vectors
embeddings can be extracted. And finally, the softmaz output layer (which is
discarded after training the DNN) [13124125].

Instead of predicting frames, the network is trained to predict speakers
from variable-length utterances. Namely, it is trained to classify the N speakers
present in the train set utilizing a multi-class cross entropy objective function
(see Eq. . Let K be the number of speakers in IV training segments. Then, the
probability of the speaker k given T input frames (a:(ln),xgn), ,xgn%) is given
by: P(spkrﬂx&?%). If the speaker label for segment n is k, then the quantity of
dpy is 1, and 0 otherwise [24].

N K
E=- Z Z dpi In P(spkrk\x(l?%). (1)

n=1k=1

Embeddings The embeddings produced by the network described above cap-
ture information from the speakers over the whole audio-signal. Such embeddings
are called z-vectors and they can be extracted from any segment layer; that is,
either segment6 or segment7 layers (see Table [1)). Normally, embeddings from
the segment6 layer give a better performance than those from segment7 [13].
In this study, these type of representations can capture meaningful information
from each utterance. This embedding may help us to discriminate better the
utterances due to the fact that the characteristics are acquired at the utterance
level rather than at the frame-level. For this, we used the Kaldi Toolkit [26].

3.3 Fisher Vectors

The Fisher Vector approach is an image representation that pools local image
descriptors (e.g. SIFT, describing occurrences of rotation- and scale-invariant
primitives [27]). In contrast with the Bag-of-Visual-Words (BoV, [28]) technique,
it assigns a local descriptor to elements in a visual dictionary, obtained via
a Gaussian Mixture Model for FV. Nevertheless, instead of just storing visual
word occurrences, these representations take into account the difference between
dictionary elements and pooled local features, and they store their statistics. A
nice advantage of the FV representation is that, regardless of the number of
local features (i.e. SIFT), it extracts a fized-sized feature representation from
each image.

The FV technique has been shown to be quite promising in image repre-
sentation [21]. Despite the fact that just a handful of studies use FV in speech
processing (e.g. for categorizing audio-signals as speech, music and others [29],
for speaker verification [30/31], and for determining the food type from eating
sounds [32]), we think that FV can be harnessed to improve classification per-
formance in audio processing.
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Fisher Kernel The Fisher Kernel (FK) seeks to measure the similarity of two
objects from a parametric generative model of the data (X) which is defined as
the gradient of the log-likelihood of X:

Gx = Valogua(X), (2)
where X = {as,t =1,...,T} is a sample of T observations x; € X, v represents
a probability density function that models the generative process of the elements
in X and A = [A,...,\y]’ € RM stands for the parameter vector vy [33]. Thus,

such a gradient describes the way the parameter vy should be changed in order
to best fit the data X . A novel way to measure the similarity between two points
X and Y by means of the FK can be expressed as follows [21]:

Krx(X,Y)=G'F'G). (3)

Since F) is positive semi-definite, ) = Fy ! Eq. shows how the Cholesky
decomposition Fy - L\ Ly can be utilized to rewrite the Eq. in terms of
the dot product:

Krx(X,Y) =9%'9Y (4)
where

G = LraGX = Ly v logua(X). (5)

Such a normalized gradient vector is the so-called Fisher Vector of X [33]. Both
the FV ¢X and the gradient vector G have the same dimension.

Fisher Vectors Let X = {X;,t = 1...T} be the set of D-dimensional local
SIFT descriptors extracted from an image and let the assumption of independent
samples hold, then Eq. becomes:

T
GX = Ly valogua(Xy). (6)
t=1
The assumption of independence permits the FV to become a sum of normalized
gradients statistics Ly 7 logvy(z¢) calculated for each SIFT descriptor. That
is:

Xy = orr(Xy) = Ly v logua(Xy), (7)
which describes an operation that can be thought of as a higher dimensional
space embedding of the local descriptors X;.

The FV extracts low-level local patch descriptors from the audio-signal spec-
trogram. Then, a GMM with diagonal covariances models the distribution of the
extracted features. The log-likelihood gradients of the features modeled by the
parameters of such GMM are encoded through the FV [33]. This type of encod-
ing stores the mean and covariance deviation vectors of the components k that
form the GMM together with the elements of the local feature descriptors. The
utterance is represented by the concatenation of all the mean and the covariance
vectors that gives a final vector of length (2D + 1)N, for N quantization cells
and D dimensional descriptors [3334]. Here, we use FV features to encode the
MFCC features extracted from the audio-signals of the Mask dataset.
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3.4 Support Vector Machines (SVM)

A linear-SVM classifier was utilized to discriminate the audio-signals. This al-
gorithm was found to be robust even with a large number of dimensions and
it was shown to be efficient when used with FV [3335] due to it being a dis-
criminative classifier that provides a flexible decision boundary. We used the
1ibSVM implementation [36] with a linear kernel. As stated in the paper on this
year’s challenge [7], since 2009 (and also for this year), Unweighted Average Re-
call (UAR) has been the chosen metric for evaluating the performance of the
classifiers.

4 Experimental setup

As for the Fisher vectors, the number of K GMM components utilized to com-
pute the FVs ranged from 2,4, 8, to 512. The construction of the FV encoding
was performed using a Python-wrapped version of the VLFeat library [37]. Both
MFCC and PLP representations were used separately to train the GMM model
and extract the FV features. The GMM model was fit utilizing the training
set. Fisher vectors were optimized employing Power Normalization (PN) and
L2-Normalization before training the data; in [33] the authors obtained good
performances using this feature pre-processing technique.

The x-vector network was fitted using the training data and its augmented
version following the methodology employed in [I3]; likewise, we used the same
network topology proposed there. Basically, from the original training data,
two augmented versions were added, i.e. noise and reverberation. From additive
noises and reverberation, two of the following types of augmentation were chosen
arbitrarily: babble, music, noise, and reverberation. The first three types corre-
spond to simply adding or fitting a kind of noise to the original utterances, while
the fourth one involves a convolution of room impulse responses with the au-
dio, i.e. reverberation (see [I3] for more details about the augmentation strategies
used). From the artificially generated data, we chose a subset of 40000 utterances
to train the DNN, which is roughly four times the number of original training
samples. From the segment6 layer of the DNN, we extracted 512-dimensional
neural network embeddings (x-vectors) for the train, development, and test sets,
respectively. As Snyder et al. [I3], we also found that embeddings from segment6
gave a better performance than those from segment7 in our experiments.

Following the techniques suggested in [2I], the parameter C of the SVM
was set in the range: 1075, ..., 10'. Since the training and development sets are
meant to be combined and used to train the final SVM model, we fused the above-
mentioned sets and employed a Stratified k-fold Cross-Validation. We set k = 10
to find the best C'. The training set has 5353 utterances labeled as no-mask and
5542 labeled as mask; the development set has 6666 and 7981, as no-mask and
as mask, respectively. Namely, there is a slight class imbalance when combining
both sets. As a result, there were 1504 more utterances labeled as mask in the
combined set. Hence, we set the class-weight parameter of the SVM to balanced.
In this way, the classifier adjusted the weights of the classes automatically. Before
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Table 2. Experiment results. Scores are presented for x-vectors and FVs; both using
MFCCs and PLPs. FoB stands for ‘fusion of best’ (fusion of the ComParE best config-
urations) [7]. The GMM size corresponds to the K value used for FV; for x-vectors this
is not applicable. The dashes (-) in the UAR column indicate that the scores for those
configurations are not available due to the limited number of trials for submissions
defined by the organizers of the Challenge.

GMM UAR (%)

Feature .

S%€ Dev CV Test
ComParE Baseline - - - 71.81
x-vecs (MFCC) - 56.86 65.21 -
x-vecs (MFCC-hires) - 59.87 72.14 -
x-vecs (PLP) - 58.46 64.80 -
FV (MFCCQC) 512 5743 78.18 -
FV (PLP) 256  59.18 71.09 -
FV + FoB 512 - - 70.30
FV + x-vecs (hires) 512 - - 70.81
FV + x-vecs (hires) + FoB 512 - - 74.92

classification, all the features were standardized by removing their means and
scaling to unit variance.

In addition, we carried out a late fusion of our best configurations. Moreover,
we also fused our best configurations with those posteriors from ‘fusion of best’
of the sub-challenge [7].

5 Results and Discussion

As Table[2] shows, the FV representations produced better performances in the
evaluation (i.e. Dev and CV) phase than the x-vectors embeddings did. However,
this is mainly true for the CV scores, where FV achieved UAR scores above 70%.
Overall, the configuration F'V (MFCC) attained the best CV score (78.18%). On
the other hand, the best configuration for the x-vectors embeddings was that of
high resolution MFCCs (i.e. MFCC-hires), which gave a 72.14%. In contrast,
when we evaluated the features using just the development set, x-vectors pre-
sented better scores; nevertheless, the difference compared to those of FV was
not significant. Although in this study we did not rely on the development scores
to find the best C' value for the SVM, we still report the scores obtained when
evaluating on this dataset (see Table . It should be added that we chose the
best C' based on the Stratified 10-fold CV experiments.

Furthermore, the FV encodings yielded a significant performance improve-
ment when applying PN and L2-normalization before fitting them (see also [33]).
However, here, just the best configurations are reported (the improved FVs). PN
reduced the effect of the features that become more sparse as the value of K
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increased. Also, L2-normalization helped to alleviate the problem of having dif-
ferent utterances with (relatively) distinct amounts of background information
projected into the extracted features. This mainly enhanced the prediction per-
formances. Also, it was found that the higher the number of K, the higher the
UAR score. This means that these two are directly proportional to each other. In
our study, both MFCC and PLP achieved their best configurations when using
a large value for K (512 and 256, respectively). Likewise, MFCC-hires gave a
better frame-level feature quality (for the x-vectors) than the standard MFCC
configuration. This can be attributed to the DNN training phase, where the neu-
ral network exploits in a better way the larger and less correlated frame-level
representations.

Table|2| lists the final scores. The fusion of the posteriors of F'V515 with those
of the fusion of best (from the challenge) attained a UAR score of 70.3% on
the test set. Likewise, the fusion of F'V515 with x-vectors (z-vecspires) yielded
a score of 70.8%. Finally, the fusion of FV515 with z-vecspires along with FoB
provided a UAR score of 74.9% on the test set.

6 Conclusions

Here, we studied the performance of x-vector and Fisher vector representations
as a contribution to the Mask Sub-Challenge of the INTERSPEECH 2020 Com-
ParE. These representations were extracted from two different types of frame-
level features: MFCC and PLP. As for the FV encodings, we found that MFCCs
presented a superior type of frame-level traits of the recordings than the PLP
did. Regarding the x-vectors, the configuration of MFCC-hires was found to be
better than those of the standard MFCC and PLP. Also, we found that PN
and L2-Normalization enhanced the quality of the FVs. Although the FV gave
better quality features than x-vectors for this particular dataset, x-vectors also
captured meaningful phonatory with articulatory information, as their scores
are competitive. Moreover, we found that the fusion of our best configurations
increased the performance of the final predictions. To conclude, our workflow
outperformed the official baseline scores of the Mask Sub-Challenge [7]; besides,
our feature extraction approach appears to be simpler than those from [7].
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