2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI) | 978-1-6654-9704-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/SAMI54271.2022.9780776

SAMI 2022 « IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics « March 2-5, 2022 « Poprad, Slovakia

Handling the stochastic behaviour of the
Bag-of-Audio-Words method

Mercedes Vetrab
University of Szeged
Szeged, Hungary
vetrabm @inf.u-szeged.hu,
orcid: 0000-0001-7511-2910

Abstract—Automatic sleepiness detection may be of help for
drivers and air pilots. Sleepiness can be detected from human
speech which is a task of paralinguistics. There are several
methods available that can overcome this, like the Bag-of-Audio-
Words technique. Because it is a stochastic method it can
produce different results after each re-run with the same settings.
This can be handled with ensembling. Unfortunately the shared
disadvantages of BoAW and ensembling, that BoAW needs quite
a large feature space to work well and emsembling makes it
even larger and larger which, in the end might lead to a lower
classification performance. We found that it can be handled by
PCA dimension reduction, but there are some edge cases where
it does not work well.

Index Terms—Bag-of-Audio-Words, emotion detection, human
voice, sound processing, paralinguistics

I. INTRODUCTION

Human speech can encode information about the speaker’s
physical and mental state (i.e: the emotional state, signs of
illness, depression, joy and so on). Computer science and
engineering information can use this extra information to
create intelligent systems. In certain everyday life situations
a communication monitoring system [1], an emotional state
detecting system, or a confidence detection system may be
useful. Many services use dialogue systems [2] where if
they recognise the most problematic dialogue phrases they
can work better. In the area of healthcare a mental state
monitoring system may be useful for assessing patients [3],
[4]. An emotion detection system in call centers also has
advantages, such as detecting problematic customers [2]. In
our paper we will attempt to detect sleepiness in human
speech. There are activities which require concentration and
maximum attention from the subject, because if they are fall
asleep there will probably be an accident. For example driving,
flying and operating machines. Imagine how helpful a system
could be that could detect sleepiness and take some preventive
action in the case of danger. Human speech can be analysed in
many different ways. One of them is by using paralinguistics
which involves extracting abstract information from speech
recordings.

In paralinguistics the variable length of recordings will
always be a significant problem. This is due to the fact that
our recordings have different lengths, but our classifiers expect
a fixed-sized input. Therefore we have to transform every

978-1-6654-9704-6/22/$31.00 ©2022 IEEE

Gébor Gosztolya
University of Szeged
Szeged, Hungary
ggabor @inf.u-szeged.hu

speech recording into a fixed-sized feature vector. There are
several methods that can handle this task. First of all we
need a frame-level feature extraction, and afterwards there are
many possible ways we can transform these varying length
vectors into the same length. For example x-vectors [5], i-
vectors [6], Fisher vectors [7], neural networks [8] and the
Bag-of-Audio-Words (i.e: BOAW [9], [10]) approach. Here, we
investigated the BoOAW one. Our experiments were performed
on a public German sleepiness database. The BoOAW technique
can be used effectively in the field of paralinguistics, but it
has some drawbacks. One of them is that it uses random
numbers during calculations and this affects the results of
the extraction and the performance of our classifiers. We
tried to handle this with ensembling. It works well, but it
increases the feature space and more CPU time is required
in the subsequent machine learning step. Hence we tried to
compress our ensembled features with PCA. We found that
the PCA dimension reduction technique generally works well
but it works less well with high dimensions.

II. BAG-OF-AUDIO-WORDS METHOD

A possible solution to the problem of varying length is
the Bag-of-Audio-Words method. This can be used to create
fixed length feature vectors from a different number of frame-
level features in recordings. It has a common base algorithm
with the Bag-of-Visual-Words [11] and the Bag-of-Words [12]
techniques. Now we will introduce the steps of the method.

First, it analyzes the entire database and then it computes
fixed length features for each recording. Figure 1 shows the
general workflow for generating a BoAW representation for
a database. There is an overlap between how it handles our
train and test sets. As can be seen, the extraction of the test set
depends on the clustering of the train set. Let us now describe
the processing of the training set.

The input of the algorithm is the frame-level feature set
for each recording that we have. In this case we have a
different number of frame-level features for each recording.
This number depends on how long the actual recording is and
how long the feature window that was used for extraction.

In the first step, it will cluster the feature set. It collects all
the frame-level features from all the files and then it puts them
into one big “bag”. After it performs a clustering on this “bag”.

000021

M. Vetrab and G. Gosztolya * Handling the Stochastic Behaviour of the Bag-of-Audio-Words Method

__

’
')) !
: . : : Frame-level Frame-level features Frame-level Normalized :Unerance-level
1 Training] ' (e.g. MFCCs) Vector cluster indices, | , features
' ; P feature o P histogram f———»
'| utterances |. !) quantization) 1
! 1 ! extraction calculation |1
-/ -/
1 : 1 F;a/;;e\/ :
: ' : (e,g.eﬂe/;u,eilfe/ . '
'] ' FCcs) Clustering :
1 f 1 1
N o !) '
i ! ; Frame-level Frame-level Normalized | ' Utterance-level
] Test ! | A Vector cluster indices, [' features
1 ; | feature > . P histogram [+
1| utterances |, i . Frame-level features quantization . 3
1 ! 1 extraction (e.g- MFCCs) calculation |,
1 \) 1 %}
v Audio dataset ,' v Bag-of-Audio-Words (BoAW) process /I

Fig. 1. Workflow for the Bag-Of-Audio-Words technique.

The center vector of the clusters are called “codewords”. The
group of these “codewords” is the “codebook”. The aim of
clustering is to separate the original features into meaningful
subsets by collects similar vectors into the same group and
puts different vectors into different groups. The algorithm can
be parametrized, so we can set the number of the clusters
(i.e: N). The N parameter is called the codebook size. The
vector dimension of the final classification will depend on this
codebook size.

12
10

8
6
4
IR
, 1

i 2 3 4 5 6

Codeword index

Quantity

Fig. 2. A Bag-Of-Audio-Words histogram of the recording.

In the next step, the algorithm performs a vector quanti-
zation using the previously created clusters. It computes a
histogram for each recording independently. It finds the closest
“codeword” for each frame-level feature of the recording and
replaces the feature with the index of the closest “codeword’s”
cluster. (As the BoAW algorithm can be parametrized, we
can set how many closest “codewords” we wish to find.) Let
us call this parameter a. Then it counts how many from the
proper index are represented in the given recording. It creates
a fixed-sized histogram from these quantities. The x-axis of
the histogram represents the index of each “cluster”, and the
y-axis shows how many of the frame-level feature vectors
get mapped into the particular “codeword” of the cluster. For
example, Figure 2 shows a histogram of one recording. In this
case the codewords are represented by their indices (i.e. 1,2, 3
and so on). This recording has 43 frames, and each frame gets
mapped into 1 codeword.

In the last step, the algorithm normalizes the computed
histograms, as the index quantities are divided by the number
of frames of the recording. Lastly, each histogram can be

represented by a vector, so the result of this step is a fixed-size
feature vector for each recording. The length of these vectors
depends on the parameter IV, and the vector can be used as
a feature set for any classification or machine learning task.
The set of these histograms is called the “Bag-of-Audio-Word”
representation.

Figure 1 shows how the results of the clustering step
can be used in the calculation of the test set representation.
The quantization step can be performed with a previously
computed “codebook”. For example, the frame-level features
of the test set came from the same dimension as the train set.
So we can define the “codebook™ on the train set and then
we can quantize the test set features by calculating distances
from the previously created “codebook”.

A. Parameters of the BoOAW Method

The BoAW method has many adjustable parameters that can
influence the process of codebook creation. In this study, we
set the random seed, the preprocessing method, the clustering
method, the codebook size N, and the quantization neighbour
number parameter a. For the codebook building we used an
open-source program called openXBOW [13]. This software
allows us to save two important things when we extract the
BoAW representation from the train set: the parameter settings
applied and the whole codebook. Then we can use these later
for the test set.

Random seed: We can set the start-up random seed that
is used for codebook creation. This is important because the
BoAW method uses random numbers while clustering and
these numbers influence the final BOAW representation. In our
baseline we automatically generate 10 random seeds and used
these random seed values: 1964, 423, 1355, 86, 1052, 1549,
139, 731, 951.

Preprocessing techniques: With openXBOW we can do
some preprocessing on the frame-level descriptors, before the
clustering step. In our previous study [14], we found that
standardization and normalization also improved our results.
In order to eliminate the bad effect of outliers we used
standardization.

Clustering method: One important factor is the clustering
process used to create the codebook. In our previous study [14]
we found that the k-means [15] and k-means++ [16] methods
both perform well, so in this study we decided to use the
k-means++ method.

000022

SAMI 2022 « IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics « March 2-5, 2022 « Poprad, Slovakia

TABLE I
BASELINE RESULTS WITH THEPEARSON CORRELATION

Codebook | Current best | Current worst | Avg correlation | Avg prediction

size dev test dev test dev test dev test
32x2 299 | .302 | .266 316 .289 .302 .297 .325
64 x 2 310 | .329 | 277 311 .292 .324 .309 .334
128 x 2 317 | 342 | .290 324 .302 .336 311 .353
256 x 2 329 | .346 | .298 341 .309 .348 315 .363
512 x 2 .325 | .370 | .311 .366 .316 .365 .320 .368
1024 x2 | .328 | .372 | .316 372 .323 374 .326 377
2048 x2 | .332 | .383 | .325 379 .328 .379 .331 .382
4096 x 2 | .334 | .382 | .321 378 .327 .379 .330 .384

Histogram neighbour number: Instead of looking for just
the closest “codeword”, each vector may also be assigned
to a certain number of closest “codewords”. In our previ-
ous study [14], we found that using more than one cluster
improved our results, so now we will quantize the 5 closest
“codewords”. This leads to a more precise description of the
recordings with the same feature vector size.

Codebook size: We can control how many clusters we wish
to create, which means the length of the feature vectors we
would like to create. In each experiment we tested the effect
of the following lengths: 32, 64, 128, 256, 512, 1024, 2048,
4096, 8192.

Derivatives: In speech processing, it is common practice
to calculate the first and second derivatives of the frame-level
feature vectors. These are the so-called deltas and delta-deltas.
These can describe the dynamics of speech [17]. With the help
of the openXBOW program, we can create separate codebooks
for the original low-level descriptors and another for the As.
Because of the As and the doubled codebooks, every codebook
size has to be counted twice, which is included in our figures.

III. DATA AND METHODS

Next, we will present our experimental setup and environ-
ment: the database, the classification method and its parame-
ters, the evaluation metric, and the feature set we used.

A. Sleepiness Database

The Sleepy Language Corpus (i.e: Sleepiness database) [18]
was introduced in the Interspeech 2011 Speaker State Chal-
lenge [19]. It contains 16463 recordings. The recordings came
from native German speakers (aged between 20-52 years).
One part of it came from a story reading task, another part
came from giving verbal commands to the GPS navigator,
another from traffic controller communication statements, an-
other from picture descriptions and another from giving a pre-
sentation. The dataset was divided into three speaker-disjunct
sets as training, development and test sets. The training set
contained 20 female and 16 male speakers, 5564 recordings
in total. The development (i.e dev) set contained 17 female and
13 male speakers, and 5328 recordings in total. The test set
contained 19 female and 14 male speakers, 5571 recordings
in total. The labels were defined by a subjective questionnaire
that was filled in by the subject and three other assistants. The
labels are integers and lie in the range from 1 to 10: extremely

alert (1), very alert (2), alert (3), rather alert (4), neither alert
nor sleepy (5), some signs of sleepiness (6), sleepy, without
any effort to stay awake (7), sleepy, some effort to stay awake
(8), very sleepy, great effort to stay awake, struggling against
sleep (9), extremely sleepy, cannot stay awake (10).

Previous results for this database produced scores between
.260-.383 [20], [21].

B. Feature Set

The feature set used here came from the INTERSPEECH
2013 Paralinguistic Challenge [22]. It contains 65 frame-level
features: 55 spectral; 6 voicing related low-level descriptors;
4 energy-related. A 60 ms frame (Gaussian window function)
and a sigma value of .4 was used for the speech-related
features; and a 25 ms frame (Hamming window function with
a step size of 10 ms) for the others.

For feature extraction we used the open-source openSMILE
software [23] with the IS13 ComParE config file. The final
feature set we applied contained not just the basic 65 features,
but also their derivatives. We used deltas because we wanted
to get information about the dynamics of the speech samples
over time.

C. Evaluation Method

The sleepiness database evaluation was carried out as a
classification task in the original challenge [20]. Here, we
have to predict the factor of the sleepiness on a scale, but
we can use only integer numbers. Most of the time when we
talk about scales it appears to be more like a regression task
than a classification task. Therefore we trained a regression
model for prediction calculation like in the original challenge.
For the evaluation we used the Pearson correlation [24] and
the Spearman correlation like previous submitters did it in the
challenge.

The regression was performed using the LIBSVM li-
brary [25], which is an SVM (Support Vector Machine [26])
and an SVR (Support Vector Regression Machine [27]) imple-
mentation written in many different programming languages. It
also has classification and regression models, so we decided to
use the epsilon-SVR one. It came as a Python extension. In the
training scenario we evaluated it with multiple C' complexities
in the range 1075 to 10~3 (powers of 10: —5; —4; —3).

In our evaluations, the predictions were floating point num-
bers. Furthermore the mean and the standard deviation of our

000023

M. Vetrab and G. Gosztolya * Handling the Stochastic Behaviour of the Bag-of-Audio-Words Method

TABLE II
BEST RESULTS WITH THE PEARSON/SPEARMAN CORRELATION
Pearson Spearman

dev test | codebook size | dev test | codebook size
Best model .334 | .382 4096 x 2 .341 | .369 4096 x 2
Worst model .325 | .379 2048 x 2 .326 | .373 4096 x 2
Random model .329 | .375 2048 x 2 .331 | .363 2048 x 2
Average model 328 | .378 2048 x 2 .331 | .369 4096 x 2
Prediction average 331 | 382 2048 x 2 336 | 373 4096 x 2
PCA 95 .322 | .354 3319 .322 | .328 4036
PCA 99 .322 | .353 4780 .320 | .341 4780
Challenge original BoAW - - - .269 | .260 2000
Challenge original majority - - - - 341 -
Challenge submitted worst one - - - .300 | .331 -
Challenge submitted best one - - - .367 | .383 -

predictions were very different from the mean and the standard
deviation of the original labels. Because of this, we corrected
the distribution of our predictions by subtracting their mean
from themselves and divided them by their standard deviation.
Next, we multiplied them with the standard deviation of the
original label set, and added the mean of the original label
set. The mean and standard deviation of the original label
set came from the dev set. Afterwards, our predictions were
still floating point numbers so then we had to round them.
We used the standard mathematical rounding, except when the
prediction was lower than 1 (then set to 1) or greater than 9
(then we rounded down to 9). Lastly, we calculated the Pearson
correlation from these rounded and corrected predictions.

In the case of model training, before each training scenario
we applied a Python implemented standardization on the input
BoAW feature set.

In the test scenario, we trained a model on the whole
training and dev set using the optimal C' parameter value found
above and evaluated it on the test set.

IV. TESTS AND RESULTS

In this study, our aim was to reduce the adverse effects
of the BoAW algorithm stochasticity. Because BOAW handles
random numbers we can have different results with different
random seeds and these results have a large deviation.

A. Baseline

In order to test the robustness of the BoAW algorithm,
we extracted 10 different BooAW representation and built 10
different models from them. This told us the deviation of the
output. The 10 different BOAW representations were extracted
with 10 different start-up random seeds. Our baseline came
from the results of the following evaluations:

e The run which had the best results on the dev set;

o The run which had the worst results on the dev set;

e We calculated the Pearson correlations for each run and

took their average;

o We calculated the sum of 10 predictions got from each
run and took their average. Lastly, we calculated the
Pearson correlation from them.

The differences between the best predictions may be up

to .033 on the dev set and .03 on the test set depending

on the codebook size. Table I shows all the results of the
baseline cases. (Recalls that codebook size means how many
dimensions we have, hence how many features we have. In this
case, these are doubled because BoAW creates one codebook
from the original features and another one from the delta
values.) The best result from the 10 runs was .334 on the dev
set and .383 on the test set with a codebook size of 4 096. The
worst result from the 10 runs was .325 on the dev set and .379
on the test set with a codebook size of 2 048. The difference
between our best and worst baseline results tells us that the
BoAW algorithm should be more robust, because if we made
only one evaluation, we may just get the worst result. When
we collected all the final Pearson correlations from the 10 runs
and then calculated their average, our result was .328 on the
dev set and .379 on test set with a codebook size of 2 048.
When we collected all the final predictions from the 10 runs
and got their averages sample by sample and then calculated
the Pearson correlation, our result was .331 on the dev set and
.382 on the test set with a codebook size of 2 048. Although we
calculated the Pearson correlation for each run in two different
ways. Table I shows that under the codebook size of 1024 the
result have a difference of about .01, but above this size the
difference approximately .003. Table II shows a summary for
all the best results of each use-case. For comparison, we also
show the results of the original challenge. It can be seen that
the original baseline gave .269 on the dev set and .260 on the
test set. From the submissions to the original challenge, the
worst submission gave .300 on the dev set and .331 on the
test set, and the best submission results of the best submission
gave .367 on the dev set and .383 on the test set. It can be seen
that our method gives better results than the original baseline
and it is close to the best submission with .336 on the dev set
and .373 on the test set.

B. The Ensemble

To make the BoOAW algorithm more robust, we concatenated
the BoAW feature vectors from the previous 10 runs. With
this concatenation, with only one run we can get the same
result as the best result from the baseline. The drawback of
this is that our feature space is now 10 times larger. In the
case of a codebook size of 32 x 2 it will be 640, 64 x 2
it will be 1280 and so on. Unfortunately it has a major

000024

SAMI 2022 « IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics « March 2-5, 2022 « Poprad, Slovakia

TABLE 1III
PCA RESULTS
Pearson Spearman

Concatenated | Reducted size PCA 95% PCA 99% PCA 95% PCA 99%

codebook size | 95 99 dev test dev test dev test dev test

640 165 379 291 | 331 | 293 | .335 | .291 | .323 | .293 | .328

1280 331 753 .302 | .337 | .302 | .338 | .297 | .332 | .297 | .333

2560 700 1482 | .311 | .355 | .311 | .356 | .309 | .346 | .309 | .346

5120 1369 | 2661 | .314 | .362 | .314 | .362 | .316 | .351 | .317 | .351

10240 2337 | 3968 | .317 | .364 | .317 | .365 | .316 | .350 | .317 | .350

20480 3319 | 4780 | .322 | .354 | .322 | .353 | .321 | .344 | .320 | .341

40960 4036 | 5132 | .318 | .339 | .317 | .336 | .322 | .328 | .320 | .323

81920 4473 | 5283 | .302 | .328 | .303 | .322 | .303 | .313 | .303 | .309

drawback on the computing time and the memory used. As we Test results

wished to reduce these effects, we ran a Principal Component 41%
Analysis (i.e: PCA) on the concatenated feature data. PCA 39%
is a dimension-reduction method and it projects the original 37%
feature set into a lower dimension space by reducing the 35%
number of features. Firstly, it standardizes the dataset. In the 33%
second step, it calculates a covariance matrix to see if there 31%
is any relationship between the features. In the third step, it 29%
. o
finds the principal components in order of significance. Now 27%
we know how important our features are by retaining more 25;
0

information after dimension reduction. In the last step we
decide on how much information we wish to keep and project
our original data using the chosen principal components into
the new smaller space. In our investigation we decided to keep
95% and 99% of the original information.

Table IIT shows the results achieved with dimension reduc-
tion. The second and the third columns contain the number of
dimensions after the PCA transformation. Keeping 95% —99%
of the information reduces the original dimension of size to a
half/quarter/tenth. The best results with 95% information was
.322 on dev set and .354 on the test set. The best results
with 99% information was .322 on the dev set and .353
on the test set. As we can see, there was a slight loss in
efficiency with compression. An interesting pattern can be seen
in the test results. The curve of the test set does not follow
the curve of the development set. The concatenated features
that were reduced to a third or quarter performed better. We
think that this is due to a drawback of the PCA method.
It finds linear combinations of the features, but sometimes
it fails when the number of features is comparable or even
larger than the database size [28]. As we can see in Table III
when the concatenated codebook size was more than twice
of our recording count (= 5500 x 2) the test results started
to decrease. Now let us compare the PCA results from lower
dimensions where the concatenated codebook size was smaller
or equal to the recording size. In this case both of the 95%
and the 99% PCA test results are better than the baseline best
results. For example, as we can see in Figure 3: codebook
size 64 - concatenated size 640 - baseline best test result .302
- PCA 95% test result .332 - PCA 99% test result .335 and
so on. This confirms that PCA performs badly when we have
more features than samples, but otherwise it performs well.

640

Baseline best results

1280 2560 5120 10240 20480 40960 81920
M Predictionavg W PCA95 mPCA99

Fig. 3. Test results from the best baseline run and from the PCA evaluations.

Prediction Avg

32 64 128 256 512 1024 2048 4096

DEVO95 mDEV9S mTEST95 MTEST99

39%
37%
35%
33%
31%
29%
27%
25%

dev M test

Fig. 4. Test results from the best baseline run and from the PCA evaluations.

V. CONCLUSION

The goal of our study was to handle the stochastic behaviour
of the Bag-of-Audio-Words method, while detecting sleepiness
in human speech. We used a German database and we applied
the BoOAW method for feature extraction. BOAW is a stochastic
method because it uses random numbers during the extraction,
so it can give us slightly different features for each re-run, even
when we use the same settings. We overcame this problem
with ensembling. It means we ran the extraction 10 times
and concatenated their results. It made the final feature set
more robust but it had a big drawback. Unfortunately the
BoAW method needs a larger feature space to perform well
and emsembling makes it even larger and larger which, in

000025

M. Vetrab and G. Gosztolya * Handling the Stochastic Behaviour of the Bag-of-Audio-Words Method

the end might lead to a lower classification performance and
excessive CPU time. We found this could be handled by PCA
dimension reduction, but there are some edge cases where it
does not work well. When we apply PCA on a database that
has more features than data, it cannot handle it and gives poor
results.

Overall, we may conclude that using the BoAW technique
with a paralinguistics task is a good idea, and if we wish to
make BoAW more robust we can use the ensemble technique.
If the ensemble results in too many dimensions but we still
have more data than features, we can reduce the space using
PCA.

ACKNOWLEDGMENT

This study was supported by the National Research, De-
velopment and Innovation Office of Hungary via contract
NKFIH FK-124413. This research was also supported by
grant NKFIH-1279-2/2020 of the Ministry for Innovation
and Technology, Hungary, and by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Artificial Intelligence National Laboratory Program (MILAB).
G. Gosztolya was also funded by the Janos Bolyai Scholarship
of the Hungarian Academy of Sciences and by the Hungarian
Ministry of Innovation and Technology New National Excel-
lence Program UNKP-21-5-SZTE.

REFERENCES

[1] J. James, L. Tian, and C. Inez Watson, “An open source emotional
speech corpus for human robot interaction applications,” in Proceedings
of Interspeech, Hyderabad, India, Sep 2018, pp. 2768-2772.

[2] F. Burkhardt, M. van Ballegooy, K.-P. Engelbrecht, T. Polzehl, and
J. Stegmann, “Emotion detection in dialog systems: Applications, strate-
gies and challenges,” in Proceedings of ACII, Amsterdam, Netherlands,
Sep 2009, pp. 985-989.

[3] M. S. Hossain and G. Muhammad, “Cloud-assisted speech and face
recognition framework for health monitoring,” Mobile Networks and
Applications, vol. 20, no. 3, pp. 391-399, 2015.

[4] L. Vidrascu and L. Devillers, “Detection of real-life emotions in call
centers,” in Proceedings of Interspeech, Lisbon, Portugal, Sep 2005, pp.
1841-1844.

[5] P. Raghavendra, W. Tianzi, V. Jesus, C. Nanxin, and D. Najim, “X-
vectors meet emotions: A study on dependencies between emotion and
speaker recognition,” 2020.

[6] T. Zhang and J. Wu, “Speech emotion recognition with i-vector feature
and RNN model,” 07 2015, pp. 524-528.

[7]1 G. Gosztolya, “Using the Fisher vector representation for audio-based
emotion recognition,” Acta Polytechnica Hungarica, vol. 17, no. 6, pp.
7-23, 2020.

[8] T. Grész and L. Téth, “A comparison of Deep Neural Network training
methods for Large Vocabulary Speech Recognition,” in Proceedings of
TSD, Pilsen, Czech Republic, 2013, pp. 36-43.

[9] S. Pancoast and M. Akbacak, “Bag-of-Audio-Words approach for mul-

timedia event classification,” in Proceedings of Interspeech, Portland,

USA, Sep 2012, pp. 2105-2108.

M. Schmitt, F. Ringeval, and B. Schuller, “At the border of acoustics

and linguistics: Bag-of-Audio-Words for the recognition of emotions in

speech,” in Proceedings of Interspeech 2016, San Francisco, USA, 2016,

pp. 495-499.

G. Csurka and F. Perronnin, “Fisher vectors: Beyond bag-of-visual-

words image representations,” in Computer Vision, Imaging and Com-

puter Graphics. Theory and Applications, vol. 229, 01 2011, pp. 28-42.

Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model:

A statistical framework,” International Journal of Machine Learning and

Cybernetics, vol. 1, pp. 43-52, 12 2010.

[10]

[11]

[12]

[13] M. Schmitt and B. Schuller, “openXBOW - Introducing the Passau
open-source crossmodal Bag-of-Words toolkit,” Journal of Machine
Learning Research, vol. 18, no. 96, pp. 1-5, 2017. [Online]. Available:
http://jmlr.org/papers/v18/17-113.html

M. Vetrab and G. Gosztolya, “Speech emotion detection form a hungar-
ian database with the Bag-of-Audi-Words technique (in hungarian),” in
Proceedings of MSZNY, Szeged, 2019, pp. 265-274.

S. Pancoast and M. Akbacak, “Softening quantization in bag-of-audio-
words,” in Proceedings of ICASSP, Florence, Italy, May 2014, pp. 1370-
1374.

D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful
seeding,” in Proceedings of SODA, New Orleans, Louisiana, USA, Jan
2007, pp. 1027-1035.

K. Gergely, “Interactive systems (in Hungarian),” in Hallgatoi In-
formdcios Kozpont, Budapest, Hungary, 2011.

F. Hoenig, A. Batliner, E. Noeth, S. Schnieder, and J. Krajewski,
“Acoustic-prosodic characteristics of sleepy speech - between perfor-
mance and interpretation,” Proceedings of the International Conference
on Speech Prosody, pp. 864-868, 01 2014.

B. Schuller, A. Batliner, S. Steidl, F. Schiel, and J. Krajewski, “The
interspeech 2011 speaker state challenge,” 01 2011, pp. 3201-3204.

B. W. Schuller, A. Batliner, C. Bergler, F. B. Pokorny, J. Krajewski,
M. Cychosz, R. Vollmann, S.-D. Roelen, S. Schnieder, E. Bergel-
son, A. Cristia, A. Seidl, A. S. Warlaumont, L. Yankowitz, E. Noth,
S. Amiriparian, S. Hantke, and M. Schmitt, “The INTERSPEECH 2019
Computational Paralinguistics Challenge: Styrian Dialects, Continuous
Sleepiness, Baby Sounds & Orca Activity,” in Proc. Interspeech 2019,
2019, pp. 2378-2382.

G. Gosztolya, “Using fisher vector and Bag-of-Audio-Words represen-
tations to identify styrian dialects, sleepiness, baby & orca sounds,” in
Proc. Interspeech 2019, 2019, pp. 2413-2417.

B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval,
M. Chetouani, F. Weninger, F. Eyben, E. Marchi, M. Mortillaro,
H. Salamin, A. Polychroniou, F. Valente, and S. Kim, “The interspeech
2013 computational paralinguistics challenge: Social signals, conflict,
emotion, autism,” in Proceedings of Interspeech, 08 2013, pp. 148-152.
F. Eyben, M. Wollmer, and B. Schuller, “Opensmile: The
Munich versatile and fast open-source audio feature extractor,”
in Proceedings of ACM Multimedia, ser. MM ’10. New York,
NY, USA: ACM, 2010, pp. 1459-1462. [Online]. Available:
http://doi.acm.org/10.1145/1873951.1874246

W. Kirch, “Pearson’s correlation coefficient,” in Encyclopedia of Public
Health. Dordrecht: Springer Netherlands, 2008, pp. 1090-1091.
C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 1-27, 2011.

S. Bernhard, C. P. John, S.-T. John, J. S. Alexander, and C. W. Robert,
“Estimating the support of a high-dimensional distribution,” Neural
Computation, vol. 13, no. 7, pp. 1443-1471, 2001.

H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” in Proceedings of the 9th In-
ternational Conference on Neural Information Processing Systems, ser.
NIPS’96. Cambridge, MA, USA: MIT Press, 1996, p. 155-161.

1. Johnstone and A. Lu, “On consistency and sparsity for principal
components analysis in high dimensions,” Journal of the American
Statistical Association, vol. 104, pp. 682-693, 06 2009.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

000026

