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Abstract. The state-of-the-art in speaker recognition, called x-vectors,
has been adopted in several computational paralinguistic tasks, as they
were shown to extract embeddings that could be efficiently utilized as
features in the subsequent classification or regression step. Nevertheless,
similarly to all neural networks, x-vectors might also prove to be sensitive
to several training meta-parameters such as the number of hidden layers
and neurons, or the number of training epochs. In this study we exper-
imentally demonstrate that the performance of x-vector embeddings is
also affected by the random seed of the initial weight initialization step
before training. We also show that, by training an ensemble learning
method by repeating x-vector DNN training, we can make the utterance-
level predictions more robust, leading to notable improvements in the
performance on the test set. We perform our experiments on the pub-
licly available Dusseldorf Sleepy Language Corpus, for estimating the
degree of sleepiness. Improving upon our previous results, we present
the highest Spearman’s correlation coefficient on this dataset that was
achieved by a single method.

Keywords: Human-computer interaction · Computational
paralinguistics · X-vectors · Ensemble learning · Sleepiness detection

1 Introduction

Excessive daytime sleepiness (EDS) is usually considered to be caused by sleep
deprivation, sleep disorders (e.g. apnea, which is the cessation of breathing), or
by insomnia (the inability to fall asleep) [11]. Instant identification of the levels
of sleepiness for a subject might be crucial for preventing accidents, analyzing
when to recommend a break, or even minimizing the mortality risk caused by
sleep deprivation. Moreover, as EDS is catalogued as a symptom rather than
a condition, it could also be caused by latent neurological or psychiatric dis-
orders [12,13,20]. In that case, the early diagnosis of EDS could be helpful for
diminishing the effects of an underlying problem in a subject. Patients with sleep
disorders often show symptoms of tiredness and fatigue, which, amongst other
things, might affect the way they produce their speech. This modality – that
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is, the speech – could be a non-intrusive and economic way of controlling and
monitoring the degree of sleepiness of the subjects.

A key problem in computational paralinguistic tasks is the choice of the fea-
tures extracted from the audio utterances. Besides developing task-dependant
attributes, a significant direction of research is to apply general-purpose attributes
in paralinguistic tasks. Such an attribute set is the ‘ComParE functionals’, devel-
oped by Schuller et al. [19], consisting of utterance-level statisticals (e.g. mean,
standard deviation, 1st and 99th percentiles) of frame-level features. Other fre-
quently applied features are the i-vectors [2], originally developed for speaker
recognition, which were applied in various paralinguistic tasks such as determin-
ing the cognitive load of the speaker [21], or estimating the speaker’s age [7]. The
current state-of-the-art technique for speaker recognition is the so-called x-vector
approach [24], which employs aDeep NeuralNetwork tomap variable-length utter-
ances to fixed-dimensional embeddings. A handful of previous studies exploited x-
vector embeddings in computational paralinguistic tasks; for instance, to classify
emotion from the speech of subjects [14], and to screen neuro-degenerative diseases
like Alzheimer’s Disease [28], and Parkinson’s Disease [10]. In previous studies, x-
vectors were applied for sleepiness detection as well [3,9].

Since the x-vector feature extractors are neural networks, they might prove to
be sensitive to several training meta-parameters such as number of hidden layers
and neurons, learning rate, and number of training epochs. Furthermore, since
it is common to train a DNN from scratch by initializing the weights randomly
(although, of course, from a specific distribution, following e.g. the initialization
strategy of Glorot and Bengio [5] or He et al. [8]), the performance of a neural
network might even be dependent on the random seed of this weight initial-
ization step. This might also hold for x-vectors, even if they are used only for
feature extraction, followed by a machine learning method (e.g. SVM). Perhaps
because x-vectors are a relatively recent technique, earlier studies did not con-
sider this stochastic behaviour as a potential source of suboptimal classification
performance. In fact, we found no study at all that investigated the effect of
randomness for the x-vector encodings.

Our study has two key results. Firstly, we demonstrate experimentally that
paralinguistic classification is indeed adversely affected by the random noise
introduced by the x-vector representation. Then, in the second step, we also
demonstrate that by training an ensemble learning method (by repeating the
x-vector DNN training process several times), we can make the utterance-level
prediction process more robust, leading to notable improvements in the perfor-
mance on the test set.

2 The Dusseldorf Sleepy Language Corpus

We performed our experiments on the SLEEP (Dusseldorf Sleepy Language)
Corpus. It was created by the Institute of Psychophysiology, Duesseldorf, and the
Institute of Safety Technology, University of Wuppertal, Germany. The corpus
comprises the recordings of 915 German speakers (364 females and 551 males),
from 12 to 84 years of age (mean age was 27.6 years). The subjects were asked to
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read passages and to speak about specific topics, such as their last weekend or to
describe a picture, which resulted in spontaneous narrative speech. It contains
5564, 5328 and 5570 utterances, training, development and test sets, respectively;
all three subsets contain recordings of slightly less than six hours, leading to 17 h
and 35min of speech overall. After recording, the utterances were converted to
a 16 kHz sampling rate with a quantisation of 16 bits.

The degree of sleepiness of the subjects was assessed using the Karolinska
Sleepiness Scale (KSS, [22]). Each subject reported their sleepiness level on the
Karolinska Sleepiness Scale (KSS): from 1 (extremely alert) to 9 (very sleepy).
At the same time, two observers assigned posthoc observer KSS ratings. The
average of both scores was the reference sleepiness value [18]. Later, this corpus
was included in the Interspeech Computational Parainguistic Challenge (Com-
ParE) in 2019 [18]. Studies using this corpus found that, instead of opting for
classification, it is beneficial to treat this task as a regression one, and round the
predictions to integer values on the scale 1, . . . , 9 later (see e.g. [6,18,26,27]). We
will follow the same strategy in our experiments.

In the ComParE Challenge, the participants applied several techniques like
attention networks and adversarial augmentation [27], end-to-end CNNs [4] and
Fisher vectors [6,26]. The performance of the methods was measured with Spear-
man’s Correlation Coefficient (CC); the results lay in the range of 0.290 and 0.373
for the development set, and between 0.325 and 0.387 on the test set. Most of
the better-performing approaches were combinations of two or more methods.

3 X-Vector Embeddings

The x-vector approach is a neural network-based feature extraction method that
provides fixed-dimensional embeddings for variable-length utterances. This sys-
tem can be viewed as a feed-forward Deep Neural Network that computes such
embeddings.

3.1 DNN Architecture

The lower, frame-level layers of the network have a time-delay architecture.
Following the frame-level layers, the statistics pooling layer gets the frame-level
activations of the last frame-level layer, aggregates over the input segment, and
computes the mean and the standard deviation. These vectors are concatenated
and used as input for the next, segment-level layer, which is followed by one (or
possibly more) additional segment-level layers. The x-vectors embeddings can be
extracted from any of segment layers [23,24]. Instead of predicting frames, the
DNN is trained to predict speakers from variable-length utterances. Namely, it
is trained to classify speakers present in the train set utilizing a multi-class cross
entropy objective function (for more details, see [23]). Therefore, the output
softmax layer has as many neurons as there are speakers in the training set.
Notice that, to calculate the embeddings, this output layer is not required any
more, so it can be discarded after training.
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The (utterance-level) embeddings produced by this network capture infor-
mation from the speakers over the whole audio-signal. These embeddings are
called x-vectors and they can be extracted from any segment layer.

4 Ensemble X-Vectors

Next, we introduce ensemble learning in general, and then we describe the pro-
posed ‘Ensemble x-vectors approach’ in detail.

4.1 Ensemble Learning

The basic principle of ensemble learning is to train several different, but similar
machine learning models, and combine their outputs in some way. Perhaps the
best-known such techniques are bagging and boosting. Bagging carries out the
training of such similar models by randomly selecting subsets of the training
data [1]. Boosting, in contrast, trains the next individual classifier model by
focusing on training instances which were mis-classified by previous models (e.g.
by using larger weights for these examples [17]). Stacking, another ensemble
learning technique, is basically a two-step learning scheme, where the outputs
of different classifier models (e.g. different algorithms) are combined via another
machine learning method [25].

4.2 The Ensemble X-Vector Model

In this study we propose to build an ensemble model based on the x-vector fea-
ture extractors. Notice that this approach differs substantially from the above-
listed ensemble approaches in the sense that those trained the classification mod-
els on the same features; the difference between the models came from a different
training subset selection or from utilizing a different machine learning technique.
In contrast, we seek to train our classifier or regressor models on the whole train-
ing data, and on similar (albeit different) features.

That is, in this study we propose training several x-vector neural network
models on the same data, but each time applying a different random seed. By
calculating the embeddings with each of them, we get a number of different
representations of the same training data. Although in theory concatenating
these feature vectors and training only one classifier model might lead to a more
robust performance than relying on any of the individual representations, we
would end up with unfeasibly huge feature vectors. Therefore we chose to train
separate machine learning (e.g. SVR) models on these x-vector representations in
the next step. To make the predictions more robust (and hence, make hyperpa-
rameter selection more reliable), we suggest simply averaging out the predictions
scores got after evaluation in an unweighted manner. Formally, we calculate the
posterior estimate provided by the ensemble model as

fe(X) =
1
m

m∑

j=1

fj(X) =
1
m

m∑

j=1

fj(Hj), (1)
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where X denotes the frame-level feature sequence of the actual utterance, Hj is
the utterance-level representation (i.e. embedding) of X calculated by the jth
x-vector model, and the fj value is the individual prediction provided by the
jth SVR model. According to our hypothesis, the unweighted average of the
predictions should improve the robustness of the combined model, provided that
the predictions of the individual models are noisy. We call this approach the
‘Ensemble x-vector approach’. In our experiments, the number of models in the
ensemble (m) was set to 10.

5 Experimental Setup

Next, we describe our experimental setup: how our x-vectors were trained, how
we trained our Support Vector Regression methods, and how we evaluated model
performance.

5.1 X-Vector Training

Following the results of our previous experiments, we trained our x-vector DNN
models (i.e. extractors) on the combined training and development sets of the
SLEEP corpus (10892 utterances, 11 h and 39 mins). We employed the Kaldi
framework [16] to do this. The segment6 layer of the DNN is used to compute
the 512-dimensional neural network embeddings (i.e. x-vectors). As is common
in x-vector extraction, we used 23 MFCCs and log-energy as frame-level fea-
tures; these were also extracted by Kaldi. Although it is standard practice to
employ additive noise and reverberation both to increase training data size and
to improve the noise robustness of the model, in our earlier experimental results
we found that for this particular corpus this process does not assist regression
performance [3]; therefore, in our actual experiments we did not employ these
techniques during x-vector training.

5.2 Regression and Evaluation

Support Vector Regression (SVR) was used to estimate the degree of sleepiness
of the speakers. DNN embeddings were standardized by removing the mean and
scaling to unit variance before training the model; transformation parameters
were set on the training set. We relied on the scikit-learn implementation [15]
with a linear kernel (nu-SVR method); the C complexity parameter was set
in the range 10−6, . . ., 101, based on the performance on the development set;
we trained a new SVR model with the best complexity value on the training
and development sets combined to obtain predictions for the test set. Before
rounding to the nearest integer in the 1 . . . 9 scale, first we linearly transformed
the predictions to have the same mean and standard deviation as those of the
labels of the training set; transformation parameters were set on the development
set. Since no parameter setting of this transformation involved the test set, and
in the end all scores were integers in the range 1 . . . 9, the presented results are
directly comparable to those found in the literature (e.g. [4,26,27]).
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Fig. 1. Spearman’s Correlation Coefficients of the individual x-vector models on the
development and on the test set; the dotted lines show the average performance of the
ten models.

6 Experimental Results

6.1 Model Stochasticity

First, we focused on measuring the amount of stochasticity of predictions when
using x-vectors as features. That is, we experimented with training 10 individual
x-vector models with the same parameters (i.e. following Sect. 5.1), only with dif-
ferent random seeds used during DNN weight initialization. SVR complexity C
was set individually, based on development set performance (although it turned
out to be 10−4 in all ten cases). Figure 1 shows the measured Spearman’s Cor-
relation Coefficients for the ten models for the development and for the test set.
(The average CCs of the ten models are shown as dotted lines.) Note that the
CC values for the test set are most likely higher than those for the development
set because more data used to train the SVR models (as test predictions were
obtained by training on both the training and the development sets).

We can also clearly see that the performance on the two sets is only loosely
related: the model with the highest performance on the development set just
achieved average scores on the test set, while the x-vector model which led to
the highest CC on the test set had a CC score below average on dev. As expected,
the scores also have a low correlation value (-0.130), which also indicates only a
slight (practically none) connection between the performance of the models on
the different sets.

Table 1 lists the exact value of some more important cases. This summarizes
our previous findings: using just the x-vector model with the first random seed,
which is standard practice when employing x-vectors (case ‘x-vectors, single’),
gave a good performance on the development set (CC = 0.300), but on the test
set it scored slightly below average (CC = 0.357). The SVR model with the best
performance on the development set produced an average performance on the
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Table 1. Spearman’s CC scores obtained for some more important x-vector-based
approaches.

Regression approach Correlation
Dev Test

x-vectors, single 0.300 0.357

x-vectors, average 0.286 0.359

x-vectors, best (dev) 0.305 0.359

x-vectors, best (test) 0.276 0.373

x-vectors, ensemble (proposed) 0.298 0.370

test set (CC = 0.359), while the SVR model with the best test set performance
(CC = 0.373) had a quite low (and also sub-average) Spearman’s correlation
coefficient on the development set (0.276).

We would like to emphasize that the differences among the ten models (that
is, 0.257 . . . 0.305 and 0.347 . . . 0.373, development and test sets, respectively)
are usually viewed as significant on this particular corpus. In our opinion, these
experimental results indicate that the x-vectors are sensitive to random DNN
weight initialization, and that this stochastic behaviour affects the subsequent,
classification or regression step as well. In our opinion, these differences also
justify our approach for building an ensemble of the x-vector models, as we can
expect the combined model (following Sect. 4.2) to be more robust than the
individual x-vector feature extractors.

6.2 Ensemble X-Vectors

Table 1 also shows the CC values for the proposed ensemble x-vector approach.
We can readily see that, by training independent SVR models on the ten different
x-vector representations, we obtained Spearman’s Correlation Coefficient values
that exceed the average CCs of the individual models, both on the development
and on the test sets. On the test set the proposed method was actually better
than 9 out of the 10 models, while its predictions were better than 6 models
on the development set. Interestingly though, among the four individual SVR
models which were able to match or surpass the performance of the ensemble
on the development set, none of them could exceed even the average Correlation
Coefficient value of the ten models on the test set.

By using this approach, we improved on our previous results, where we used
a single x-vector model for feature extraction [3]. Therefore, the Spearman’s
correlation coefficient score of 0.370 achieved by the ensemble x-vector model
is the highest value which was obtained via a standalone (single) method for
this particular task, and it exceeds most studies which employed some kind of
fusion as well (with the sole exception of [6]). Of course, the predictions of the
ensemble x-vector model could have been combined with some other methods
(e.g. ComParE functionals, Bag-of-Audio-Words, Fisher vectors etc.), but this
was outside the scope of the current study.
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7 Conclusions and Discussion

In this study we focused on the task of sleepiness detection from the speech of
the subjects. To do this, we used the public Dusseldorf Sleepy Language Corpus,
which contains the speech of 915 subjects, and the ratings of their sleepiness on
the Karolinska Sleepiness Scale, on the range 1, . . . , 9. Following our previous
study, we employed Support Vector Regression (SVR) and used x-vectors as
features. For this, we trained custom x-vector extractor models on the training
set of the Dusseldorf Sleepy Language Corpus.

X-vectors are extracted by a Deep Neural Network with a special structure,
where a pooling layer allows the mapping of variable-length utterances into a
fixed-dimensional feature space; the x-vector embeddings are the activations of a
specific layer in the network. Of course, like all neural networks, x-vectors might
prove to be sensitive to various training meta-parameters. In this study our first
research question was whether they are sensitive to the random seed used at the
weight initialization step. In particular, we were interested in the differences we
might find in the performance of the classifier (or in this case, regressor) Support
Vector model, which uses the x-vector embeddings directly as features.

To this end, we trained ten x-vector extractor DNNs, which just differed in
their random seed, and then trained individual SVR models on each of them.
In our first experiment we found that the measured Spearman’s Correlation
Coefficients differed significantly: they appeared in the range 0.257 . . . 0.305 for
the development set and 0.347 . . . 0.373 for the test set. More importantly, the CC
values for the two sets were pretty much independent (we measured a correlation
coefficient of −0.130 for the two metric vectors). Then, in our second experiment
we built an ensemble x-vector classifier by taking the average of the predictions
of the ten SVR models. According to our experimental results, the ensemble was
able to notably outperform the average performance of the individual models on
the development set and, more importantly, on the test set as well.

Of course, there were several approaches which gave similar (or even higher)
CC values on the development set as the proposed ensemble x-vectors did; besides
other studies (e.g. [4,6,26], such an approach is our “baseline”, the ‘x-vectors,
single’ approach in Table 1). However, we would like to stress that the role of
the development set is to support model selection; that is, to help to find a
machine learning model that produces good-quality predictions on the unseen
examples (which is simulated by the elements of the test set). Therefore, even if
the ensemble had just produced average CC scores on the development set, we
would consider it as a useful approach, because it reduces model stochasticity
(and hence it improves model robustness). In our opinion, this would be advan-
tageous even if it would only gave slight improvements on the test set (or even
none at all), compared to the average classifier model. Of course, in our case
the ensemble x-vector approach led to an improvement; overall, we achieved a
Spearman’s Correlation Coefficient of 0.370 on the test set, which is the highest
value reported so far that was obtained with a standalone method on this corpus.
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