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Abstract—Multiple sclerosis (MS) is a chronic inflammatory
disease of the central nervous system. Since it, among other
symptoms, adversely affects the speech of the subject, automatic
speech analysis might offer a simple, inexpensive and remote
tool for MS screening or monitoring the progression of the
disease. We employ ten different wav2vec 2.0 models as the
base of feature extraction and compare the performance with
pre-trained and custom x-vector models. Based on our results,
cross-lingual models perform better than the base wav2vec 2.0
networks, but the model size is crucial as the best results were
obtained with a model having one billion trainable parameters.
We found fine-tuning the application language to be beneficial
to the classification performance, but for other languages, it
did not improve the AUC scores. Surprisingly, though, we did
not outperform standard x-vectors, which might be due to the
standard, but perhaps too simple aggregation strategy of the
frame-level embeddings.

Index Terms—multiple sclerosis, pathological speech process-
ing, wav2vec2

I. INTRODUCTION

Multiple sclerosis is an inflammatory condition that affects
the nervous system over a long course. Most of the cases in
relation to MS are generally divided into three clinical steps:
relapsing-remitting, primary progressive MS, and secondary
progressive MS, which develops from relapsing-remitting,
based on the ongoing existence of symptoms or their temporal
absence. One of the main diagnostic characteristics of MS is a
variety of motor skill deficits, and alterations in the subjects’
motor abilities usually indicate a worsening of the condition.
Due to the interconnected nature of language, cognition, and
motor skills in the brain, modifications to one of these areas
could have an impact on the others. As a result, automatic
monitoring of alterations in speech production may be a useful
technique for determining how MS is progressing.

Around 60-70% of the patients suffering from MS present 
distinct cognitive impairments such as decreased information 
processing speed, chronic fatigue, or various orientation dis-
orders. Additionally, more than a third of MS patients report 
having transient or ongoing speech problems [1, 2], which 
also underlines the practical usability of automatic speech 
analysis. In individuals with multiple sclerosis, language and

speech-related symptoms often manifest as motor speech 
disorders, including conditions like dysarthria and dysphonia, 
difficulties in recalling words, lack of verbal fluency [3], issues 
on sentence repetition and higher-level language processes 
[4,5], and limited inclination for communication [6].

Despite only one-third of the MS cases suffer from
dysarthria, automatic speech analysis may be able to identify
signs of a minor motor speech issue even before the dis-
ease [7]. These minor symptoms could, with a well-structured
technique, indicate the beginning of cognitive deterioration.
Some research has focused on the automatic processing of
speech produced by individuals suffering from some sort of
mental or physical disease like Alzheimer’s disease [8], or
depression [9].

A common approach in this area is to discriminate using 
Support Vector Machines (SVM) and use some deep neural 
network for feature extraction [8, 10]. Since the size of 
pathological datasets, generally, does not allow the training 
of this feature extractor DNN on the actual recordings of the 
subjects, typically standard ASR corpora are used for this step. 
These DNNs may be viewed as models for ‘standard speech’, 
while the feature extraction step expresses the difference 
between standard speech and the speech utterance produced 
by the actual subject.

In this study, we employ wav2vec 2.0 pre-trained neural 
network models as the base of feature extractors to identify MS 
subjects based on their speech. Since there are variations of 
these models, we experiment with 10 models overall: besides 
the generic “base” models, we test cross-lingual extractors 
(trained to recognize the phones of several different languages 
at the same time) as well as models fine-tuned f or one 
specific l anguage. P lacing t he r esults i nto a  b roader context, 
we will also give the performance of pre-trained and custom 
x-vector models [11], which were also widely employed in the 
pathological speech processing field as feature extractors 
[9,10].
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II. DATA

Tests were conducted at the Neurology Department of
Uzsoki Hospital, Hungary, and at the Research Institute for
Linguistics of the Eötvös Loránd Research Network, Budapest,
Hungary. Here, we use the recordings of 23 MS subjects (5
males and 18 females) and 22 healthy controls (6 males and
16 females). All 23 MS subjects belonged to the relapsed-
remitting MS subtype (RRMS). All participants included in
the research were individuals who were native speakers of
Hungarian. In line with the ethnic makeup of Hungary, they
all belonged to the Caucasian ethnic group. None of the
participants had any registered hearing impairments, a history
of depression, or any recognized psychiatric disorders. The de-
mographic characteristics (i.e., age, gender (male/female), and
years of education) did not exhibit any statistically significant
disparities between the MS and HC groups.

The linguistic protocol employed for recording the speech
samples was quite comprehensive, encompassing a total of
17 distinct speech tasks. However, for the purposes of this
study, we chose to utilize only the ”narrative recall” task. Here,
participants were presented with a two-minute-long historical
anecdote, and their objective was to provide an accurate
summary of the story they had just heard. This particular
task involves a range of cognitive processes, including focused
attention, working memory, temporal orientation, organization,
and sequencing, as highlighted in the work by Mar et al. [12].
The recordings were initially conducted at a sampling rate of
48 kHz. Subsequently, they were converted to a 16 kHz mono
format with a 16-bit resolution.

III. SELF-SUPERVISED LEARNING

Self-supervised learning enables models to learn from sig-
nificantly larger datasets, which is essential for capturing pat-
terns in less common phenomena. Typically, ASR technology
demands extensive quantities of transcribed data in order to
achieve high performance, as noted by Amodei et al. [13]. An
effective strategy to address this challenge is to employ neural
network pre-training, especially in situations where labeled
data is scarce. Pre-training involves training a neural network
on a task that provides access to vast amounts of unlabeled
data, often in an unsupervised or self-supervised manner.
Subsequently, the learned weights from this pre-training phase
are utilized to initialize a second neural network, fine-tuned for
a specific task with limited available samples.

The wav2vec approach basically generates a representation
suitable for an Automatic Speech Recognition system from
raw audio. This architecture aims to forecast the upcoming
observations from a specified utterance, as outlined by Schnei-
der et al. [14]. The wav2vec 2.0 architecture improves upon
this by incorporating masking during the training process.
In this approach, the raw audio is encoded using a series
of convolutional neural networks. Following a methodology
akin to masked language modeling, the wav2vec 2.0 approach
involves the masking of small segments within the latent
speech representations, which are shorter in duration than
phonemes. These masked representations are subsequently

Fig. 1. wav2vec 2.0 architecture. Source:
https://ai.facebook.com/blog

input into both a quantizer and a transformer network. The
quantizer is responsible for selecting a speech unit from
the latent audio representation, leveraging knowledge from a
learned inventory of such units while the transformer network
appends information from the entire utterance [15].

Once the pre-training phase is completed, the model under-
goes fine-tuning for ASR using annotated corpora, employing
Connectionist Temporal Classification (CTC) loss for sequence
alignment. The architecture used in wav2vec 2.0 is depicted
in Figure 1.

A. Cross-lingual Representation Learning

XLSR (Cross-lingual Speech Representations) is a multi-
lingual representation method that relies on wav2vec 2.0, and
addresses the challenge of working with languages that have
limited or even no available unlabeled data. XLSR adopts a
pre-training strategy where a model is simultaneously trained
on multiple datasets from various languages.

One notable distinction in the XLSR architecture, as com-
pared to wav2vec2, is the quantization module. In XLSR,
this module is in charge of generating multilingual quantized
speech units. Then, the transformer block as uses them as
targets for learning via a contrastive task. This method allows
for an effective handle of discrete tokens across different
languages, making it a versatile solution for multilingual
speech representation learning, as outlined by Conneau et
al. [16].

B. Feature Extraction with wav2vec 2.0

The multi-layer convolutional block generates two distinct
types of outputs. Firstly, it produces a sequence of features
extracted from the last layer of the block of convolutions.
Secondly, it generates a sequence of hidden states derived
from the final part of the contextual block. These two kinds
of embeddings can contain relevant information related to
speakers, as indicated in the work by Lin et al. [17], as well
as other information encoded within the speech signal, as
explored by Fan et al. [18].

It’s worth noting that wav2vec was originally designed for
speech recognition, resulting in the number of these feature
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TABLE I.
AUC VALUES OBTAINED BY THE BASE WAV2VEC2 MODELS.

Embedding Aggregation
wav2vec 2.0 model type Mean M. + Std.

wav2vec2-base Convolutional 0.745 0.781
Hidden 0.731 0.802

wav2vec2-base-960h Convolutional 0.745 0.781
Hidden 0.785 0.731

wav2vec2-large-960h Convolutional 0.700 0.795
Hidden 0.771 0.763

vectors being proportional to the dimension of the input
recording. To utilize them as utterance-level features, they
have to be aggregated across the entire recording. Here, we
considered aggregation methods such as calculating the mean
and standard deviation (Std.) of these values along the time
axis. Note that in many cases, especially when dealing with
pathological speech corpora, it is challenging to perform fine-
tuning of the Deep Neural Network (DNN) models directly
on the actual utterances due to the limited number of sub-
jects and the potential risk of overfitting. Consequently, such
studies typically leverage neural networks primarily as feature
extractors in their analyses.

IV. EXPERIMENTAL SETUP

We employed Support Vector Machines as the classifier,
we relied on the libSVM implementation [19] with a linear
kernel (nu-SVR method); the C complexity parameter was
set in the range 10−5, . . ., 101. Limited by the small size
of the dataset, we opted for cross-validation (CV); one fold
always consisted of the features of one control subject and
one having MS. Seeking to avoid the presence of peeking,
we carried out nested cross-validation [20]: each time, we
trained the model on samples of 22 folds, another (22-fold)
cross-validation session was performed, to find the C meta-
parameter value that gave the highest AUC score within these
subjects. Afterward, we trained the SVM model with the
selected C value on all the data of these 22 folds, and then this
model was evaluated on the speakers of the remaining fold.
We measured the efficiency of MS classification by the area
under the ROC curve (AUC) value; since there are only two
speaker categories (i.e., classes), the AUC value of the two are
identical.

V. RESULTS

A. Base wav2vec 2.0 Models

In our initial series of experiments, we tested
base wav2vec 2.0 models. First, we employed
wav2vec2-base [15], a model pre-trained on 53,000
non-annotated LibriSpeech samples (not fine-tuned).
Next, we relied on wav2vec2-base-960h and
wav2vec2-large-960h. These two were pre-trained
and fine-tuned on 960 hours of annotated corpora, and their
main difference lies in the number of parameters (i.e., 95 and
317 million parameters, respectively). The results obtained
by these models can be seen in Table I.

TABLE II.
AUC VALUES OBTAINED BY THE CROSS-LINGUAL MODELS.

Embedding Aggregation
wav2vec 2.0 model type Mean M. + Std.

XLSR-53 Conv. 0.700 0.729
Hidden 0.763 0.787

XLS-R-300M Conv. 0.741 0.743
Hidden 0.773 0.706

XLS-R-1B Conv. 0.670 0.696
Hidden 0.862 0.872

The measured AUC values are competitive, but not out-
standing, since for most cases they fall in the range
0.745 . . . 0.802. Regarding the utterance-level aggregation
strategy, including the standard deviation of the activations
seems to help classification, with the exception of the last
hidden layers for the fine-tuned models (i.e. base-960h and
large-960h), where taking only the mean of the values
proved a better strategy.

As for the choice of embeddings, for the base model the
last hidden layer produced slightly better performance than the
convolutional one. For the two 960h models, however, relying
on the convolutional layers led to similar AUC scores as
before, but the last hidden layer induced a drop in performance
in the “Mean + Std.” case. This is probably because the fine-
tuning step made these layers focus on the spoken content of
the speech signal more, so their activations were less suitable
for MS detection.

B. Cross-Lingual Models

Next, we focused on the cross-lingual wav2vec 2.0 models:
XLSR-53 and XLS-R. The former was fitted relying on 53
distinct languages, and the latter (successor of XLSR) was
pre-trained on 128 languages comprising around half a million
hours of recordings [21]. Models of three different sizes are
available; limited by computational resources, we made use of
the two smaller versions. That is, wav2vec2-XLS-R-300M
with 300 million parameters and wav2vec2-XLS-R-1B,
with 1 billion parameters. Table II shows the AUC scores
obtained by using these models.

Regarding the activations of the convolutional layers, sur-
prisingly we got worse performance scores than with the base
models: the AUC values fell in the range 0.670 . . . 0.743.
Regarding the activations of the last hidden layer, with the
XLSR-53 model our results appeared to be around the level
of the wav2vec2-base model and they were slightly better
than with the two fine-tuned (“960h”) base models (especially
when we included the standard deviations as features). This
suggests that this cross-lingual approach was in fact more
effective than the mono-lingual fine-tuning on LibriSpeech,
at least for distinguishing the speech of MS subjects from
healthy controls. Regarding the XLS-R models, it proved
to be ineffective than XLSR-53 with “only” 300 million
parameters. However, the larger model (having one billion
parameters) was indeed more suitable: utilizing both the means
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and the standard deviations of the activations of the hidden
layer led to an AUC score of 0.872.

TABLE III.
AUC VALUES OBTAINED BY RELYING ON THE CONTEXTUALIZED

(“HIDDEN”) EMBEDDINGS OF THE FINE-TUNED CROSS-LINGUAL MODELS.

Aggregation
wav2vec 2.0 model Mean M. + S.
XLSR-53 0.763 0.787
XLSR-Hungarian-53 0.816 0.820
XLSR-Finnish-53 0.749 0.767
XLSR-German-53 0.791 0.783
XLSR-Spanish-53 0.761 0.737

C. Monolingual Fine-tuned XLSR Models

Next, we were interested in the performance of wav2vec
2.0 models fine-tuned for one specific language. For this, we
focused on models which were fine-tuned using the XLSR-53
model. Since our recordings were in Hungarian, we chose a
Hungarian model 1. Next, we evaluated a Finnish model, as
Finnish belongs to the same language family as Hungarian
(both are Uralic languages). Furthermore, we were interested
in the performance of models fine-tuned with a significant
amount of training data, so we chose German and Spanish.
(Note that German is phonetically similar to Hungarian, while
it is not true for Spanish.) All four models were trained by the
same team (jonatasgrosman), on the corresponding part
of the Mozilla Common Voice 6.1 corpus, on 8, 1, 777 and
579 hours of data, Hungarian, Finnish, German and Spanish,
respectively. As the convolutional part of the network was
unaffected by the fine-tuning step, we only reported the values
obtained by the contextualized (i.e. “Hidden”) embeddings.

Table III shows the results obtained with the language-
dependent fine-tuned wav2vec 2.0 models. Clearly, using
the Hungarian model led to a nice improvement over the
original AUC values. However, relying on the other three
models produced quite similar AUC scores as the original
cross-lingual XLSR-53 model did: the AUC values fell in
the range 0.749 . . . 0.791 for mean (XLSR-53: 0.763) and
0.785 . . . 0.812 for standard deviation (XLSR-53: 0.791). This,
in our opinion, shows that fine-tuning a model to a different
language is not really beneficial; however, when the given
wav2vec 2.0 model is fine-tuned to the actual target language,
it can lead to an improved MS detection performance even
when the training data is quite small (8 hours). This is most
obvious in the “Mean + Std.” case, where the AUC value
improved from 0.787 to 0.820.

VI. COMPARISON WITH X-VECTORS

Lastly, we compare our results with those obtained with x-
vectors, usually regarded as a competitive baseline. For this,
we used the SRE-16 pre-trained model by Snyder et al. [11],
which was trained on a portion of Switchboard (28k record-
ings) and a subset of the NIST SRE corpus (63k utterances).

1jonatasgrosman/wav2vec2-large-xlsr-53-hungarian

TABLE IV.
AUC VALUES OBTAINED BY RELYING ON THE CONTEXTUALIZED

(“HIDDEN”) EMBEDDINGS OF THE FINE-TUNED CROSS-LINGUAL MODELS.

x-vector model Features AUC
SRE-16 (English) MFCC 0.876

Custom (Hungarian)
MFCC 0.850
FBANK 0.793
Spectrogram 0.798

We also trained custom x-vector extractors on a 60 hours
subset of the (Hungarian) BEA Hungarian Spoken Language
Database [22], using MFCCs, FBANKs and spectrograms as
inputs. The AUC values can be seen in Table IV.

Clearly, although the x-vector architecture is much simpler
than the wav2vec 2.0 neural network structure and it has fewer
parameters (around 10M), the scores achieved are quite high.
Even the custom extractors (trained only on 60 hours of data,
increased to 240 by adding noise and reverberation in the
case of the FBANK and spectrogram models) matched the
performance of most wav2vec 2.0 models, with the exception
of XLS-R-1B and XLSR-Hungarian-53. The SRE-16
pre-trained extractor, however, led to an AUC score of 0.876,
practically matching the wav2vec 2.0 model with one billion
parameters. In our opinion, this (surprising) the result is due
to the simple (though standard) aggregation approach used
for the wav2vec 2.0 models. Although the statistics pooling
layer employed in the x-vector networks also only takes the
mean and the standard deviation of the frame-level activations,
it is then followed by two further hidden layers (the x-
vector embeddings are typically taken from the last hidden
layer). These layers are also tuned during training, and this
might lead to a more sophisticated and a more effective form
of aggregation. This is why in the near future we plan to
experiment with further aggregation strategies of the frame-
level embedding vectors besides the widely-employed mean
and standard deviation.

VII. CONCLUSIONS

In this study, we focused on the automatic detection of
Multiple Sclerosis from the speech of the subjects. For this,
we employed ten different transformer-based wav2vec 2.0
models as feature extractors; the frame-level embeddings were
aggregated to form utterance-level features by taking their
mean and standard deviation over the whole recording. We
found that cross-lingual fine-tuning of the unsupervised pre-
trained models was not really beneficial for MS detection, with
the exception of the quite large XLS-R model (XLS-R-1B).
Still, even the fine-tuning of a smaller model turned out to
be useful when the language of the training material matched
that of the MS and healthy control subjects (in our case, Hun-
garian). However, surprisingly, the results of the wav2vec 2.0
models did not exceed those of the standard SRE-16 x-vector
extractor (AUC values of 0.872 and 0.876, respectively), which
contains only a fraction of the parameters the wav2vec 2.0
model has. Because of this, in the near future, we will focus
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on more sophisticated aggregation strategies of wav2vec 2.0
embeddings.
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