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Abstract
Multiple Sclerosis (MS) is a chronic disease affecting over 2.5
million people worldwide. Its early detection is crucial for the
management and treatment of the disease. Here we present an
approach for automatic MS screening based on encoded speech
representations. Our methods rely on Wav2Vec2 models to ex-
tract relevant traits from speech recordings of patients, which
are then fed into a Support Vector Machine. Besides employing
Wav2Vec2 models pre-trained on large public corpora, we also
fine-tune them on 85 hours of the target language (Hungarian)
in two distinct ways: for ASR and for speaker identification.
Both variations outperformed the original models and conven-
tional methods (ComParE functionals, x-vectors, and ECAPA-
TDNN). Our findings suggest that fine-tuning for the actual
speaker provides more advantages than the typical approach of
fine-tuning for ASR purposes. Still, we improved our best MS
discrimination performance when we fused features from our
two fine-tuned models.
Index Terms: speech processing, multiple sclerosis detection,
wav2vec2, fine-tuning

1. Introduction
Multiple sclerosis is a chronic inflammatory disorder that af-
fects the central nervous system. One of the main diagnos-
tic characteristics of MS is the impairment of motor skills,
which may indicate a decline in the patient’s condition. As
language, cognitive, and motor skills are interconnected in the
brain, changes in one area may lead to changes in other areas
as well. Therefore, monitoring changes in speech production
could be an effective way to track the progression of the dis-
ease. Motor speech disorders such as dysarthria and dyspho-
nia are commonly reported by patients with MS experiencing
temporary or persistent speech difficulties [1]. Furthermore,
word-finding difficulties, a limitation of verbal fluency [2], sen-
tence repetition problems, and limitations of the higher-level
language processes [3] are known to affect MS patients. Au-
tomatic speech analysis may be able to detect symptoms even
before dysarthria develops [4]. It is known that dysarthria may
cause changes in the rhythm and timing of speech, and also in
the articulation’s strength and clarity [5].

Screening multiple sclerosis using speech analysis has been
addressed only by a handful of studies in the last few years.
An et al. [6] used Convolutional Neural Networks (CNN) for
lateral sclerosis (LS) early detection using speech. LS, akin
to MS, may also affect the speech production of patients [7].
Gosztolya et al. [8] used acoustic deep neural network (DNN)

embeddings for automatic MS assessment. In this study, we
propose the use of contextual and convolutional embeddings de-
rived from self-supervised architectures. In particular, we will
rely on representations computed with Wav2Vec2 [9] for MS
discrimination. In the context of automatic MS screening from
the speech, Wav2Vec2 encodings can be employed to analyze
changes in speech production over time, potentially providing a
non-invasive and objective measure of the disease.

Wav2Vec2 has demonstrated state-of-the-art performances
in Automatic Speech Recognition (ASR) [9, 10]. It builds on
the principles of its predecessor, Wav2Vec, which seeks to cre-
ate new forms of input vectors from raw, unlabeled audio data,
which can then be utilized to construct an acoustic model [11].
Wav2Vec2 takes a step further by encoding speech representa-
tions from masked audio segments and passing them to a trans-
former network that builds contextualized representations. This
method has been successfully applied in computational par-
alinguistics and pathological speech tasks, where pre-trained
models were employed to estimate emotions [12], to assess
Alzheimer’s Disease [13], and even to detect COVID-19 [14].

Our proposed framework involves two strategies: fine-
tuning on speech units, and fine-tuning on speakers. Addition-
ally, we rely on pre-trained Wav2Vec2 models. In detail, we
present the following contributions to the automation of multi-
ple sclerosis assessment by means of encoded speech represen-
tations: 1) Examining the effectiveness of speech embeddings
produced by distinct pre-trained Wav2Vec2 models after being
fine-tuned; 2) Exploring how the feature extraction quality dif-
fers when the model is fine-tuned on speech units as in ASR,
and fine-tuned on speakers as in speaker recognition; 3) Ana-
lyzing the sufficiency of different pre-trained Wav2Vec2 mod-
els as feature extractors for MS detection; 4) Investigating the
robustness of both language-domain matching and cross-lingual
models for the original language of the corpus used.

Our results suggest that fine-tuned Wav2Vec2 encoded
speech representations can effectively identify relevant infor-
mation for automatic multiple sclerosis discrimination. In this
paper, we show that our approaches surpass the performances
of well-known computational paralinguistic techniques like the
ComParE functionals representations [15], as well as speaker
verification methods like ECAPA-TDNN [16] and x-vector em-
beddings [17]. These approaches are used in our baseline sys-
tems.
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2. The Corpus
The utterances were recorded at the Neurology Department of
Uzsoki Hospital, Budapest, Hungary, and at the Research Cen-
ter for Linguistics of the Eötvös Loránd Research Network,
Budapest, Hungary. The linguistic protocol for collecting the
speech samples from the subjects were quite extensive, consist-
ing of 17 different speech tasks. Here, we use the narrative
recall task, which consisted of the subjects listening to a two-
minute-long anecdote that was unknown to them beforehand.
The task was to summarize the story heard as accurately as
possible. Narrative recall requires a set of cognitive processes,
such as focused attention, working memory, temporal orienta-
tion, organization, and sequencing [18]. All the subjects were
native Hungarian speakers; we use the recordings of 23 MS sub-
jects, and 22 healthy controls. The recordings were converted
to 16 kHz mono with a 16-bit resolution.

3. Encoded Speech Representations
Models may learn from orders of magnitude more data thanks
to self-supervised learning, which is essential for identifying
and comprehending patterns in less prevalent representations.
To operate successfully, voice recognition systems typically
need enormous amounts of training data that has been tran-
scribed [19]. We can handle this issue by pre-training neural
networks, which is especially helpful when there is a scarcity of
labeled data. This way, a model can learn general representa-
tions from massive volumes of information and then be applied
to downstream tasks having fewer samples.

3.1. Wav2Vec2

Wav2Vec2, similar to its successor Wav2Vec [11], uses a self-
supervised approach to learn representations from raw audio.
It learns to predict the correct speech unit, but in this case, it
does so for masked chunks of the audio. More specifically,
Wav2Vec2 encodes raw audio using a block of convolutional
neural networks, then akin to masked language modeling, it
masks small segments (shorter than phonemes) of the latent
speech representations (which are its output). These represen-
tations are inputted to a quantizer as well as to a transformer
network. The former, based on an inventory of learned units,
selects a speech unit for the latent audio representation, while
the latter appends data from the whole utterance. In the end,
the transformer network is exposed to a contrastive loss func-
tion [9]. During training, the model learns discrete speech units
by means of a Gumbel softmax that chooses the quantized rep-
resentations. After pre-training is done, the model is fine-tuned
using labeled data relying on a Connectionist Temporal Classi-
fication (CTC) loss for sequence alignment.

3.2. Cross-lingual Representation Learning

A multi-lingual representation approach based on Wav2Vec2
named XLSR (Cross-lingual Speech Representations) ad-
dresses the issue for languages with a limited amount of un-
labeled data. XLSR aims to pre-train a model on multiple cor-
pora from different languages simultaneously. This approach
has a similar structure to Wav2Vec2, meaning that it is trained
to jointly learn context representations along with a discrete vo-
cabulary of latent speech audio representations. The XLSR ar-
chitecture differs from that of the Wav2Vec2 in the quantization
module. This module in XLSR delivers multilingual quantized
speech units; then these embeddings are fed to the transformer

block which uses them as targets to learn via a contrastive task.
This way, the model is capable of distributing discrete tokens
across different languages [20].

4. The Experiments
In our experiments, we did not perform classification by extend-
ing the Wav2Vec2 architecture with one last linear layer via the
sequence classification interface (e.g., as shown in [21]), since
this would have been counterproductive given the limitation on
the size of the MS corpus. Hence, we opted for extracting en-
coded representations generated by pre-trained models, as well
as by models that we fine-tuned; and performed discrimination
via SVM classifiers. We got the sequence of feature vectors
from the last convolutional layer of the multi-layer convolu-
tional block that constructs the low-level module of Wav2Vec2.
Also, we fetched the outputs from the second block, that is,
the sequence of hidden states (contextualized feature vectors).
These two types of feature vectors, the convolutional embed-
dings, and the contextualized representations may capture rele-
vant information related to speakers [22] and also information
encoded in the speech signal [21].

Early studies showed that pre-trained Wav2Vec2 models
fine-tuned for English ASR may have an effect on the quality of
encoded speech representations for tasks non-related to speech
recognition, and also when there exists a language-domain mis-
match, especially on those encodings taken from the contextual
block of the model [12, 23]. This is different from cross-lingual
approaches, which may also be capable of capturing traits rel-
evant to computational paralinguistic tasks [13, 23]. Thus, we
opted to dispense with pre-trained models that were fine-tuned
for English ASR, and fine-tuned our own instances. We discuss
our fine-tuning strategies in Section 4.2

4.1. Pre-trained Wav2Vec2 Models

Here, we employed four distinct cross-lingual pre-trained mod-
els to extract speech representations for MS discrimination. The
first model was wav2vec2-large-xlsr-53, pre-trained on speech
in 53 different languages [20]. The second and third cross-
lingual models, wav2vec2-XLS-R-300M and wav2vec2-XLS-R-
1B, were pre-trained on 128 languages [24]. To keep the size
of the models comparable, we utilized wav2vec2-XLS-R’s two
smaller networks only (i.e., 300 million and 1 billion parame-
ters), and avoided using the 2-billion-parameter version. Lastly,
we relied on wav2vec2-large-xlsr-53-hu as the fourth model,
which was pre-trained on 53 languages and fine-tuned for Hun-
garian ASR using around 19 hours of speech corpora (Com-
monVoice and CSS10).

The two blocks that make up the Wav2Vec2 architecture,
output embeddings with variable-length sequences. In order to
aggregate such encodings into fixed-size representations, we re-
lied on statistical methods such as the mean, standard deviation,
and maximum as pooling strategies. After conducting prelim-
inary tests, we report the results for all our experiments using
mean only.

4.2. Fine-tuned Wav2Vec2 Models

We employed two strategies for fine-tuning Wav2Vec2: first,
we fine-tuned Wav2Vec2 for ASR using Hungarian corpora,
which aligned with the language of the MS corpus; and sec-
ond, we fitted Wav2Vec2 to perform classification at the utter-
ance level during fine-tuning. Our motivation of employing the
second strategy relied on the fact that Wav2Vec2 demonstrates
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state-of-the-art performance in extracting meaningful represen-
tations from speakers after being adapted to speaker recognition
tasks [25]. Furthermore, it is worth noting that former (SOTA)
deep learning-based speech recognition methods, such as x-
vectors, have also been successfully adapted to paralinguistic
and pathological speech tasks before [26, 27]. This fostered our
confidence in the possibility of obtaining high-quality embed-
dings by fine-tuning Wav2Vec2 on speakers (i.e., an equivalent
approach).

The limited size of the MS dataset prevented us from per-
forming fine-tuning effectively. Hence, we made use of a por-
tion of the BEA corpus [28], which contains Hungarian speech;
this also allowed us to match the language-domain of the in-
tended task. The subset included a total of 85 hours of spon-
taneous speech. Given that cross-lingual models tend to gener-
ate higher quality embeddings and they may be able to iden-
tify more paralinguistic information than their mono-lingual
counterparts [23, 29], we chose the wav2vec2-large-xlsr-53 pre-
trained 300m parameter-model as the base for fine-tuning.

Our fine-tuning framework involved the following: i) we
built our downstream model for Hungarian ASR optimized with
CTC loss [30], and fine-tuned it with its low-level feature ex-
tractor part (i.e., the CNN blocks) frozen, as it was sufficiently
fitted during pre-training [9]. And, ii) given that the BEA cor-
pus consists of speaker-wise annotated data, we experimented
by fine-tuning our second model on speakers. Despite our main
task not being related to speaker verification, the proposed fine-
tuning approach can be considered similar for feature extrac-
tion purposes. Here, this allowed us having a scenario where
the model was fine-tuned on speakers rather than on speech
units as in ASR. Overall, this would be the most convenient sce-
nario if the MS corpus had an appropriate size for fine-tuning
Wav2Vec2 architectures, however, this was not the case. For the
fine-tuning process, we modified Wav2Vec2’s sequence classi-
fication interface by adding a pooling layer for gathering in-
formation at utterance-level during fine-tuning. These ‘pooled’
encodings were sent to a fully connected layer as input for clas-
sifying (BEA) speakers with cross-entropy loss. We relied on
the mean for the pooling method. And, similar to our first strat-
egy, we froze the feature extractor for fine-tuning as well.

4.3. Baseline Systems

We relied on three different techniques as competitive base-
lines. First, we used a former state-of-the-art speaker verifica-
tion (SV) method: the x-vector approach [17]. This technique
has been adopted by a wide variety of speech analysis fields
ranging from emotion recognition [26] to various pathological
speech processing tasks [31, 32]. We trained our x-vector ex-
tractor on the same BEA Hungarian subset used for Wav2Vec2
fine-tuning. We used 40 MFCCs as frame-level features. For
our second baseline, we relied on ECAPA-TDNN [16]; built
upon x-vectors, it is the current state-of-the-art in SV. We em-
ployed a model that was pre-trained on Voxceleb2 and CN-
Celeb [16]. As a third baseline, we computed ComParE func-
tionals features [33], which is a popular choice in speech pro-
cessing tasks [34, 35, 15]. These include energy, spectral, cep-
stral (MFCC) and voicing related frame-level attributes, which
serve as the base of utterance-level aggregation by specific func-
tionals (e.g., the mean, standard deviation, 1st and 99th per-
centiles, peak statistics etc.).

Table 1: The Area-Under-the-Curve (AUC) and Equal Error
Rate (EER) scores obtained on the MS corpus. Both contextual
and convolutional embeddings are reported.

Model Embedding AUC EER

x-vectors (baseline) - 0.752 29.57%
ecapa-tdnn (baseline) - 0.685 32.18%
ComParE fun. (baseline) - 0.739 30.01%

Pre-trained

wav2vec2-xls-r-300m convolutional 0.770 29.83%
contextualized 0.793 28.23%

wav2vec2-xls-r-1b convolutional 0.756 30.38%
contextualized 0.857 26.05%

wav2vec2-large-xlsr-53 convolutional 0.757 27.11%
contextualized 0.813 22.50%

wav2vec2-large-xlsr-53-hu convolutional 0.756 27.19%
contextualized 0.831 21.23%

Fine-tuned

wav2vec2-BEA-spk convolutional 0.798 29.09%
contextualized 0.898 18.93%

wav2vec2-BEA-asr convolutional 0.798 29.09%
contextualized 0.861 19.87%

4.4. Evaluation

We relied on linear Support Vector Machines (SVM) for classi-
fication; the C complexity parameter was set in the range 10−5,
. . ., 101. Seeking to avoid an optimistically-biased evaluation
of the model, we opted for speaker-wise nested cross-validation.
That is, each outer fold contained one speaker for test and the
rest for training. During training, we carried out inner fold
cross-validation to select the best hyper-parameters. This pro-
cess was repeated for every single speaker, ensuring that each
of them was used exactly one time during test across all folds.
We employed evaluation metrics which are commonly used in
biomedical studies (e.g. [36, 37]). Besides reporting area un-
der the ROC curve (AUC) measures, we utilized Equal Error
Rate (EER) as well. The EER is the point at which the false
acceptance rate (FAR) is equal to the false rejection rate (FRR).
This practice, in balanced binary-class distributions, leads to
very similar accuracy, precision, recall and F-measure scores.
Hence, we report only EER (i.e., 100%− Accuracy). As we
have only two speaker categories, the AUC value of the two
appears to be the same.

5. Results and Discussion
Table 1 shows that although our baseline systems achieved com-
petitive performances, they were surpassed by our pre-trained
and fine-tuned Wav2Vec2 approaches. This may suggest the ca-
pability of contextual speech encodings over standard speaker
embeddings for paralinguistic feature extraction. Overall, the
contextualized embeddings got higher scores than their convo-
lutional counterparts in all the experiments. This could be due to
the fact that convolutional representations carry low-level infor-
mation that may not be relevant for MS discrimination. On the
other hand, contextual representations achieved higher scores in
general. It appears that they were able to capture traits that are
more relevant to paralinguistic tasks, as they are typically built
from high-level semantic information at the utterance level.
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Table 2: Results of the experiments on feature combination in
terms of AUC and EER. The best feature configurations are re-
ported. N denotes the feature dimension, and only contextual
embeddings were employed.

Model N AUC EER

wav2vec2-BEA-spk + asr 2048 0.922 19.61%
+ wav2vec2-large-xlsr-53-hu 3072 0.880 21.77%
+ wav2vec2-xls-r-1b 4352 0.845 23.94%

The best configuration corresponded to our model fine-
tuned on speakers. That is, with wav2vec2-BEA-spk, we
achieved an AUC score of 0.898, and equal error rate of 18.93%
based on its contextualized representations; while its encoder
embeddings achieved lower scores: AUC and EER of 0.798
and 29.04%, respectively. Compared to this configuration, sim-
ilar scores were shown by our second system fine-tuned on
speech units (i.e., wav2vec2-BEA-asr), where the convolutional
embeddings yielded the same performance. This was an ex-
pected behavior since we froze the feature encoder during the
fine-tuning process. Differently, the context features got lower
scores: AUC and EER of 0.861 and 19.87%, correspondingly.

Although both strategies showed comparable performance
scores on the given task, it appears that fine-tuning on speak-
ers led to a better quality of contextual speech representations
compared to its ASR-based counterparts (i.e., our wav2vec2-
BEA-asr, and the wav2vec2-large-xlsr-53-hu). The difference
between the representations generated by each fine-tuning ap-
proach may rely on the fact that the sequence of embeddings
in the ‘spk’ method was pooled into a ‘single-utterance’ encod-
ing (similar to [38]) within the fine-tuning process, which can
be viewed as a summary of the entire input recording, and later
were optimized via cross-entropy. Conversely, the ‘asr’ method
takes each output from the sequence of contextual embeddings
and labels it based on the vocabulary of the task with a fully
connected layer, and optimizes via CTC loss, this may carry
less relevant (paralinguistic) information utterance-wise.

As shown in Table 1, wav2vec2-large-xlsr-53-hu and
wav2vec2-xls-r-1b attained comparable performances to our
fine-tuned solutions based on their contextual feature repre-
sentations. The former (wav2vec2-large-xlsr-53-hu) produced
higher quality embeddings than the latter, most probably due
to its fine-tuning on Hungarian language; this indicated the ef-
fectiveness of language matching for fine-tuning. Nevertheless,
this was not sufficient to equalize the performance of either of
our proposed configurations, especially that of the ‘wav2vec2-
BEA-asr’ counterpart. Although both models were fine-tuned
using (distinct) Hungarian language corpora, the difference in
performance may be due to the following, i) the acoustic and
recording conditions, ii) their size, the number of hours of the
BEA corpus exceeded CommonVoice and CSS combined sig-
nificantly (85 vs. 19 hours). This may suggest the relative im-
portance of the corpus size for downstream tasks. Conversely,
the 1 billion parameters of the wav2vec2-xls-r-1b model were
found to be competitive as their contextual embeddings outper-
formed the smaller version of the same model (i.e., 300m).

5.1. Feature Combination

This involves combining multiple feature vectors to create a
new feature set for training. In our last set of experiments, at-
tempting to capture complex, non-linear relationships between

the different sets of latent speech embeddings, we combined the
feature encodings from our best-performing configurations. Al-
though a combination can be executed in different ways, here
we relied on a simple yet effective concatenation method. Ta-
ble 2 shows the results of these experiments. Combining our
best models (i.e., wav2vec2-BEA-spk + wav2vec2-BEA-asr)
led to even higher performances: AUC of 0.922. This process
contributed to make the SVM model more robust by reducing
the impact of outliers that may be present in the feature set,
while keeping the number of dimensions at an adequate size for
the SVM classifier. Consequently, although appending more
features from the subsequent best models just led to a worsen-
ing of the performances, our new results still surpassed all the
previous configurations, except for ‘wav2vec2-BEA-spk’. The
decrease in scores when more ‘external’ features were involved
may be due to the SVM classifier being over-fitted because of
the increased dimensionality while the number of samples re-
mained the same; and, the (lower) quality of the successive ap-
pended embeddings may have led to more ‘noisy’ information
being added during training.

6. Conclusions
This paper presented the use of speech-encoded represen-
tations for automatic multiple sclerosis discrimination using
audio recordings. More precisely, we showed that embed-
dings derived from distinct methods employed for fine-tuning
Wav2Vec2 pre-trained instances may contain relevant paralin-
guistic information. In the experiments, we employed both au-
tomatic speech recognition and speaker verification techniques
in our fine-tuning frameworks, the former following stan-
dard ASR fine-tuning approaches for Wav2Vec2 (i.e., learning
speech units); and the latter was inspired by speaker verification
where we rather fine-tune on speakers (e.g., learning informa-
tion from the whole utterance). Our methods exceeded perfor-
mance scores obtained from different cross-lingual Wav2Vec2
pre-trained models, which were used for feature extraction as
well. Overall, our results confirm that contextual features con-
sistently surpass the quality of convolutional representations. In
addition, we noted an improvement in our classification scores
by adding robustness to our classifier through feature combi-
nation from our top models. However, further combinations
proved to be counterproductive, most likely due to the ratio be-
tween the number of samples and feature dimension (curse of
dimensionality). Lastly, our investigation demonstrated the su-
periority of fine-tuning Wav2Vec2 on speakers rather than on
speech units for extracting paralinguistic representations for MS
screening.
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