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Abstract—A lot of effort has gone into eradicating the pan-
demic caused by the COVID-19 outbreak. One initiative in the
efficient control of the spread of it lies in the methods for its
diagnosis. Numerous techniques for screening the disease have
emerged to date, which, combined with social measures, have
helped to diminish the spread. Nevertheless, two years after the
outbreak, the virus continues to propagate and claim victims
worldwide. Therefore, there is a need for inexpensive, efficient,
and real-time screening methods. In this scenario, the use of
coughing samples as audio signals is a potential way to provide
clinicians with an automatic tool for pre-diagnosing COVID-19
using Al techniques. This study investigates the use of cough-
utterances of subjects for the automatic detection of COVID-19.
Relying on x-vector embeddings obtained from custom-trained
deep neural network extractors on cough audio recordings, we
were able to get highly competitive classification performance.
Furthermore, we analyze the sensitivity of the extractors to
domain dependence; and the quality of the embeddings produced
in this context.

Keywords—cough analysis, COVID-19, computational paralin-
guistics, x-vectors

I. INTRODUCTION

As of March 2020, the World Health Organization (WHO)
formally declared a worldwide epidemic of the novel coron-
avirus called severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), now simply known as COVID-19. Two years
on (March 2022), the virus has taken 6,074,234! lives so far
(officially). Experts and epidemiologists have made efforts to
find ways to carry out massive COVID-19 screenings in an
attempt to control the spread. A large number of tools and
methods for screening COVID-19 are now available and these
have helped to control the pandemic [1], [2]. The different
ways of diagnosis (e.g. viral and serology tests), although ef-
fective, have limitations; also, the lack of complementary pre-
screening techniques that can efficiently decide who should
be tested makes it difficult to efficiently limit the spread. The

1“COVID-19 Dashboard by the Center for Systems Science and Engineer-
ing (CSSE) at Johns Hopkins University (JHU)”. 20 March 2022.
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current COVID-19 tests also require time to get the results,
and depending on the country, they might not be economically
feasible for a massive-scale deployment [3].

Hence, there is still the need for a less expensive, non-
invasive, and readily accessible form of pre-diagnosis that
is capable of giving real-time results. Although COVID-19
symptoms vary from subject to subject, the most common ones
are a dry cough, fever, nasal congestion, breathing difficulties,
a sore throat, and, in certain cases, the subject might not
even display any symptoms at all [4]. Moreover, symptoms
like nasal congestion and breathing difficulties may have a
straightforward effect on the way the subjects produce the
speech. The automatic analysis of coughing audio samples
could be a potential way for pre-screening and even mon-
itoring the disease, and could be extensively applied using
e.g. smartphone devices, to prevent or slow the spread of the
disease [5].

Automatic cough discrimination based on utterances is not
a new approach. The literature reports studies on classifying
pneumonia and asthma [6] and diagnosing pertussis [7] from
coughing data samples. In this context, COVID-19 has also
been examined, as recent studies carried out investigations
on screening the disease using cough recordings, relying on
deep learning methods (e.g., CNNs) [8], [9] and on standard
machine learning algorithms [10]. Naturally, the analysis and
classification of COVID-19 speech has gained attention re-
cently. For instance, Bartl-Pokorny et al. found that voice
acoustic correlates with a COVID-19 infection based on a set
of acoustic parameters [11]; and Udhaya Sankar et al identified
regular and irregular speech/voice patterns for the detection of
the disease [12].

In this study, we present our methodology based on x-
vectors, which is the current state-of-the-art in speaker recog-
nition [13]. Applied as feature extractors, x-vectors have been
shown to capture meta-information from the human voice
such as the gender of the speaker, as well as their speech
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rate (long-term speech traits). This functionality has been
exploited especially in text-independent speaker recognition
approaches [14]-[17]. X-vectors have been widely applied in
a variety of studies related to text-independent speaker recog-
nition (see e.g. [14]-[17]). Moreover, x-vectors are used in
the field of computational paralinguistics. For instance, studies
reported good performances for classifying emotions [18],
Alzheimer’s Disease [19], the age and gender [20], and the
sleepiness of subjects [21].

In this paper, taking advantage of the availability of a large-
sized corpus (COUGHVID [22]) related to the domain of
the actual tasks, we present custom x-vector DNN models
trained from scratch. These models are then used for feature
extraction in the next step. We validated our approach for
the standardized subset of the Cambridge COVID-19 Sound
database, containing the coughing sounds of individuals hav-
ing and not having COVID-19. It is a binary classification task,
where the goal is to predict whether a subject has COVID-
19 based on their coughing samples. The proposed approach
gives a competitive performance on the cough subset of the
Cambridge COVID-19 Sound corpus. Our findings, which are
also in accord with those from a previous study [21], indicate
that the extractors fitted with in-domain data achieve a better
performance than the standard pre-trained models (such as the
pre-trained x-vector extractor described by Snyder et al. [13]).

II. DATA

We performed our experiments on a standardized subset
of the Cambridge COVID-19 Sound database. It comprises
data on the diagnosis of COVID-19 based primarily on voice,
breathing, and coughing. The Cough subset consists of 725
recordings (1.63 hours) from 343 subjects. Each cough record-
ing consists of one to three forced coughs. For each recording,
a COVID-109 test result was available which was self-reported
by the participant: positive or negative. Although the corpus
was crowd-sourced, efforts were made to ensure its good
quality. After manually checking the audio quality, all the
recordings were converted to a 16 kHz sampling rate and a
mono, 16-bit resolution. The standardized train, development,
and test sets contain mutually different speakers, but within
each set, the same speaker can appear more than once. Later,
this subset was used in the Interspeech 2021 Computational
Paralinguistic Challenge (ComParE) [23].

III. DEEP NEURAL NETWORK EMBEDDINGS

The x-vector approach can be thought as of a feed-forward
neural network feature extraction method that provides fixed-
dimensional embeddings for variable-length utterances.

A. DNN Architecture

Table I outlines the structure of the DNN. The frame-level
layers have a time-delay architecture. Let us assume that ¢
is the actual time step. At the input, the frames are spliced
together; namely, the input to the current layer is the spliced
output of the previous layer (i.e., input to layer frame3 is the
spliced output of layer frame2, at frames ¢t — 3 and ¢ + 3).

Speaker posterior estimates
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Frame-level features (e.g. MFCCs)
Fig. 1. The DNN structure of the x-vector feature extractor, following the

work of Snyder et al. [13].

TABLE I
THE DNN ARCHITECTURE OF THE X-VECTOR SYSTEM, CONSISTING OF
FIVE FRAME-LEVEL LAYERS, A STATISTICS POOLING LAYER, TWO
SEGMENT LAYERS AND A FINAL SOFTMAX LAYER. N REPRESENTS THE
NUMBER OF TRAINING SPEAKERS IN THE SOFTMAX LAYER. THIS
ARCHITECTURE IS BASED ON THE ONE DESCRIBED BY SNYDER ET

AL. [24]
Layer Layer context  Tot. context In, Out
framel [t-2, t+2] 5 120, 512
frame?2 {t-2, t, t+2} 9 1536, 512
frame3 {t:3, t, t+3} 15 1536, 512
frame4 {t} 15 512, 512
frame5 {t} 15 512, 1500
stats pooling [0, T} T 1500T, 3000

segment6 {0} T 3000, 512
segment7 {0} T 512, 512
softmax {0} T 512, N

Next, the stats pooling layer gets the T' frame-level activations
of the last frame-level layer (frame5), aggregates over the
input segment, and computes segment-level statistics, i.e. the
mean and standard deviation. These statistics are concatenated
and used as input for the next segment6 and segment7 layers,
respectively. The last layer is the softmax output layer, which is
discarded after training the DNN. Instead of predicting frames,
the DNN is trained to predict speakers from variable-length
utterances. Namely, it is trained to classify speakers present
in the train set utilizing a multi-class cross-entropy objective
function [24].

B. The x-vector

The embeddings produced by the network described above
capture information from the speakers over the whole audio-
signal. This type of embedding may help us to better discrim-
inate the utterances as their characteristics here are acquired
at the utterance level rather than at the frame level. Such
embeddings are called x-vectors and they can be extracted
from any segment layer; that is, either segment6 or segment7
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layers (see Table I) [13], [24]. Normally, embeddings from
the segment6 layer give a better performance than those from
segment7 [13].

IV. CUSTOM X-VECTOR EXTRACTORS

Most standard feature extractor approaches provide pre-
trained models that were fitted on huge amounts of data
and these models are usually applied to similar or distinct
domain tasks. Of course, this is the case for the x-vector
approach as well. However, pre-trained models do not always
perform the best in particular cases, e.g., when the data
differs from their original domain. A way to overcome this
issue might be to train the whole feature extractor model
(in our case, an x-vector DNN) from scratch. Following the
findings of a previous study [21], where we demonstrated
the benefits for the extractor when it learns from in-domain
data compared with those of the pre-trained models, here we
apply the same strategy. This way, the extractor might compute
DNN representations of a higher quality than those got with
out-of-domain data. Commonly, training like this requires a
significant amount of data, while the COVID-19 Cough dataset
is quite limited in size: the x-vector extractor DNN tends to
under-fit due to the small size of the dataset, if we would
use the training set (only 286 utterances, i.e. 31 minutes) for
training our X-vector extractors on. Owing to this, we will
present custom x-vector extractors fitted from scratch on a
corpus of a relevant size that is related to the domain of the
given task.

A. COVID-19 Cough Extractor

As stated above, the DNN-extractor might perform better
when trained on data related to the corpus in question. With
this in mind, for the COVID-19 Cough dataset, we employed
an in-domain corpus. Namely, we used the COUGHVID [22]
database to train the DNN to extract features from the COVID-
19 Cough corpus. The COUGHVID database is an extensive
dataset of (COVID-19 related) coughing sounds that were
collected via a web app by the Ecole Polytechnique Fédérale
de Lausanne (EPFL) in Switzerland. It consists of more than
20,000 crowdsourced cough recordings that were partially val-
idated by expert pulmonologists [22]. Since the COUGHVID
corpus is crowdsourced, it suffers from data contamination,
i.e. it comprises samples that are unrelated to the content
in question. However, this corpus carries compiled metadata
which can be used to filter the data and find the utterances that
have a high probability of being coughing sounds (see [22]).
We selected the recordings with p > 0.95. After this step, the
number of samples was 10,966 utterances (26 hours).

V. EXPERIMENTAL SETUP

Snyder et. al introduced a pre-trained x-vector model in their
study [13] that was fitted using a combination of a portion of
Switchboard (SWBD) and a subset of the NIST SRE corpus.
Here, we also used this model as an additional DNN-extractor
in our experiments for computing the embeddings from the
Cambridge COVID-19 Sound database. The motivation for

using this model lies in the comparison and analysis of the
quality of the features produced by a (standard) model that
was trained using data that had a different context from the
actual task. Below, we describe the models we employed for
the x-vector feature extraction step on the different corpora.
The representations were extracted using the segment6 affine
layer in each experiment. We utilized the Kaldi Toolkit [25]
both for training our x-vector extractors and for extracting the
x-vector embeddings.

A. Frame-level Representations

In the x-vector approach, it is standard practice to em-
ploy Mel-Frequency Cepstral Coefficients (MFCCs) as fea-
tures. However, as the x-vector extractors are neural net-
works, frame-level representations like the spectrograms and
Mel-frequency filter-banks (“FBANKSs”) might provide high-
quality features as well. Both kinds of representations have
proved to be useful in deep learning studies related to speech
analysis. The former, for instance, was utilized for emotion
recognition research [26], and in speech enhancement stud-
ies [27]; while the latter was used in speech recognition [28].

This is why in our experiments we used all three types of
frame-level features extracted from the utterances (i.e. MFCCs,
FBANKSs and spectrograms). All three were computed with
the standard values of a 25ms frame length and a step
size of 10ms. For the MFCCs, we extracted 23-dimensional
coefficients, while for the FBANKSs we computed 40 mel bins.
Regarding the spectrograms, we used a window-size of 25ms,
and a step size of 10ms, along with the energy computation.

B. Extractors with Data Augmentation

In order to increase the variance of the training data and
make the extractors noise-robust, we applied data augmenta-
tion on the COUGHVID corpus in the following way. From
additive noises and reverberation, two of the following types
of augmentation were selected randomly: babble, music, noise,
and reverberation. The first three types correspond to adding or
fitting noise to the original utterances. The fourth one involves
a convolution of room impulse responses with the audio
(reverberation). The final size of the augmented COUGHVID
corpus comprised 20,000 samples (67 hours). Besides training
on the original COUGHVID corpus, we trained further x-
vector extractors on this augmented version as well.

C. Evaluation Methods

Support Vector Machines (SVM) was the algorithm utilized
to perform the classification relying on the x-vector represen-
tations. We employed the 1libSVM implementation [29] with
a linear kernel and the C' complexity parameter was set in
the range 1072, ..., 10!, based on the performance on the
development set. As for the metrics, we employed Unweighted
Average Recall (UAR), which is the de facto standard on the
COVID-19 Cough corpus for evaluation [23].
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TABLE II
UAR SCORES OF THE EXPERIMENTS GOT USING THE EMBEDDINGS FROM
THE EXTRACTORS FITTED ON THE COUGHVID DATA; AND GOT USING
THE PRE-TRAINED X-VECTOR EXTRACTOR EMBEDDINGS [13].

Feature Set Dev Test
COUGHVID (standard) (MFCC) 57.6 60.1
COUGHVID (standard) (FBANK) 63.9 70.9
COUGHVID (standard) (spectrogram) 63.6 71.8
COUGHVID (augmented) (MFCC) 61.5 52.8
COUGHVID (augmented) (FBANK) 67.4 62.8
COUGHVID (augmented) (spectrogram) 60.4 70.5
Pre-trained Extractor [13] 59.7 56.4
ComParE functionals 57.4 70.6

VI. RESULTS AND DISCUSSION

Table II lists the performances (UAR percentage scores)
we obtained for the custom x-vector extractors, and also
when employing the pre-trained standard x-vector model. The
same table shows the results obtained with the 6373-sized
‘ComParE functionals’ attribute set [23]. In general, we can
see that MFCCs do not really perform well, leading to 2-
class UAR scores of 52.8...61.5%. This is understandable,
though, as they were originally intended to represent the
spoken content of speech; furthermore, deep networks (such
as x-vector extractors) were shown to perform better on raw
features such as FBANKSs [30]. As expected, FBANKSs and
spectrogram features helped to produce better results: the
scores lay between 60.4% and 67.4% on the development set,
while on the test set we measured over 70% in three out of
the four cases.

It is also apparent that the augmented extractors did not gain
any benefits from the noisy-augmented data. This may be due
to the quality of the utterances in the COUGHVID corpus; as
they are part of a crowdsourced process, a significant number
of the recordings suffer from background noise and are of
poor quality. Thus, applying augmentation techniques based
on the addition of further noise became counterproductive
when training the extractor, as the model might have learned
irrelevant information from the augmented utterance variants.

The standard pre-trained x-vector extractor did not give
better results than its counterparts. These results give us a
clue about the domain sensitivity that the x-vector approach
may be subject to. Although x-vector is considered a data-
greedy approach [13], [31], and this pre-trained x-vector model
was fitted on several hundreds of hours of data, we saw that
employing a significantly smaller amount of data still produced
good performances (at least for this particular task). That is,
with 26 hours for the non-augmented cough-extractors we
were able to outperform the several hundreds of hours of
the pre-trained extractor, most likely due to training with in-
domain data.

A. Combination Experiments

Next, we performed combination experiments, where we
fused each x-vector based prediction with the ‘ComParE

TABLE III
UAR SCORES GOT ON THE TEST SET WITH AN UNWEIGHTED LATE FUSION
OF THE PREDICTIONS WITH THE COMPARE FUNCTIONALS FEATURES.
THE IMPROVED VALUES ARE SHOWN IN bold.

Feature Set Standard  Augmented
COUGHVID (MFCC) 60.2 57.3
COUGHVID (FBANK) 73.1 66.8
COUGHVID (spectrogram) 73.5 73.1
Pre-trained Extractor [13] — 63.8

functionals’ feature set. For this, we opted for late fusion by
taking the mean of the corresponding posterior scores. Since
we did this in an unweighted manner, no meta-parameters were
tuned in this step, which, by our expectations, should increase
the robustness of the predictions. Table III shows the UAR
scores obtained this way. Clearly, this combination improved
the performance of the x-vector-based models in each case.
In the end, we achieved UAR scores up to 73.5% which,
although not exceeding the highest score published on this
corpus (75.9% [9]), is still a quite competitive performance
score.

B. Comparison with the Literature

Finally, to place our results in context, we compare them
with results reported in the literature. Table IV shows the
notable scores published on the same corpus. We see that
the performance scores of the individual methods reported in
the ComParE Challenge baseline paper (i.e. in [23], see the
first block) are outperformed by both the standalone and the
proposed combined methods, with one exception. However, we
should mention that even the result of the Bag-of-Audio-Words
approach was obtained by tuning its hyperparameter (the
number of the audio words) on the test set; the configuration
which gave best development-set score (i.e. 500 audio words
instead of 2000) led to an UAR value of 67.6% on the test
set, which falls below our scores of 71.8% and 73.1% which
were obtained in a scientifically sound manner (i.e. tuning all
parameters on the development set).

The second block of Table IV shows the results of stan-
dalone methods published by other research teams on the
Cambridge COVID-19 Sound (Cough) corpus. Using the
PASE+ features [32] proved to be inferior to our COUGHVID
x-vectors approach (UAR scores of 64.1% and 71.8%, re-
spectively). Illium et al. experimented with four different
CNN architectures [33]; we were able to outperform their
Vision Transformer and Vertical Vision Transformer networks
(employing blocks of multi-head self-attentions followed by
fully-connected layers), while we were on par with their Sub-
SpectralClassifier network (utilizing four small CNNs trained
on different, non-overlapping Mel bands and aggregated via a
classifier sub-network). Casanova et al. also employed several
different CNNSs; their most successful model utilized transfer
learning from the PANN CNNI14 model [34]. Surprisingly,
though, the model trained on 5-fold cross-validation performed
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TABLE IV
UAR SCORES GOT ON THE TEST SET REPORTED IN THE LITERATURE. ”*”
DENOTES AN APPROACH INVOLVING METHOD FUSION.

Approach Test
ComParE functionals [23] 65.5
Bag-of-Audio-Words [23] 72.9
DenseNet121 [23] 64.1
AuDeep (-60 dB) [23] 67.6
PASE+ features [32] 64.1
Vertical Vision Transformer CNN [33] 68.9
Vision Transformer CNN [33] 69.9
Sub Spectral Classifier CNN [33] 72.0
Transfer learning CNN (5-fold ensemble) [9] 69.6
Transfer learning CNN (simple holdout) [9] 75.9
CNN + TDNN-F + PASE+ features* [32] 69.3
ComParE Challenge baseline (fusion on test)* [23] 73.9
COUGHVID x-vectors (spectrogram) 71.8
ComParE functionals + COUGHVID x-vectors* 73.1

significantly worse than the one trained using a simple holdout
set.

The third block of Table IV shows values obtained by
combinations of methods; we see that even our standalone
approach outperformed the three-wise combination of Solera-
Ureiia et al. [32], while our combined method performed only
slightly worse than the four-wise baseline combination, fine-
tuned on the test set. Overall, our proposed approach (see
the last block of Table IV) led to competitive UAR values
compared to those achieved by other research groups (mostly
obtained by deep learning approaches).

VII. CONCLUSIONS

In this study we applied deep neural network models for
the extraction of x-vector embeddings, in order to discrim-
inate COVID-19 cough recordings as an automatic tool for
screening the disease. We described custom x-vector extractors
built upon distinct frame-level representations. Unlike standard
approaches, our DNN models were trained from scratch by
utilizing data related to the domain of the actual task (i.e. clas-
sification of cough sounds). We demonstrated the efficiency of
our extractors by producing competitive scores for the COVID-
19 Cough dataset. Our findings indicate that spectrograms
and FBANKS may be a powerful alternative as frame-level
features for the x-vector DNN architecture type. We also
found that the standard x-vector pre-trained model did not
produce better representations than its customized extractor
counterparts. This could be attributed to domain-sensitivity, i.e.
that this model was fitted on a different data domain (although
using huge amounts of it). We found that, in this particular
task, training with a significantly smaller amount of data
allowed the extractors to remain competitive and they even
outperformed the pre-trained model. Furthermore, our custom
DNN models may be useful for transfer learning approaches in
future studies related to COVID-19 screening based on cough
audio recordings.
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