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Abstract. Throughout the history of computational paralinguistics,
numerous feature extraction, preprocessing and classification techniques
have been used. One of the important challenges in this subfield of speech
technology is handling utterances with different duration. Since standard
speech processing features (such as filter banks or DNN embeddings)
are typically frame-level ones and we would like to classify whole utter-
ances, a set of frame-level features have to be converted into fixed-sized
utterance-level features. The choice of this aggregation method is often
overlooked, and simple functions like mean and/or standard deviation are
used without solid experimental support. In this study we take wav2vec

2.0 deep embeddings, and aggregate them with 11 different functions. We
sought to obtain a subset of potentially optimal aggregation functions,
because there are no general rules yet that can be applied universally
between subtopics. Besides testing both standard and non-traditional
aggregation strategies individually, we also combined them to improve
the classification performance. By using multiple aggregation functions,
we were able to achieve significant improvements on three public par-
alinguistic corpora.

Keywords: Paralinguistics · Wav2vec 2.0 · Embeddings · Aggregation

1 Introduction

In the past, the primary focus of automatic speech processing research was gen-
erating a transcription for an audio recording (i.e. Automatic Speech Recog-
nition) [14]. From the 1990s to the present, several other topics have received
more attention related to phenomena present in human speech, such as speaker
recognition and diarisation (“who’s speaking when”) [13], detecting Parkin-
son’s [15,16,38] or Alzheimer’s [3,23,24] disease, assessing the level of depres-
sion [6], age and gender recognition [25], emotion recognition [21,41], and esti-
mating the degree of sleepiness [5] or conflict intensity [11]. These subtopics are
part of computational paralinguistics, which has recently started to receive more
interest.
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In this field, instead of generating transcriptions, we seek to identify non-
verbal aspects of human communication such as tone of voice and other vocal
cues. Here, we need to associate different lengths of audio recording inputs (i.e.
utterances) with a single label output. The final aim is always a classification
or a regression at the utterance level. For example, if we have two-minute-long
recording, first we have to extract features from it, then classify whether the
speaker is angry or not. This means that we have to calculate a fixed-dimensional,
classifiable feature vector out of a varying-length recording. A typical strategy
for this is to split the input into smaller chunks (i.e. frames) and calculate low-
level descriptors (e.g. MFCCs) to get frame-level features. Then we feed them
into a neural network to extract frame-level embeddings. Finally we aggregate
them into an utterance-level feature and use it to classify the utterance.

Another key technical property of computational paralinguistics is that we
typically have small-sized corpora. This usually does not make it suitable for
using DNNs as classifiers, and deep learning methods are still in their early
stages of development [21,33]. Traditional classification methodologies tend to
perform better than end-2-end DNNs [10,29,34]. Nowadays scientists employ
DNNs more and more frequently, but mostly for frame-level feature (i.e. embed-
ding) extraction [39]. Deep neural network embeddings can reduce the feature
space dimension while preserving important information. It has been effective
in capturing complex relationships in the data and outperforming traditional
feature extraction methods. The small size of paralinguistical datasets makes it
difficult to train a feature extractor DNN from scratch, so usually a standard
ASR corpus is used for pretraining. Standard examples are HMM/DNN acoustic
models [9], x-vectors [31], ECAPA-TDNN [30] and wav2vec 2.0 [19].

In this study, we focus on the utterance-level aggregation step. Although
researchers tend to use task specific aggregations including only the most
popular metrics such as mean and standard deviation, our aim is to show
that there are other efficient techniques available too. Some of them can han-
dle different paralinguistic subtopics at the same time. With state-of-the-art
self-supervised wav2vec 2.0 DNN embeddings, we investigated 11 aggregation
strategies including both traditional and less frequently employed ones. We con-
ducted experiments on three different databases to find general trends across
various paralinguistic subtopics. We found that certain non-traditional metrics
can be highly effective for almost any subtopic, and traditional metrics vary in
performance depending on the dataset. We were interested in the classification
performance that could be obtained by combining different aggregation func-
tions. By using sequential forward feature selection, we achieved relative error
rate improvements of 4 − 10% on the test scores in two datasets. We achieved
a slight improvement on the third corpus. Our results, probably indicate that
the effective summarisation of frame-level embeddings is a nontrivial task, and
classification performance can be improved significantly using multiple aggrega-
tion functions, regardless of the actual paralinguistic subtopic. In addition, we
present a novel approach rule set for aggregation selection where we identify
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general patterns using our results and provide guidelines for selecting appropri-
ate aggregation methods for wav2vec 2.0 embeddings.

2 Proposed Methods

2.1 Wav2vec 2.0 Embeddings

To extract frame-level embeddings, we employed a self-supervised and fine-tuned
wav2vec 2.0 model [12]. The model has two main parts: (1) a Convolutional
Neural Network (CNN) block, (2) a BERT-based transformer block. The first
part encodes features by transforming the raw input waveform into a sequence of
high-level feature representations (i.e. latent speech representation). The CNN
has “dilation” between the filter weights, which allows the filter to capture infor-
mation from a wider range of time steps in the input sequence, without increasing
the number of parameters. The second part transforms the CNN output into a
sequence of high-level feature vectors, which capture the relationships between
the input waveform and the extracted features. It has a contextualised trans-
former architecture based on the widely used BERT model. The transformer con-
sists of a multi-head self-attention mechanism and a position-wise feed-forward
network [4]. The structure of a fine-tuned wav2vec 2.0 model can be seen in
Fig. 1.

Fig. 1. The fine-tuned wav2vec 2.0 framework structure [1].

The model can be trained with the cross-lingual representation (XLSR)
learning approach, which involves two steps: (1) pretraining the model by self-
supervised learning on large unlabeled datasets of speech in different languages,
(2) fine-tuning this model on a smaller labeled corpus with the target speech
language (e.g. German). In this way, the model learns to share discrete tokens
across languages. The pretraining step divides the input into small segments
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while applying random masking. Then it utilises a self-supervised learning (Con-
trastive Predictive Coding (CPC) approach), where the model encodes the seg-
ments into a set of discrete latent variables using two pre-defined codebooks and
predicts a future latent variable from the discrete ones. In the fine-tuning step
the original output layer is replaced with task-specific layers (typically a recur-
rent neural network (RNN) and a Softmax layer). Then, the modified network
is optimised via Connectionist Temporal Classification (CTC) loss [4].

After the training and the fine-tuning, we can use the network as an embed-
ding extractor by freezing the weights and removing the last few layers. We
experiment with two setups, where we extract embeddings from: (1) the last
layer of the CNN block, (2) the last layer of the Transformer block. When we
feed the paralinguistic utterances into the model, the output of the last remain-
ing layer serves as the embeddings. These feature vectors may contain relevant
information about the speaker and other aspects of the speech signal.

2.2 Embedding Aggregation

Since databases contain recordings with different lengths, we have a different
number of embedded features for each recording. This means one embedding
for each frame window. The aim is to predict one label to one utterance, but
we can not simply concatenate these embeddings because traditional classifiers
handle only fixed-sized input vector. In order to address this issue, an aggregation
step must be employed to transform frame-level embeddings into utterance-level
features. The general process of an aggregation is shown in Fig. 2. We had an
input recording consisting of y number of frame windows, each containing f
number of low-level descriptors. To get an utterance-level feature vector from
them, we combine all the y number of vectors by computing a statistical measure
such as the mean, variance, or other value for each f features in the time axis.
With aggregation we can obtain an utterance-level feature vector that has the
same size as an original embedding vector. Since the size of this aggregated vector
is independent of the number of the windows (and therefore, of the duration of
the utterance), it can be used with any traditional classification method.

3 Databases

We performed our experiments on three public paralinguistic corpora, that cov-
ered a variety of topic. However, all three corpora had native German speakers.
This allowed us to justifiably employ the same wav2vec 2.0 model for frame-
level embeddings extraction, as it was fine-tuned for German speech. All of the
databases was used on one of the INTERSPEECH Computational Paralinguistic
Challenges [26–28].

3.1 The iHEARu-EAT Database

The Munich University of Technology provided the iHEARu-EAT corpus [18],
which includes approximately 2.9 h of close-to-native German speech from 30
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Fig. 2. Creating fixed-sized feature vectors from varying-length utterances.

subjects (15 females, 15 males). It was recorded in a quiet, slightly echoing office
room, and the recordings has a sampling rate of 16 kHz. The classification task
was to determine the type of food being eaten while speaking: apple, nectarine,
banana, crisp, biscuit, gummy bear, and no food. The speakers completed various
tasks, such as reading the German version of “The North Wind and the Sun” or
providing a spontaneous narrative about their favourite activity. The database
was divided into a training set (14 speakers), a development set (6 speakers) and
a test set (10 speakers) in a speaker-independent manner.

3.2 The URTIC Database

The Institute of Safety Technology at the University of Wuppertal in Germany
provided the Upper Respiratory Tract Infection Corpus (e.g.: URTIC) [18], which
contains native German speech from 630 participants (248 females, 382 males).
The corpus has a total duration of approximately 45 h. The classification task
was to determine whether the speaker had a cold or not. The recordings were
downsampled from a sampling rate of 44.1 kHz to 16 kHz. The task assigned to
the participants included reading short stories, producing voice commands and
speaking spontaneously about a personal experience. The corpus was divided
into three sets (train, dev, test), each containing 210 speakers. The training and
development sets contained 37 infected and 173 uninfected participants.

3.3 The AIBO Database

The FAU AIBO Emotion Corpus [32] contains recordings of 51 native German
children speech, who were playing with a pet robot called AIBO. The recordings
were taken from two schools: 9959 recordings from the Ohm school and 8257
from the Mont school, with a total duration of around 9 h. The Ohm subset was
divided into a training set (7578 utterances, 20 children) and a development set
(2381 utterances, 6 children), while the Mont subset served as the test set (8257
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utterances). Classes were merged from the original 11 emotional classes into
5, as Anger (including angry, irritated and reprimanding), Emphatic, Neutral,
Positive (motherly and joyful), and the Rest (helpless, surprised, bored, non-
neutral other).

4 Experimental Setup

4.1 Wav2vec 2.0 Embeddings

The first step of our method is to extract frame-level embeddings from raw audio
data. We used a pretrained and fine-tuned wav2vec 2.0 model and extracted
features from two different layers: (1) the last layer of the CNN block and (2)
the last layer of the modified Transformer block. These vectors may contain
relevant information about the speakers and other aspects of the speech signal.
The size of the embeddings was 512 for convolutional and 1 024 for hidden layers.

4.2 Embedding Aggregation

During aggregation, we used 11 different statistical methods to convert frame-
level embeddings into an utterance-level feature vector. Besides the traditional
approaches of mean, median and standard deviation, we experimented with the
skewness, the kurtosis, theminimum, the maximum and the 1st, 25th, 75th, 99th
percentiles (i.e. the value below which a given percentage k of scores falls). Note
that median is identical to the 50th percentile. The 1st and 99th percentiles are
frequently used as alternatives to minimum and maximum, because they are not
that sensitive to outliers [22].

4.3 Classification and Evaluation

We used traditional Support Vector Machines (i.e. SVMs) for classification and
utilized the Python port of the LibSVM implementation [2]. Following our previ-
ous experiments [7,35,37], we employed the ν-SVM method with a linear kernel.
The complexity (C) was determined by testing powers of 10 between 10−5 and
100. To avoiding peeking and determine the optimal hyperparameter settings,
we trained our models on the train set and evaluated them on the development
set. In the end, we measured final performance of the best parameter, by training
the model on the concatenation of train and dev sets and evaluating it on the
test set. To measure the efficiency of an SVM model, we used the Unweighted
Average Recall (i.e. UAR) metric [20], corresponding to taking the mean of the
class-wise recall scores. This is a widely used metric for these corpora. [27,28,32].

In the case of the AIBO and the URTIC corpora, we always standardized
utterance-level features (i.e. converted them so as to have a zero mean and unit
variance). Due to the unbalanced class distribution and the relatively large size
of these corpora, we also employed downsampling on them (i.e. we discarded
training examples from the more frequent classes), as these techniques proved
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Fig. 3. Development results got from convolutional and transformer (i.e. hidden) layer
embeddings while using different aggregation techniques. The x axis represents the
aggregation method and the y axis represents the UAR value.

to be beneficial in our previous experiments [8,36]. In the case of iHEARu-
EAT, we performed speaker-wise standardization, where the test set speaker
IDs were determined by using the single Gaussian-based bottom-up Hierarchical
Agglomerative Clustering algorithm [17,40].

5 Experimental Results

First, we compared the performance of the convolutional and the transformer
(i.e. hidden) layer embeddings on the development set. Our best results for all 11
aggregation functions are shown in Fig. 3. From our results, convolutional embed-
dings significantly outperformed the hidden representations on the iHEARu-
EAT corpus (79.4%–83.7% and 61.1%–62.9%, convolutional and hidden embed-
dings, respectively). On the other two corpora, it also had a slight advantage
against hidden embeddings (URTIC: 63.3%–68.7% and 64.8%–66.1%, AIBO:
42.7%–45.5% and 43.6%–45.1%, convolutional and hidden embeddings, respec-
tively). Although the hidden layer performed better in percentage terms on the
AIBO database, but it varied greatly, proved unreliable and lost robustness.
Upon closer inspection, the minimum and maximum aggregations differ from
the previous pattern. The reason for the better performance scores with the
hidden layer in the case of AIBO might be that emotion recognition requires a
higher level analysis than the other two paralinguistic subtask, so the last hidden
layer has a better comprehensive overview. A deeper layer, like a convolutional,
can analyse smaller details, which is more advantageous in the case of sounds
produced by cold or during eating. The other significant difference of the AIBO
database compared with the others is that it contains recordings of children’s
speech. Changes in tones and speech skills can produce slight differences in the
analysis results. Due to these observations, we decided to continue our research
with convolutional embeddings. Our decision and recommendation is to use the
convolutional layer because it behaves more robustly and has the same pattern
in all three databases.
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Fig. 4. Development and test results for embeddings got from the convolutional layer,
when combining different aggregation strategies with sequential forward selection
(SFS). The order of the selected aggregation methods is shown on the x axis.

If we take a closer look at the aggregations, we observe same general trends.
The mean aggregation produced the best results on each database, which, as
it is perhaps the most frequently used method, is not that surprising. Stan-
dard deviation appear to be a promising alternative for a potential combination.
Regarding percentiles, the central ones (i.e. 25%, 75%) have competitive perfor-
mances, so we should pay more attention to these non-traditional aggregations.
We would like to recommend their usage more, especially the 75th percentile.
The traditional median metric (which is the same as the 50% percentile), had
a varying performance depending on the database, while it follows the accuracy
curve of the percentiles. This curve shows that if you take all the frame-level
vectors of a recording and sort the values for each feature in ascending order,
which part of the ordered sequence is the best descriptor of that recording. Last,
but not least, for all corpora we obtained very low results with the minimum and
maximum aggregations (where minimum is practically the 0th, while the maxi-
mum is the 100th percentile). It tells us that wav2vec 2.0 embeddings frequently
contain outlier values, which has a significant drawback in classification. Instead
of these, the 1st and 99th percentiles are promising alternatives. Although low
percentiles may also be minor outliers, but the trend clearly shows that their
use is more advisable than the minimum and maximum. Lastly, we tested skew-
ness and kurtosis aggregations, but they gave a significantly lower performance
overall.

5.1 Feature Combinations

In the second series of experiments, we wanted to further improve the classifi-
cation performance, so we used sequential forward selection (SFS) to combine
multiple aggregated feature vectors. The basic idea behind SFS is to initialize a
subset with only the best method, and then iteratively add one more aggregation
to the subset, based on which combination provides the greatest improvement
in performance. To combine a subset of aggregations, we took the mean of the
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corresponding posterior estimates and we measured the efficiency of the aver-
aged posterior by calculating the UAR score. SFS helps to reduce the risk of
overfitting, as the selected subset is more likely to be the most relevant and
informative for the given prediction task. Our results are shown in Fig. 4.

With the iHEARu-EAT database we were able to improve the development
test scores up to the 4th iteration. When adding further aggregation approaches,
the development UAR scores naturally decrease. However test set scores behave
quite differently as they fluctuate and remain in the 84–86% range.

Table 1. The best development and test results for different aggregation strategies
and their combinations for the iHEARu-EAT paralinguistic corpora.

iHEARu-EAT

Aggregation Dev Test

Mean 79.4% 83.7%

Median 78.4% 82.6%

75th percentile 78.4% 81.2%

mean+std+min+p25 82.2% 85.4%

All 80.5% 85.0%

Table 1 contains an overall statistic about the iHEARu-EAT database. The
first three rows show the three best aggregations from the previous experiment
of the convolutional layer, which are the mean, the median and the 75th per-
centile. The penultimate row shows the best result obtained with the combina-
tion approaches. This subset of aggregations determined by the development set,
contains the mean, standard deviation, minimum and the 25th percentile. Here,
we report an 8% relative error rate improvement. The last row shows the UAR
scores we obtained when we combined all of the aggregation methods. It has a
score close to the best combination, but we noticed that if we include too much
unnecessary information, we can lose its ability to generalise.

With the URTIC database, we found that we can improve the development
results up to the 3rd iteration. After that, for the development set the UAR
scores also naturally decrease, but the test set evaluation scores have further
improvements of between 66% and 67%.

Table 2 contains an overall statistic about the database. It has the same
pattern as the previous one. The three best simple aggregations from the con-
volutional layer, were the mean, 75th percentile and 99th percentile, where the
percentiles improved the generalisation ability as the higher test results indicate.
The best subset of aggregations contains the mean, 99th percentile and the max-
imum and we report a 1.16% dev, 2.69% test relative error rate improvement
against the mean only and 2.81% dev, −2.41% test scores against the 75th per-
centile. When we combined all of the aggregation methods we got an increase in
the test values. In our opinion these results indicate that there is a significant
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Table 2. The best development and test scores for different aggregation strategies and
their combinations for the URTIC paralinguistic corpora.

URTIC

Aggregation Dev Test

Mean 68.7% 63.1%

75th percentile 67.6% 66.4%

99th percentile 66.5% 66.2%

mean+p99+max 69.5% 64.8%

All 67.3% 67.1%

difference between the feature distribution of the development and the test sets,
because different aggregation types seemed to be important in case of these sets.

Table 3. The best development and test results for different aggregation strategies
and combinations for the AIBO paralinguistic corpora.

AIBO

Aggregation Dev Test

Mean 45.5% 42.7%

99th percentile 43.8% 42.9%

Standard dev. 43.5% 43.3%

mean+p99+p75 47.0% 42.7%

All 44.2% 44.0%

With the AIBO database we found that we could improve development scores
up to the 3rd iteration. After that, the development set UAR scores also naturally
decrease, but the test set evaluation scores have further improvements between
43% and 44%. Table 3 contains an overall statistic about the database with
the same pattern as the previous one. The three best aggregations from the
convolutional layer, were the mean, 99th percentile and standard deviation. Here,
the second and the third best aggregation also gave slight improvements on the
test values. The best subset of aggregations contains the mean, 99th percentile
and the 75th percentile. We have relative error rate improvements between 1.41%
and 8.05%. When we combined all of the aggregation methods, we observed the
same behaviour as that for the URTIC database.

In the view of the three databases, lower than middle percentile values works
better for iHEARu-EAT while higher values performs better for URITC and
AIBO corpora. Clearly, there is another global tendency about needing 3 or 4
iterations of the SFS to improve the efficiency of our model. As we can see, com-
binations bring improvements on the test set as well, which means it increases
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the generalisation ability of the model. These significant improvements repre-
sented in relative error reduction values of 8.0–10.4% (iHEARu-EAT), 4.6–10.8%
(URTIC) and 0–2.3% (AIBO), and they were obtained using simple, easy-to-
implement and quick-to-calculate aggregation techniques. New aggregations can
be easily calculated alongside traditional metrics because it can be done in paral-
lel in the stage where all the frame-level features are available for one recording.
Each new metric introduces as many new features as we originally had. This leads
to an utterance-level feature vector of length 1536–2048, which always contains
one or two non-traditional percentile values. This does not drastically increase
the dimensionality for a casual set of features extracted from the bottleneck layer
(which commonly used in paralinguistics).

6 Conclusion and Future Work

In this study we focused on applying aggregation strategies for deep neural
network embeddings in the field of computational paralinguistics.

We performed our experiments on three public paralinguistic corpora, that
have a variety of topics, but were uniform in their spoken language. We used
a wav2vec 2.0 DNN to extract embeddings and then we investigated 11 more-
and less-traditional aggregation strategies for combining frame-level embeddings
into utterance-level features. In the second set of experiments, we used sequential
forward selection to improve our results and find the overall best aggregation
methods and global tendencies across databases.

We found a well-defined general pattern between aggregations. The tradi-
tional standard deviation and median aggregations are heavily topic dependent.
The mean aggregation is always a good choice, but it is not the only one. Our first
results indicate that middle percentile aggregations are competitive techniques.
This is true for both the convolutional and hidden layers. Overall, it seems that
wav2vec 2.0 embeddings can be expected to contain extreme values, which are
not really useful for classification. Owing to this, aggregation methods that are
sensitive to outliers might be expected to perform less robust than those that
can handle the outlying values better. For the former, the obvious examples are
the minimum and maximum, which were clearly outperformed by the first and
99th percentiles. We also found that choosing only one aggregation technique
leads to a suboptimal classification performance. In the second phase where we
performed SFS initialized with the mean, there was a trend across databases, as
the peak of improvement fell on the combination of the first 3–4 techniques. The
best combinations typically include the mean, a non-traditional percentile value
below and/or above the median. Using multiple aggregations simultaneously, we
were able to make improvements on both the development and test sets. Based
on all of these, we see a trend in our model. It will have a better generalisation
ability if we apply at least the above-mentioned 3 types of aggregations together.
This way, we can improve the generalization ability of the model, while keep-
ing the feature space below 2048. The computational demand does not increase
drastically due to possible parallelization. Our results suggests that aggregating
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embedding vectors by just using one function leads to a significant information
loss. Quite surprisingly, combining all aggregated feature sets led to significant
improvements on the test set, which could indicate that there is a big stochastic
difference between the development and test data.

This, in our opinion, indicates that aggregating the frame-level embeddings
is a task which is far from trivial, and that significant improvements can be
obtained in the classification performance using other techniques instead of the
traditional mean and/or standard deviations. In the case of SFS, working with
posteriors is a more time and memory consuming choice, but because of the pos-
sible differences, in the near future we plan to retrain our models with the con-
catenated feature sets. Another possible future direction is to gain more insights
using other aggregation methods and datasets, and systematically explore them.
Additional research opportunity is to give more emphasis on the important vec-
tors with weighted aggregation, where weights can be learned.
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