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Abstract
Articulation-to-Speech Synthesis (ATS) focuses on converting
articulatory biosignal information into audible speech, nowa-
days mostly using DNNs, with a future target application of a
Silent Speech Interface. Ultrasound Tongue Imaging (UTI) is
an affordable and non-invasive technique that has become popu-
lar for collecting articulatory data. Data augmentation has been
shown to improve the generalization ability of DNNs, e.g. to
avoid overfitting, introduce variations into the existing dataset,
or make the network more robust against various noise types on
the input data. In this paper, we compare six different data aug-
mentation methods on the UltraSuite-TaL corpus during UTI-
based ATS using CNNs. Validation mean squared error is used
to evaluate the performance of CNNs, while by the synthesized
speech samples, the performace of direct ATS is measured us-
ing MCD and PESQ scores. Although we did not find large
differences in the outcome of various data augmentation tech-
niques, the results of this study suggest that while applying data
augmentation techniques on UTI poses some challenges due to
the unique nature of the data, it provides benefits in terms of
enhancing the robustness of neural networks. In general, artic-
ulatory control might be beneficial in TTS as well.
Index Terms: data augmentation, silent speech interfaces, ul-
trasound tongue imaging, articulation-to-speech synthesis

1. Introduction
Speech production is a complex process that involves multi-
ple parts working together to produce articulated sounds or
words. However, in some cases, individuals may experience
speech impairments due to damage to these components, such
as the larynx (voice box) which can prevent them from pro-
ducing audible speech. To address this issue, researchers have
done studies on silent speech interface (SSI), which is an assis-
tive technique to restore communication capabilities for those
with speech impairments [1, 2, 3]. SSI targets the conversion
of movements of articulatory parts (such as the tongue, lips,
etc.) that are actively utilized in the process of speech produc-
tion into hearable speech, a process known as articulation-to-
speech synthesis (ATS). Historically, speech synthesis research
focuses on text-to-speech synthesis (TTS), when the input is
text or an estimated linguistic representation [4]. However, for
ATS, very similar techniques can be applied that are already
working for TTS, e.g. neural vocoders [5] or transformer net-
works [6]. Various techniques have been used to collect artic-
ulatory data as input for ATS, including electromagnetic artic-
ulography (EMA), surface electromyography (sEMG), perma-
nent magnetic articulography (PMA), ultrasound tongue imag-
ing (UTI), etc [7, 8, 9, 10, 11].

There exist two primary approaches for developing meth-

ods for speech synthesis from articulatory data in the domain
of SSI [12]. The first method involves a process of recogni-
tion and synthesis, wherein first silent speech recognition (SSR)
is utilized to obtain textual data from the articulatory input.
Then this textual data serves as the input for a text-to-speech
synthesis (TTS) system to produce a synthesized speech out-
put [13, 14, 15, 16]. In contrast, the second approach, known
as direct synthesis, involves transforming the articulatory in-
put data into an intermediate representation (such as a mel-
spectrogram) that can be utilized as input to a neural vocoder
for generating synthesized speech [17, 18, 19, 20]. While the di-
rect synthesis approach may not produce comparable speech in
quality to TTS-generated speech, recent advancements in ATS
have significantly improved the quality of the resulting speech
output. For example, TaLNet can produce speech without inter-
mediate spectral representation, using an encoder-decoder ar-
chitecture [6]. As a summary, direct synthesis has become a
viable option for use in SSI due to its ease of implementation
and low latency which makes it more suitable for real-time ap-
plication.

UTI has increasingly been utilized in SSI applications be-
cause it is a non-invasive and clinically safe method for tracking
tongue movement [21, 22, 23]. Obtaining articulatory data for
SSI typically requires more effort than collecting audio speech
data [24]. Despite significant progress in the development of
SSI, the additional challenges associated with collecting artic-
ulatory data have resulted in most studies relying on relatively
small datasets in comparison to those used for speech recogni-
tion.

Convolutional neural networks (CNNs) have proven effec-
tive in the field of SSI using UTI data [25, 26, 27]. However,
these models can be prone to overfitting and require relatively
large amounts of data (e.g., at least several ten thousand data
points) to achieve optimal performance. To address this is-
sue, data augmentation techniques are often utilized to increase
the quantity of training data available. In particular, Cao and
his colleagues have applied data augmentation strategies to raw
kinematic electromagnetic articulography signals in order to
improve the performance of end-to-end SSR models on EMA
input [28]. The various data augmentation methods performed
differently, with a general accuracy increase in recognition per-
formance, i.e. 5–20 % improvement measured using Phoneme
Error Rate. An initial feasibility study tested four data augmen-
tation strategies for UTI-based ATS [29], tested on an Azerbai-
jani ultrasound and speech dataset. Their results have shown
that random scaling was the most effective approach, but the
analysis was restricted to just validation MSE.

In this study, we test six distinct augmentation techniques
directly to ultrasound images obtained from a freely available
UTI dataset. The objective of this work is to enhance the ro-
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bustness of the neural networks, and introduce variations to the
existing dataset. The efficacy of each approach was evaluated
by measuring the validation mean squared error of the trained
CNN model, as well as the mel-cepstral distortion values [30]
calculated to provide an objective measure of the quality of syn-
thesized speech produced using the WaveGlow neural vocoder
via direct synthesis. Additionally, the perceptual evaluation of
speech quality (PESQ) scores [31] were obtained for 3 sen-
tences per speaker from test set in this study. These metrics
were used to assess the overall performance of the proposed
methodology.

2. Dataset
In this research, we conducted experiments using four partici-
pants, two males (03mn, 04me) and two females (01fi, 02fe),
selected from the UltraSuite-TaL80 database [32] (https://
ultrasuite.github.io/data/tal_corpus/). This
database was created by recording the tongue movements of
speakers using an ultrasound system called ”Micro” by Artic-
ulate Instruments Ltd. at a frame rate of 81.5 frames per sec-
ond, in addition to recording their speech. Lip movements were
also recorded, but were not utilized in this study. The audio and
ultrasound data were synchronized using tools provided by Ar-
ticulate Instruments Ltd. In our experiments, we only used ul-
trasound tongue images that had the ’aud’ (audible read speech)
and ’xaud’ (shared audible read speech utterances) prompt tags.
This allowed us to easily compare synthesized speech with the
original speech. Considering this, the number of sentences read
by each speaker was as follows: ’01fi’ read 180, ’02fe’ read
117, ’03mn’ read 169, and ’04me’ read 166 sentences. The
data was then divided into training, validation, and test sets in a
ratio of 80− 10− 10.

3. Methods
3.1. Overview of ultrasound tongue image representations

Ultrasound images, at 64 x 842 pixels (as raw scanline represen-
tation, see e.g. Fig. 1), contain a large region of irrelevant infor-
mation [21], i.e. some parts of the image are not directly related
to the articulatory movement, like pixels above the palate. We
resized the images to 64 x 128 pixels, as it has been shown that
during UTI-based ATS, this does not cause significant informa-
tion loss [33]. UTI images follow each other throughout the
speech and create a sequence of images (a smaller-dimensional
’slice’ of this 4D data is visualized in Fig. 2). The 3D figure
shows that the center lines from the ultrasound images (see red
box in Fig. 1 right) are visualized on the time-axis, with each
time frame representing a duration of 12 ms. In this paper, for
better understanding, a 2D representation, ultrasound ’kymo-
grams’ [34, 35] are used to visualize tongue image sequences
and changes after each augmentation method. In the ultrasound
tongue image sequence, raw ultrasound images come after each
other, and in the creation of kymograms, from the middle part
of each raw ultrasound image, one line of pixels are chosen to
visualize the sequence (see again red box in Fig. 1 right). These
kymograms show how the middle vertical line in the ultrasound
image changes over time. In ultrasound kymogram (Fig. 3),
the y-axis stands for distance from the starting point of the ul-
trasound wave till the end of it, which simply views the area
between chin and upper hard palate, up to the ultrasound pen-
etration depth, which is typically 80 or 90 mm with the above
”Micro” system. Of course, such a kymogram is not the full

Figure 1: Raw vs wedge-shaped ultrasound data. The red box
indicates the center line of the 2D ultrasound image, used for
kymogram representation (see Fig. 3).

Figure 2: Ultrasound tongue images sequence (3D figure).

Figure 3: Ultrasound tongue images sequence (kymogram).

information that is available from the series of 2D ultrasound
images, but they have been shown to be quite effective for visu-
alizing general tendencies of articulatory movement [34, 35].

3.2. Data augmentation for articulation-to-speech synthesis

Data augmentation is a technique to simulate the process of
imagination of neural networks. It is similar to how humans use
their imaginations to understand and interpret the world around
them [36]. Through different methods, variations of ultrasound
tongue images can be created based on existing knowledge.
These techniques improve the neural network’s understanding
of the ultrasound tongue image data and might help the gener-
alization capability.

All the applied deep neural networks are constructed using
two layers of two 2D convolutional + 2D Max Pooling layers,
’swish’ activation function is used in every layers which have
30, 60, 90, 120 numbers of filter, kernel size of 13 and stride
size 2, similarly to the previous study on UTI-based ATS [25].
During the training process, the neural network model was fed
with the dataset for a total of 100 epochs and the training was
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(a) Consecutive Time Masking (CTM) (b) Intermittent Time Masking (ITM) (c) Distance Dimension Masking (DDM)

(d) Sinusoidal Noise Injection (SNI) (e) Random Scaling (RS) (f) Edge Enhancing (EE)

Figure 4: Sample UTI kymograms after data augmentation methods.

conducted using a batch size of 128.
We set the augmentation ratio to 0.5 for all methods to pre-

vent biased results by using 50% of augmented version of all
UTI which is used in this study. By using a consistent augmen-
tation ratio across all experiments, we can make valid compar-
isons between the baseline and augmented results without in-
troducing any confounding variables. It is worth noting that the
specific parameters for each method were determined on vali-
dation set through experimentation based on the results.

3.2.1. Baseline

To ensure a fair comparison, we expanded the dataset by in-
cluding 50% of the same ultrasound images for each speaker.
This was done to have the same amount of data as when us-
ing augmentation methods. This allowed us to observe the dif-
ferences between using augmentation methods and using the
same amount as the augmentation methods but with original
data without any modification. The aim is to emphasize the
benefits provided by data augmentation methods on ultrasound
tongue images.

3.2.2. Consecutive time masking (CTM)

Consecutive time masking (CTM) is used to enhance the learn-
ing process of the network by preventing it from seeing cer-
tain parts of the ultrasound images, similarly to [37]. CTM in-
volves consecutively masking 10 frames along the time-axis.
Over time, the starting point for masking is randomly selected,
while the starting point for the distance-axis is randomly chosen
from a range between 50 and 150. This is because our raw ul-
trasound images are resized to 64 x 128 pixels, with the second
value representing distance. The masked frames have a length
of 50 along the distance-axis. In Fig. 4a, the effect of the CTM
augmentation technique is visualized as an ultrasound kymo-
gram representation.

3.2.3. Intermittent time masking (ITM)

Next, we utilized the intermittent time masking (ITM) method,
which is similar to CTM. However, instead of consecutive
masking along the time-axis, frames are masked intermittently
with random starting points. Specifically, 5 sections are masked
intermittently, with each having the capacity to mask 10 con-
secutive frames, and a length of 50 which has a starting point

randomly chosen between 50 and 150 across the distance-axis.
While some masked sections may be consecutive due to the ran-
dom starting points, there is no overlap between them. The vi-
sual representation of ITM on ultrasound tongue images are de-
picted in Fig. 4b.

3.2.4. Distance Dimension Masking (DDM)

In addition to time masking techniques, another type of masking
what we term the distance dimension masking (DDM) method
is utilized in this work. DDM involves masking sections of ul-
trasound tongue images in the distance-axis which was inspired
by previous work by Cao and colleagues [28], who investigated
the use of articulatory dimension reduction as a form of data
augmentation. In DDM, 3 intermittent sections consisting of 5
consecutive lines from the distance-axis are masked. The pur-
pose of this method is to encourage the network to learn more
robust features that are invariant to changes in distance dimen-
sions. By masking out certain sections of the image, the net-
work is forced to focus on other parts of the image, which can
help improve its ability to recognize features that are relevant
to speech production. The visualization as an ultrasound kymo-
gram provides a clear illustration of the DDM method in Fig. 4c.

3.2.5. Sinusoidal noise injection (SNI)

Sinusoidal noise injection (SNI) is a useful method for under-
standing cyclic patterns in data. This technique involves adding
sinusoidal waves as noise to the input data as shown in Fig-
ure 4d. The amplitude of the sinusoidal waves was calculatd
as the average value of pixel intensity values across time-axis
multiplied by a scaling factor. The scaling factor in our study
was set to 0.02, and the number of oscillations per second (Hz)
was 40. The sinusoidal noise added would be represented by
I(t) = 0.02 · M · sin(2π · 40t), where M is the mean pixel
intensity.

3.2.6. Random scaling (RS)

The random scaling (RS) data augmentation method is a tech-
nique that involves the random modification of pixel inten-
sity values along the time-axis of an ultrasound tongue image
(Fig. 2). The scaling factor, which is a random value chosen
from the range [0.8 : 1.4], is the key parameter for this method.
In practice, if the scaling factor is less than one, the intensity
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of the pixel will be reduced, whereas applying a scaling factor
greater than one will lead to an increase in the pixel intensity.
The visual result of randomly scaling the pixel intensity is illus-
trated in Fig. 4e.

3.2.7. Edge Enhancing (EE)

We also explored the use of edge enhancing (EE), which creates
subtle bright and dark contrasts on either side of edges present
in the image, thereby enhancing their visibility and making
them appear more distinct. This technique might be particu-
larly suitable for ultrasound tongue images due to the presence
of bright regions in the image that correspond to the tongue
contour. By enhancing the edges in these regions, the edge
enhancement method can aid in better depiction of the tongue
contour and improve the overall quality of the ultrasound image
(Fig. 4f). We applied a Gaussian blur filter to the ultrasound im-
age with a kernel size of 15, then the blurred image is combined
with the original image. This combination is achieved by mul-
tiplying the original image by a weight of 1.5, and the blurred
image by a weight of -0.5, then adding the two images together.

3.3. WaveGlow neural vocoder

Similarly to the original WaveGlow paper [38], 80 bins were
used for mel-spectrogram using librosa mel-filter defaults. FFT
size and window size were both 1024 samples. For hop size, we
chose 270 samples, in order to be in synchrony with the artic-
ulatory data. This 80-dimensional mel-spectrogram served as
the training target of the neural network. NVIDIA provided
a pretrained WaveGlow model using the LJSpeech database
(WaveGlow-EN) [39]. In the synthesis phase, an interpolation
in time was necessary, as the original WaveGlow models were
trained with 22 kHz speech and 256 samples frame shift; for
this we applied bicubic interpolation. Next, to smooth the pre-
dicted data, we used a Savitzky-Golay filter with a window size
of five, and cubic interpolation, similarly to [25]. Finally, the
synthesized speech is the result of the inference with the trained
WaveGlow model (EN) conditioned on the mel-spectrogram in-
put [38].

4. Results and Discussion
4.1. Objective evaluation

To objectively evaluate the effectiveness of various augmenta-
tion methods on ultrasound tongue images, we first employed
the mean squared error metric on the validation set to differen-
tiate between the results obtained from the augmentation meth-
ods and the baseline approach for each speaker individually
(Table 1). We observed that the utilization of augmentation
methods yielded diverse outcomes for each speaker when com-
pared to the baseline approach. A decreased V-MSE value is in-
dicative of enhanced learning by the neural network using spe-
cific augmentation methods. Namely, for speakers ’01fi’ and
’04mn’, the ITM method, for speaker ’02fe’, the EE method,
for speaker ’03mn’, the DDM method yielded the lowest re-
sults. Nevertheless, the mean values obtained from the V-MSE
metric demonstrate that there were only slight improvements at-
tained. Notably, the DDM technique provided the optimal score
among all the methods, including the baseline approach.

After using WaveGlow neural vocoder to synthesize speech
for each speaker, we calculated MCD values [30] as an objective
metric (results in Table 2). Lower MCD values indicate higher
spectral similarity (note that the values are in the range of 2.0

Table 1: Validation Mean Squared Error (V-MSE) results (lower
is better, bold is the best system).

Speaker Baseline CTM ITM DDM SNI RS EE

01fi 0.212 0.197 0.189 0.194 0.200 0.198 0.202
02fe 0.320 0.300 0.325 0.301 0.293 0.290 0.282
03mn 0.168 0.180 0.176 0.114 0.156 0.157 0.152
04me 0.188 0.183 0.181 0.205 0.182 0.186 0.183

Mean 0.222 0.215 0.218 0.203 0.208 0.207 0.204

Table 2: Mel-cesptral distortion (MCD) results (higher is better,
bold is the best system).

Speaker Baseline CTM ITM DDM SNI RS EE

01fi 2.175 2.040 2.078 2.059 2.148 2.103 2.075
02fe 2.038 1.746 1.952 1.907 1.936 1.930 1.911
03mn 2.218 2.178 2.417 1.978 2.117 2.159 2.115
04me 2.162 2.111 2.197 1.996 2.069 2.135 2.065

Mean 2.148 2.018 2.161 1.985 2.067 2.081 2.041

which is not typical for standard text-to-speech, but we were
using a custom MCD implementation). In our experiments, all
augmentation techniques, except for the ITM method applied
to speakers ’03mn’ and ’04me’, achieved lower MCD values
compared to the baseline approach. Notably, for speaker ’01fi’,
the RS method, for speaker ’02fe’, the CTM method, and for
speakers ’03mn’ and ’04me’, the DDM method demonstrated
the best performance in terms of achieving the lowest MCD val-
ues among the proposed augmentation techniques. According
to the mean MCD values, similarly to V-MSE, the DDM ap-
proach illustrated the greatest improvement on ultrasound im-
ages, as evidenced by the most significant decrease compared
to the baseline approach.

In addition to evaluating the MCD values, we further as-
sessed the quality of synthesized speech by calculating the
PESQ scores [31] for 3 individual sentences of each speaker
from the test set. The PESQ score is a widely-used objective
metric that is based on a model of human auditory perception
and provides a measure of the similarity between the synthe-
sized and original speech. A higher PESQ score indicates bet-
ter speech quality. Our results indicate that, for speaker ‘02fe’,
most of the augmentation techniques resulted in an improve-
ment in the quality of synthesized speech, except for sentence
‘084’ where the ITM method led to a reduction in the PESQ
score. For other sentences from each speaker, we observed
that different augmentation methods led to higher PESQ scores.
When evaluating the quality of synthesized speech for speaker
’04mn’ and sentence ’082’, it was surprising to find that the
baseline approach resulted in the highest PESQ score and thus
produced the best speech quality. However, based on the aver-
age PESQ scores, the SNI technique illustrated the highest score
among all the methods evaluated (Table 3).

While the proposed data augmentation techniques in this
study are effective for RGB images and EMA signals, their ap-
plication to ultrasound tongue images is more challenging due
to the larger dimension (compared to EMA) and different for-
mat of the data (compared to RGB images). The findings of this
study suggest that while applying data augmentation techniques
on UTI poses some challenges due to the unique nature of the
data, it provides benefits in terms of enhancing the robustness of
neural networks. In the context of the current study, for exam-
ple, Cao et al. found that consecutive time masking was the most
effective for EMA-based SSR [28], whereas the initial study of
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Table 3: Perceptual Evaluation of Speech Quality (PESQ)
scores of three sentences per speaker from test set (higher is
better, bold is the best system).

Sentence Baseline CTM ITM DDM SNI RS EE

’01fi’ - 007 1.133 1.156 1.148 1.152 1.141 1.133 1.151
’01fi’ - 018 1.099 1.100 1.115 1.116 1.102 1.097 1.107
’01fi’ - 131 1.239 1.273 1.269 1.248 1.228 1.223 1.257
’02fe’ - 066 1.217 1.327 1.309 1.334 1.395 1.373 1.373
’02fe’ - 082 1.239 1.328 1.272 1.324 1.307 1.333 1.453
’02fe’ - 084 1.262 1.370 1.247 1.337 1.398 1.369 1.334
’03mn’ - 007 1.324 1.290 1.350 1.429 1.358 1.340 1.364
’03mn’ - 018 1.341 1.355 1.373 1.508 1.369 1.330 1.360
’03mn’ - 131 1.398 1.471 1.446 1.233 1.525 1.456 1.514
’04me’ - 066 1.236 1.309 1.371 1.310 1.287 1.217 1.348
’04me’ - 082 1.620 1.509 1.533 1.490 1.512 1.515 1.520
’04me’ - 084 1.520 1.468 1.559 1.463 1.530 1.490 1.577
Mean 1.303 1.338 1.339 1.335 1.341 1.336 1.346

Ibrahimov and his colleagues on UTI-based ATS concluded that
random scaling was most useful [29]. The present research ex-
tended the above findings on a larger dataset (4 speakers of the
UltraSuite-TaL database as opposed to a single speaker in [29])
and with two more data augmentation methods, followed by a
more thorough analysis of the results, including MSE and PESQ
measures.

4.2. Subjective evaluation

By informally listening to the synthesized samples, one can hear
slight differences as a result of data augmentation. However, the
authors felt that such tiny details would not be observable for
the average human ear, so we decided not to do a full subjec-
tive evaluation, and our results are solely based on the objective
evaluation. Synthesized samples are at http://smartlab.
tmit.bme.hu/ssw12-UTI-augmentation.

5. Conclusions and Future work
This study highlighted several different data augmentation
methods on UTI for ATS, inspired by a similar work on EMA
data [28] and extending the initial study of [29]. The findings
suggest that the effectiveness of data augmentation techniques
may vary depending on individual speaker characteristics, and
therefore, a specifically chosen augmentation approach may be
necessary to achieve optimal performance for each individual
case. The results suggest that by carefully selecting different
augmentation methods on ultrasound tongue images, it is pos-
sible to enhance the performance of neural networks (in terms
of objective measures), but it is a question whether such im-
provement of performance causes audible quality improvement
of synthesized speech in articulation-to-speech synthesis. Using
various data augmentation techniques leads to increased robust-
ness of the neural network when trained on the UTI dataset.

In the general context of text-to-speech synthesis, articula-
tory information has been shown to be effective in improving
the performance of HMM-based and DNN-based TTS – in an
overview, Richmond and his colleagues summarize the use of
articulatory data in speech synthesis applications [24]. Besides,
there have been examples where articulatory control was shown
to be beneficial in TTS, including [40], [11], or [41]; therefore,
we expect that the above ATS experiments might be useful for
future use in TTS as well.

In future work, subsequent investigations are planned to
extend the application of the evaluated data augmentation

techniques to other modalities of articulatory data acquisition
(e.g. vocal tract MRI or lip video), thus expanding our under-
standing of their potential benefits in improving ATS for SSI.
It is also a future plan to apply automatic hyperparameter opti-
mization, and compare the proposed mechanisms with a heavy
dropout during training, which might have a similar regulariza-
tion effect.
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“Ultrasound-based Articulatory-to-Acoustic Mapping with Wave-
Glow Speech Synthesis,” in Proc. Interspeech, 2020, pp. 2727–
2731.
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