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Abstract. In the current pandemic situation, one of the tools used
to fight Covid-19 is wearing face masks in specific public spaces. As
previous research on the Mask Augsburg Speech Corpus had verified,
speech might be eligible to automatically determine whether the speaker
is wearing a mask or not, but the performance of classification models is
far from perfect at the moment. This paper employs seven transformer-
based wav2vec2 models on this dataset, extracting the activations from
the lower, convolutional blocks as well as from the higher, contextualized
transformer blocks. We show that models obtained via the self-supervised
pre-training phase lead to similar performances with both activation
types. However, after fine-tuning the models for direct ASR purposes,
the performance achieved by the contextualized representations dropped
significantly. Here, we report the highest Unweighted Average Recall
value on this corpus that was achieved by a standalone method.

Keywords: speech analysis · surgical mask · wav2vec2 ·
computational paralinguistics · transformers

1 Introduction

Although with the introduction of vaccines, the peak of the COVID-19 pandemic
seems to be over, the virus is still widely spread worldwide. To reduce the num-
ber of new infection cases, besides social distancing, an effective tool was the
compulsory wearing of masks. Automatic speech analysis might offer a solution
to enforce and monitor whether this regulation is kept. Furthermore, forensics
and ‘live’ communication between surgeons may also benefit from a system that
could determine whether a subject is wearing a mask based on their speech [20].
This task belongs to the area of computational paralinguistics, which focuses on
information present in speech other than the actual words uttered.
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It is well known that both Automatic Speech Recognition (ASR) and Speech
Verification techniques can be applied to the field of computational paralinguis-
tics and pathological speech processing. For instance, x-vectors [22] (a former
SOTA for Speaker Recognition) have been successfully adapted to classify emo-
tions [15] and for sleepiness detection [11]. Furthermore, ASR-based solutions
have also been adapted to these fields, e.g. for detecting states of dementia [8]
and for speech emotion recognition [7].

Nowadays, feature-encoder approaches are increasingly being applied by
researchers in Speech Recognition. For instance, ASR has benefited from wav2vec
2.0 [3,6] and BERT [10,21], which are able to generate rich contextual repre-
sentations from large amounts of unlabeled instances. Wav2vec 2.0 has been
successfully applied in computational paralinguistics and pathological speech
tasks, where pre-trained models were used to assess the emotions [16], to screen
Alzheimer’s Disease [17], or even to detect COVID-19 [4] from the speech and
the coughing of subjects. The wav2vec 2.0 method is said to be a state-of-the-
art method for Speech Recognition, as it has the lowest Phonetic Error Rate
(8.3%) [3] and lowest Word Error Rate (WER) (1.4%) [24] on two of the most
popular speech datasets, namely TIMIT and LibriSpeech, respectively1.

In this paper, we utilize several (pre-trained) wav2vec 2.0 speech encoder
models and extract two distinct types of embeddings from them. The basis of
wav2vec relies on the goal of extracting new types of input vectors from raw
(unlabeled) audio, which can be used to build an acoustic model [19]. Wav2vec
2.0 relies on the same self-supervised principle, but it encodes speech represen-
tations from masked audio-segments and passes them to a transformer network
that builds contextualized representations. This self-supervised approach was
able to outperform traditional ASR systems that are based on transcribed audio,
using much less labeled training data [3].

Our main contributions are: (i) Exploring the sufficiency of wav2vec 2.0
encoder (pre-trained) models for a task specifically related to computational
paralinguistics; (ii) Analyzing the difference in the quality of the embeddings
produced by each of the encoders; (iii) Applying a more straightforward method
in order to avoid the time-consuming and computationally expensive fusion or
ensemble approaches; (iv) Investigating the robustness of both language-domain
matching and cross-lingual pre-trained encoders for the original language of
the corpus utilized. Our approach gives the highest Unweighted Average Recall
(UAR) score achieved by a stand-alone method on the above-mentioned corpus,
while our performance stays above most of earlier studies that utilized fusion of
methods as well.

2 Data

The Mask Augsburg Speech Corpus (MASC) comprises recordings of 32 German
native speakers. The subjects were asked to perform specific types of tasks and
their speech was recorded while wearing and not wearing a surgical mask. It
1 Source: https://paperswithcode.com/task/speech-recognition/latest, Oct 2022.

https://paperswithcode.com/task/speech-recognition/latest,
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has a total duration of 10 h, 9 min and 14 s, segmented into chunks of 1 s. The
recordings have a sampling rate of 16 kHz. The total number of utterances is
36,554: 10,895 for train, 14,647 for development, and 11,012 for test. This task
was also included in the Computational Paralinguistics Challenge (ComParE)
in 2020 [20].

3 Self-supervised Learning

Self-supervised learning makes it possible for models to learn from orders of
magnitude more data, which is the key to process patterns of less common phe-
nomena. Usually, speech recognition systems require massive amounts of tran-
scribed (labeled) training data to perform well [1]. A good way to tackle this
is to pre-train neural networks, which allows a model to learn general represen-
tations from massive amounts of (labeled or unlabeled) information, and then
it can be used for downstream tasks where the number of samples is limited.
Now, we shall discuss concepts concerning pre-training, wav2vec, and wav2vec
2.0 frameworks.

Fig. 1. Fine-tuned wav2vec 2.0 framework structure. Source: https://ai.facebook.com/
blog

3.1 Pre-training and wav2vec

Pre-training consists of fitting a first neural network where huge amounts of data
are available. The final weights from the training are then saved and this can
be used to initialize a second neural network. This allows us to learn general
representations from the large corpora; that is, representations that could be
used for new tasks where the corpora size is limited.

wav2vec is basically a CNN that takes raw audio as input, and calculates
a representation that can be fed into an ASR system. The wav2vec model is

https://ai.facebook.com/blog
https://ai.facebook.com/blog
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optimized to predict the next observations of a given speech sample. This would
require us to accurately model the distribution of the data p(x). To tackle this,
the dimensions of the speech sample are first reduced by means of an encoder
network; then a context network is used to predict the subsequent values [19].

3.2 wav2vec 2.0

This model, being the successor to wav2vec, also uses a self-supervised approach
to learn representations from raw audio. Similar to wav2vec, it learns to predict
the correct speech unit, but it does so for masked chunks of the audio. More
specifically, wav2vec 2.0 encodes raw audio using a block of convolutional neu-
ral networks, then akin to masked language modeling, it masks small segments
(shorter than phonemes) of the latent speech representations. These represen-
tations are fed to a quantizer as well as to a transformer network. The former
selects a speech unit for the latent audio representation, while the latter appends
data from the whole utterance. Afterwards, the transformer network is exposed
to a contrastive loss function [3]. After pre-training has been finished, the model
is fine-tuned using labeled data relying on a Connectionist Temporal Classifi-
cation (CTC) loss, which is used for aligning sequences. After doing this, the
model can be utilized for downstream speech recognition tasks. Figure 1 shows
the layout of the (fine-tuned) wav2vec 2.0 structure described here.

3.3 Cross-Lingual Representation Learning

A multi-lingual representation approach based on wav2vec2 named XLSR
(Cross-lingual Speech Representations) addresses the issue of languages even
with a limited amount of unlabeled data. XLSR pre-trains a model on multi-
ple corpora from different languages simultaneously. XLSR uses a similar DNN
structure to that shown in Fig. 1, i.e. it is trained to jointly learn context rep-
resentations along with a discrete vocabulary of latent speech audio representa-
tions. The XLSR architecture differs from that of the wav2vec2 in the quantiza-
tion module: in XLRS it delivers multilingual quantized speech units, which are
then fed to the transformer block as targets to learn via a contrastive task. This
way, the model is capable of handling tokens across different languages [5].

3.4 wav2vec 2.0 for Feature Extraction

The outputs from the multi-layer convolutional block are the sequence of
extracted feature vectors of the last convolutional layer, while the outputs from
the second block comprise the sequence of the hidden states at the output of
the last layer of the block. These two types of feature vectors, the convolutional
embeddings, and the contextualized representations may carry relevant informa-
tion related to speakers [13] and also other information encoded in the speech
signal [6]. Due to this, they will be exploited for deriving features for our par-
alinguistic classification task (i.e. determining whether the speaker is wearing
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a mask). Of course, the actual classification step will be performed by another
method, and wav2vec 2.0 will just be used for feature extraction. Also, since the
number of wav2vec 2.0 embedding vectors is proportional to the length of the
utterance, they have to be aggregated in some way, for which we simply took
the mean of them over the time axis.

4 Experimental Setup

We extracted embeddings using seven different wav2vec 2.0 pre-trained models.
The first is the so-called wav2vec2-base [3], which was pre-trained on 53k hours
of unlabeled data of LibriSpeech, and it is not fine-tuned. The second is the
wav2vec2-base-960h [3], pre-trained and fine-tuned using 960 h of labeled data.
The third is a larger version of the previous one called wav2vec2-large-960h [3].
The main difference between these two is the number of parameters: base has
95 million, while large has 317 million parameters.

A cross-lingual wav2vec2 XLSR-53 model, trained on 53 different languages
was our fourth model. Later, the successor of XLSR called XLS-R was intro-
duced, which was pre-trained on about half million of hours of data in 128 lan-
guages [2]. Three different checkpoints of the model are available according to the
number of parameters. Due to computational limitations, we just used the two
smaller networks: wav2vec2-XLS-R-300M and wav2vec2-XLS-R-1B (300 million
and 1 billion parameters, respectively). Lastly, to experiment with a model fine-
tuned for the same language (i.e. German) as that in the MASC corpus, as the
seventh model we employed the wav2vec2-XLSR-German-53 [9] encoder that
was fine-tuned on the CommonVoice dataset.

We used a linear Support Vector Machine (SVM) for classification; the C
complexity parameter was set in the range 10−5, . . ., 101, based on the perfor-
mance on the dev set. As for the metrics, since it is the standard on the MASC
corpus, we relied on Unweighted Average Recall (UAR).

5 Results and Discussion

Table 1 shows the UAR scores for each of the pre-trained models with their
corresponding type of embeddings. Every XLSR and XLS-R encoder surpassed
the baseline scores from the ComParE challenge [20], except for the wav2vec2-
base and -large models that gave slightly lower scores. This might be due to the
size of the data and the language-domain of the pre-training process for these
models. Also, fine-tuning itself relies on adjusting the inherited initialization
weights to fit a function that performs well on a specific downstream task (i.e.,
speech recognition on a given language). While the adaptation to this new task is
being performed, the fine-tuning process may drop some information that might
not be relevant for ASR but may be crucial for applications unrelated to this
field (such as pitch, speaking rate, irregularity and breathiness). This may be
the reason for the superior performance scores of wav2vec2 models specifically
fine-tuned for ASR.
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Table 1. UAR (%) on the MASC dataset. Models marked with * denote fine-tuned
models.

Model Type Embedding Type Dev Test

wav2vec2-base convolutional 67.6 70.1

contextualized 63.3 69.6

wav2vec2-base-960h* convolutional 67.6 69.1

contextualized 53.0 54.6

wav2vec2-large-960h* convolutional 65.0 70.8

contextualized 52.1 53.7

Cross-Lingual Models

XLSR-53 convolutional 67.9 71.9

contextualized 68.2 72.1

XLS-R-300M convolutional 69.0 71.9

contextualized 70.3 76.9

XLS-R-1B convolutional 68.2 73.0

contextualized 66.1 74.6

XLSR-German-53* convolutional 67.9 71.9

contextualized 57.1 62.4

In the models and their representations, a trend can be seen: for the base
and fine-tuned models (see Table 1), the convolutional embeddings had a better
quality than their contextualized counterparts; but the opposite was the case for
the other models. This is probably due to the convolutional embeddings being
more sensitive to mono-lingual training than the contextualized representations.
The two best UAR scores on the test set were achieved with the XLS-R-300M
and XLS-R-1B models using the contextualized representations, while their con-
volutional features had slightly lower performances.

The baseline scores reported by the organizers of the ComParE Mask Sub-
Challenge can be seen at the top of Table 2: a UAR of 70.8% that corresponds
to a non-fused score, and a 71.8% score for the fusion of the best four config-
urations [20]. The same table shows the performances of the most competitive
previous studies on the same task. Szep et al. [23] reported an UAR score of
80.1% on test, being the highest one on MASC at the time of writing, achieved
by training multiple image classifiers, a K-fold cross-validation approach, along
with an ensembling of both the CNN classifiers and distinct types of spectro-
grams. Similarly, Koike et al. [12] reported a UAR score of 77.5% by transfer
learning, two kinds of augmentation techniques, and a fusion based on several
snapshots taken during DNN training. Markitantov et al. [14] used ensembles of
different CNN architectures along with raw data plus two types of frame-level
audio representations. Lastly, Ristea et al. [18] made use of an ensemble of GANs
with a cycle-consistency loss along with a data augmentation method based on
those GANs.
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Table 2. Results of former studies on the same MASC corpus. * denotes the scores
achieved by a fusion of multiple models.

Features in the ComParE 2020 paper [20] Dev Test

ComParE functionals 62.6 66.9

Bag-of-Audio-Words (BoAW) 64.2 67.7

Deep Spectrum 63.4 70.8

AuDeep 64.4 66.6

Four-wise fusion* – 71.8

Former Studies

Szep et al.* [23] 70.5 80.1

Markitantov et al.* [14] 84.3 75.9

Ristea et al.* [18] 71.8 74.6

Koike et al.* [12] – 77.5

This work

XLS-R-300M 70.3 76.9

The above studies carried out late fusion or ensembling techniques in order to
boost their configurations, which is a usual strategy for these kinds of challenges.
Although these techniques might improve our performance scores as well, in
this study we were interested in the results obtainable with wav2vec2 models
alone. The method presented in our paper is more straightforward and led to
competitive results while keeping the machine learning pipeline much simpler.
Our best performance is competitive with [23] and [12], and it outperforms the
other studies listed in Table 2.

Lastly, to investigate if there was any redundancy in the wav2vec 2.0 mod-
els, we further experimented with transforming the features obtained from the
contextualized layer of the XLS-R-300M model by PCA and Gaussian random
projection. We kept 90%, 95% and 99% of the information present in the original
512 attributes. The results (and the sizes of the transformed feature vectors) can
be seen in Fig. 2. Clearly, features compressed by random projection produced
lower scores than those using PCA (with the same feature vector lengths). Even
by retaining 95% of the information, the resulting UAR values were relatively
low (64.7–71.3%). When we kept most of the information (99%), the feature vec-
tors became almost as large as those without compression (467–470 attributes
out of the original 512). And although there was only a slight drop in perfor-
mance on the development set (0.8% absolute in both cases), the test set UAR
scores were significantly lower (74.26% and 73.46%, PCA and random projec-
tion, respectively). This, in our opinion, indicates that the feature vectors are
redundant to such a low degree that even a slight compression (PCA 99%) leads
to a notable drop in classification performance.
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Feature vector sizes (PCA %)
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Fig. 2. UAR values after using PCA and random projection on the XLS-R-300M fea-
ture vectors. The dashed lines represent the scores obtained with all the attributes (i.e.
Table 1)

6 Conclusions

Here, we investigated the effectiveness of employing wav-2-vec 2.0 embeddings for
the identification of subjects wearing a mask based on their speech. We experi-
mented with seven distinct pre-trained encoders for extracting convolutional and
contextualized embeddings. It appears that the former were more sensitive to
mono-lingual training than the latter, based on the quality difference of their
corresponding feature vectors. The opposite occurred with the contextualized
representations, which had lower performance scores when extracted using the
fine-tuned models, which might discard information that is irrelevant for the
ASR but important for computational paralinguistics. Based on the pre-trained
cross-lingual encoders, both types of embeddings performed competitively and
we demonstrated that the wav2vec2 architecture was capable of capturing speech
and speaker traits that are relevant for paralinguistic approaches. Furthermore,
we found that the number of training parameters is quite influential as models
with 300 m provided better features than those with fewer (95 m) or more (1
billion) parameters both for pre-trained and fine-tuned encoders. Unlike earlier
studies on the same dataset, we retained a simple yet effective and reproducible
pipeline by dispensing with ensemble or fusion approaches while maintaining
the competitiveness and even surpassing the performance score of most other
studies. Overall, we achieved the highest UAR score (76.9%) reported on the
MASC corpus obtained by a single (stand-alone) method.
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140 J. V. Egas-López and G. Gosztolya

22. Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., Khudanpur, S.: X-vectors:
robust DNN embeddings for speaker verification. In: Proceedings of ICASSP, pp.
5329–5333 (2018)

23. Szep, J., Hariri, S.: Paralinguistic classification of mask wearing by image classifiers
and fusion. In: Proceedings of Interspeech, pp. 2087–2091 (2020)

24. Zhang, Y., et al.: Pushing the limits of semi-supervised learning for automatic
speech recognition. arXiv preprint arXiv:2010.10504 (2020)

http://arxiv.org/abs/2010.10504

	Identifying Subjects Wearing a Mask from the Speech by Means of Encoded Speech Representations
	1 Introduction
	2 Data
	3 Self-supervised Learning
	3.1 Pre-training and wav2vec
	3.2 wav2vec 2.0
	3.3 Cross-Lingual Representation Learning
	3.4 wav2vec 2.0 for Feature Extraction

	4 Experimental Setup
	5 Results and Discussion
	6 Conclusions
	References


