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Abstract—Silent Speech Interfaces (SSI), being a subfield of
speech technology, break the limitations of automatic speech
recognition when acoustic signals cannot be produced or clearly
captured. SSI focuses on the articulation process of speech
production in order to map articulatory data into acoustics.
Ultrasound tongue imaging (UTI), a non-invasive, clinically safe
technique to view the shape, position, and movements of the
tongue, has recently become popular in the process of collecting
articulatory data of the tongue movement. Despite advancements
in the field of SSI, the majority of related research has been
conducted using limited datasets due to challenges in acquiring
additional information, which results in overfitting. It has already
been shown that data augmentation can be helpful for solving the
overfitting problem and improving the generalization ability of
deep neural networks. In this paper, we discuss the preliminary
implementation and comparison of data augmentation methods
on Azerbaijani ultrasound and speech recordings that has been
recorded by our team. These strategies include consecutive and
intermittent time masking, sinusoidal noise injection, and random
scaling. We explore the generation of new data samples using
the provided methods on the dataset. We use mean-squared
error validation loss as an evaluation metric to measure the
performance of all the above data augmentation methods.

Index Terms—data augmentation, silent speech interfaces,
ultrasound tongue imaging, speech technology

I. INTRODUCTION

Silent speech interfaces (SSI) are systems that aim to
provide speech communication when audible acoustic signals
are not available. SSI is an assistive device to produce a digital
representation of speech, which can be synthesized directly
by obtaining articulatory data from elements of the speech
production process (articulators, such as the tongue, lips, jaw,
etc.) [1]. Since these systems have been shown to provide
speech communication without acoustic signals, they offer a
profoundly new way of restoring communication capabilities
to those with speech impairments [2], [3]. Other than clinical
use, potential applications of SSIs include improving oral
communication in noisy environments and having private con-
versations over the phone in public places, as the articulators
are mainly insensitive to noise.

There are two different types of algorithmic design in
SSI [4]. One of the articulation-to-speech conversion designs
converts articulations to text with silent speech recognition
(SSR) and runs text-to-speech synthesis (TTS). The SSR+TTS
model always causes a delay because SSR takes time to decode
and TTS requires two separate text-processing and analysis
stages [5]–[8]. An alternative method of SSI is direct-synthesis
design, and in this type, the focus is on synthesizing speech
signal directly from articulatory data input (which is called
articulatory-to-acoustic mapping (AAM)). This algorithmic
design relies on the theory that articulatory movements are
directly linked with acoustic speech signal in the speech pro-
duction process, typically using vocoders [9]–[12]. Although
the quality of direct synthesis is not as good as TTS due to a
lack of textual information, the speech output of articulatory-
to-acoustics mapping has recently been improved to the point
where it can be used in SSI because of its low latency and
ease of implementation.

The core idea of SSI is recording the articulation organs,
which are used in human speech production. In the area
of AAM, several different types of articulatory acquisition
methods have been used. In comparison to other techniques
(e.g., PMA, EMA, X-ray, XRMB, and vocal tract MRI [13]–
[16]), ultrasound tongue imaging (UTI) has gained popularity
because it is a clinically safe and non-invasive method for
tracking tongue movement and provides us with a clearly
visible tongue surface. The analysis of ultrasound tongue
images has illustrated that useful, reliable information about
several parameters of the tongue gesture can be seen in the
data that is extracted from UTI [17]–[19].

Generally, collecting articulatory data necessitates more
effort than audio speech data [20]. Although significant de-
velopments have been made in SSI, due to additional data
collection difficulties, the vast majority of related studies have
been based on relatively small datasets compared to acoustic
data sets for acoustic speech recognition.

Deep learning (for example, convolutional neural networks,
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(a) Original data (b) Consecutive Time Masking (CTM) (c) Intermittent Time Masking (ITM)

(d) Sinusoidal Noise Injection (SNI) (e) Random Scaling (RS)

Fig. 1: Examples of UTI example sample’s ultrasound pixels over time before and after data augmentations. (Details: x-axis:
time (12ms/frame) ; y-axis: pixel intensity)

or CNNs) has been successfully applied to SSI using UTI;
however, deep learning models tend to overfit easily and
require large dataset. Therefore, data augmentation plays a
crucial role in SSI with UTI by providing additional training
examples to prevent overfitting and enhance the performance
of deep learning models, given the limited amount of available
data. Data augmentation has been proposed as a method to
generate additional training data for end-to-end SSR on EMA
datasets: Cao and his colleagues applied data augmentation
strategies to raw kinematic signals [21].

As a result of the recent effectiveness of augmentation, in
this paper, we implemented data augmentation techniques on
our dataset, which consists of ultrasound tongue images. In this
study, we investigated several approaches for AAM towards
SSI. These data augmentation approaches (consecutive time
masking, intermittent time masking, sinusoidal noise injection,
and random scaling) were directly applied to the ultrasound
tongue images. The methods have been compared based
on mean-squared error validation loss, which is used as an
evaluation metric.

II. DATASET

In articulatory data acquisition, one Azerbaijani male sub-
ject (the first author of this study) was recorded while reading
sentences aloud (154 sentences). The tongue movement was
recorded in midsagittal orientation using the “Micro” ultra-
sound system of Articulate Instruments Ltd. at 81.67 fps. The
speech signal was recorded with a Beyer-dynamic TG H56c

tan omnidirectional condenser microphone. The ultrasound
data and the audio signals were synchronized using the tools
provided by Articulate Instruments Ltd. In our experiments,
the raw scanline data of the ultrasound was used as input of the
networks (c.f. [22, Fig. 2] in the current WINS proceedings),
after being resized to 64×128 pixels using bicubic interpola-
tion. More details about the recording set-up and articulatory
data can be found in [23]. The total duration of the recordings
was about 15 minutes, which was partitioned into training,
validation and test sets in a 80-10-10 ratio.

III. METHODS

A. WaveGlow neural vocoder (baseline)

In the baseline vocoder, during analysis, the mel-
spectrogram was estimated from the Azerbaijani speech
recordings (digitized at 22 kHz). Similarly to the original
WaveGlow paper [24], 80 bins were used for mel-spectrogram
using librosa mel-filter defaults (i.e. each bin is normalized
by the filter length and the scale is the same as in HTK).
FFT size and window size were both 1024 samples. For hop
size, we chose 270 samples, in order to be in synchrony with
the articulatory data. This 80-dimensional mel-spectrogram
served as the training target of the neural network. NVIDIA
provided a pretrained WaveGlow model using the LJSpeech
database (WaveGlow-EN). Besides, another WaveGlow model
was trained with the Hungarian data (WaveGlow-HU). This
latter training was done on a server with eight V100 GPUs,
altogether for 635k iterations. In the synthesis phase, an
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(a) Original data (b) Consecutive Time Masking (c) Intermittent Time Masking

(d) Sinusoidal noise injection (e) Random Scaling

Fig. 2: Examples of UTI example sample’s 3D visualisation of ultrasound pixels over time before and after data augmentations.

interpolation in time was necessary, as the original WaveGlow
models were trained with 22 kHz speech and 256 samples
frame shift; for this we applied bicubic interpolation. Next,
to smooth the predicted data, we used a Savitzky-Golay filter
with a window size of five, and cubic interpolation. Finally,
the synthesized speech is the result of the inference with the
trained WaveGlow model (EN/HU) conditioned on the mel-
spectrogram input [24].

B. Data augmentation for articulatory-to-acoustic mapping

Deep learning models have been successfully applied to
articulatory-to-acoustic mapping for silent speech interfaces.
However, improving the generalization ability of these models
is one of the essential challenges to be handled. Generalizabil-
ity refers to the performance difference of a model between
training data and testing data that has never been seen before
by a model. With poor generalizability, it has been shown
that models have overfitted the training data. It is important
to build a model in which the validation error decreases with
the training error.

Data augmentation methods are used for improving baseline
model’s robustness, by representing more comprehensive set
of possible data points. As a result, augmentation techniques

seek to reduce and minimize the distance between the training
and validation sets to the greatest extent possible.

Data augmentation can be thought of as a way for computer
algorithms to simulate the process of imagination, similar to
how humans use their imaginations to understand and interpret
the world around them. As a result, these algorithms are able to
more accurately identify patterns and make predictions based
on the augmented dataset. Techniques (such as consecutive
time masking, intermittent time masking, sinusoidal noise
injection, and random scaling) create variations of ultrasound
tongue images based on their existing knowledge, thereby
improving their understanding of the UTI data.

The neural network is exposed to a new set of variations of
the input image on each epoch by applying different modifi-
cations to the image, which enriches the learning process. 2D
ultrasound tongue images samples from various speakers are
shown in [22, Fig. 1], in the current WINS proceedings.

From the 2D(space) + 1D(time) ultrasound data, several
pixels were chosen and plotted as a function of time. Examples
of transformations are illustrated in Fig. 1 where an original
sample’s ultrasound pixels over time is also demonstrated. For
clarity of visualization, the [0:300] time range is chosen. In our
dataset, per frame, the duration of the sample is approximately
12 ms.
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As ultrasound tongue images are not simple two-
dimensional data, we also provide the illustration of a data
sample’s ultrasound pixels over time as a 3D figure for
each of the original (Fig. 2a) and transformed versions to
visualize the differences between before and after applying
data augmentation approaches.

1) Consecutive time masking (CTM): The consecutive time
masking (CTM) data augmentation technique used in this
study aims to increase the robustness of a model. In this
approach (Fig. 1b), certain number of consecutive frames
are selected from an UTI sample and set to zero. The idea
behind this is that by masking a portion of the sample, the
model is forced to learn more robust features and to rely less
on specific frames of the data. This technique is similar to
SpecAugment [25], it is a time-domain data augmentation
technique that was designed to improve the robustness of
automatic speech recognition models. The main difference is
that, in SpecAugment, the masking is applied in the frequency
domain instead of the time domain (Fig. 2b). The starting point
for the masking process is manually chosen to be within one-
third to two-thirds of the way into the sample; this is to ensure
that the masking process is applied in the same parts of the
arrays and not in a random manner.

2) Intermittent time masking (ITM): In addition to the CTM
approach, we also investigated a technique called “intermittent
time masking” (ITM). This method (Fig. 1c) involves masking
small segments of the data rather than a continuous block.
The process is illustrated in Figure 1c. In this approach, a
fixed number of starting points were manually chosen from
specific portions of the pixels (specifically [ 16 : 1

3 ], [(
1
3 + 1

6 ) :
(2 · 1

3 )], [(2 ·
1
3 +

1
6 ) : 1]), then a fixed number of frames were

masked out from each of these starting points. The goal of
this technique is to expose the model to a variety of masked
segments, rather than a single, continuous block of masked
frames. This way, the model is exposed to different variations
and can learn to generalize better. In the 3D figure of this
method (Fig. 2c), we can see the demonstrated segments that
are masked out.

3) Sinusoidal noise injection (SNI): The sinusoidal noise
injection (SNI) method is particularly useful for tasks that
involve signals with cyclic patterns, such as speech recognition
and audio processing, as it can help the network better
understand the underlying patterns in the data [26]. SNI
involves adding noise in the form of sinusoidal waves to
the input data. In this approach (Fig. 1d), this is done by
applying a sinusoidal function to the pixel values of ultrasound
images. The amplitude of the sinusoidal waves was determined
by taking the average amplitude of that specific dimension
and then multiplying it by a coefficient (scaling factor) to
increase or decrease the amplitude. The frequency of the
sinusoidal waves per unit of time was a predetermined constant
that was identified during the initial analysis. The amplitude
scaling factor was set at 0.02, the number of oscillations per
second (Hz) of the noise was 40, and the phase was set to
zero. For example, if the mean amplitude of an articulatory
dimension was A, the sinusoidal noise that was added would

Fig. 3: Mean Squared and Validation Mean Squared Errors
of UTI example sample before and after data augmentation
methods.

be represented by I(t) = 0.02 · A · sin(2π · 40t) which is
a product of the mean amplitude, the scaling factor, and the
sine function with frequency (40). The difference in the three-
dimensional figure after using the sinusoidal noise injection
technique on our ultrasound tongue image is clearly visible in
Fig. 2d. The value of the ultrasound pixels has increased after
adding sinusoidal waves to the original dimension, as shown
in the figure.

4) Random scaling (RS): A recent study [21], has shown
the implementation of random scaling over EMA signals. With
this in mind, we decided to explore a data augmentation
strategy that involved altering the duration of the samples
by randomly stretching or shrinking them on our ultrasound
tongue image dataset (Fig. 1e). To achieve this, we selected
a scaling factor from a range of numbers. Through a series
of preliminary experiments, we found that a range of 0.8 to
1.4 produced the best results. We applied this technique to all
samples. This approach not only improves the robustness of
the model but also emulates the variability found in real-world
scenarios (Fig. 2e).

IV. RESULTS AND DISCUSSION

Based on the results shown in the bar chart (Fig. 3), it
is clear that the data augmentation techniques we applied
had a slight impact on the performance of our model. On
our dataset, we used mean squared error as an evaluation
metric to compare each augmentation method. The methods
are compared using two errors that are tested in the training
and validation datasets.

Without data augmentation, the baseline model has given
results of 0.338 and 0.479 as mean squared error (MSE)
and validation mean squared error (V-MSE), respectively. The
initial goal of applying these augmentation methods was to
minimize the error rate as much as possible; however, the
results on our Azerbaijani dataset did not satisfy our target.
(These numbers have been taken after implementing 15 epochs
over the dataset.) It is worth noting that after applying CTM
to our dataset, the smallest but most remarkable reduction
in mean squared error by 0.013 was observed among all
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techniques, however, no improvement in the validation set was
observed after applying consecutive time masking. According
to both error rates, applying random scaling to the dataset
could help us achieve minimizations on error rates (0.33 MSE
and 0.47 V-MSE).

Although the data augmentation techniques that have been
proposed in this paper are powerful on an audio signal,
EMA signal, applying them to ultrasound tongue images is
not an easy task as ultrasound data contains more data and
in a slightly different format in itself. Using augmentation
techniques and observing ultrasound pixel changes over time
is a must-do to be sure if the method could reach the
target of our initials. The observed results and changes in
this paper demonstrated that dealing with ultrasound tongue
images in the sense of augmenting them to obtain additional
data to overcome overfitting to our dataset is only marginally
beneficial.

V. CONCLUSIONS AND FUTURE WORK

This study examined various methods of enhancing data
for articulatory-to-acoustic mapping towards silent speech
interfaces through data augmentation. The results of this initial
feasibility study showed that random scaling (RS) was the
most effective approach, leading to greater improvements than
other methods; but clearly, mode advanced analysis of the
results will be necessary. Additionally, it was found that
applying CTM ultrasound data resulted in a lower MSE than
other techniques. We plan to apply these methods to a larger
dataset or on other modalities (e.g., vocal tract MRI [27]), as
well as observe these method combinations separately on a
sample. Further experiments and studies are needed to verify
these results – but we are happy to get inspiration from
colleagues of speech technology / linguistics / neuroscience
at the WINS 2023 workshop.
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