

Automatic Longitudinal Investigation of Multiple Sclerosis Subjects

Gábor Gosztolya^{1,2}, Veronika Svindt³, Judit Bóna⁴, Ildikó Hoffmann^{3,5}

¹ University of Szeged, Institute of Informatics, Szeged, Hungary
² ELRN-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
³ Research Center for Linguistics, ELRN, Budapest, Hungary
⁴ ELTE Eötvös Loránd University, Dept. of Applied Linguistics and Phonetics, Budapest, Hungary
⁵ University of Szeged, Department of Linguistics, Szeged, Hungary

1. THE FOCUS OF THIS STUDY

- Multiple sclerosis, among other symptoms, might deteriorate the patient's speech
- Due to this, automatic speech analysis can serve as a tool to detect the disease, or monitor its progression
- We conducted a longitudinal study of MS
- We employed a standard pathological speech processing workflow (wav2vec 2.0 embeddings as features, SVM as classifier in leaveone-subject-out nested cross-validation)
- We analyzed the results of the individual years, and found that the best classification performance was achieved on the recordings of the last year

2. MULTIPLE SCLEROSIS

MULTIPLE SCLEROSIS AND LANGUAGE

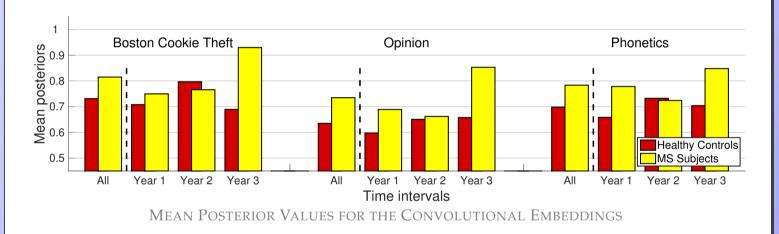
- A chronic inflammatory disease of the central nervous system
- Impairments in the patient's gross and fine motor skills
- cca. 60% of MS subjects have some cognitive impairments (cognitive flexibility, disorders of orientation, working-memory limitation, information processing speed) [1]
- cca. one-third of MS patients report (temporary or persistent) speech disorders
- Motor speech disorders (dysarthria, dysphonia); word finding difficulties; limitations of the higher level cognitive processes

The Multiple Sclerosis Recordings Used

- 16 MS subjects (6/10 m/fm), 12 Healthy Controls (HC) (2/10 m/fm)
- Recordings collected in three consecutive years (2020-2022)

Three different speech tasks:

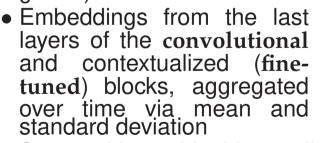
- (1) Picture description task (Boston Cookie Theft)
- (2) Share their opinions about vegetarianism (year 1), keeping pets in flats (year 2), advertisements (year 3) (**Opinion**)

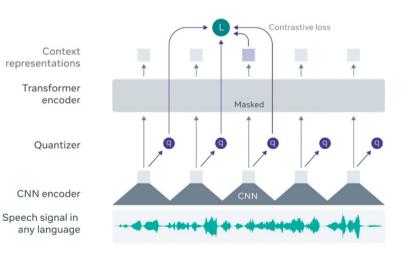

5. RESULTS FOR THE INDIVIDUAL YEARS

Due to data scarcity, we trained no further classifier models, only filtered the recordings (posteriors) and calculated EER / AUC for the values for the specific year.

		Convolutional		Fine-tuned	
Speech Task	Period	EER	AUC	EER	AUC
Boston Cookie Theft	All years	16.7%	0.917	33.3%	0.744
	Year 1	17.9%	0.839	25.0%	0.745
	Year 2	14.3%	0.969	42.9%	0.656
	Year 3	7.1%	0.979	25.0%	0.833
Opinion	All years	28.6%	0.808	30.9%	0.787
	Year 1	32.1%	0.745	17.9%	0.885
	Year 2	32.1%	0.771	50.0%	0.641
	Year 3	17.9%	0.891	25.0%	0.833
Phonetics	All years		0.879	33.3%	0.792
	Year 1	25.0%	0.844	50.0%	0.693
	Year 2	25.0%	0.854	32.1%	0.760
	Year 3	17.9%	0.932	7.1%	0.938

- For the convolutional embeddings, Year 1 and Year 2 are typically worse than the "All years" case
- Values for Year 3 are always better (AUC in the range 0.891...0.979, EER in the range 7.1%...17.9%)
- For the fine-tuned embeddings, the trend is similar: some variation between Year 1 and Year 2, but Year 3 always outperforms "All years"



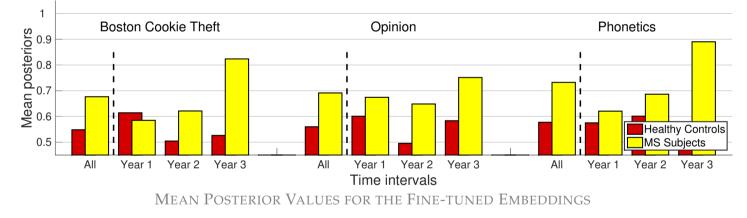


(3) Read aloud specific non-words (CVCV sequences) (Phonetics)

3. EXPERIMENTAL SETUP CLASSIFICATION AND EVALUATION

• Features: embeddings from a wav2vec 2.0 model (XLS-53) fine-tuned on 17 hours of the target language (Hungarian)

- Support Vector Machines + linear kernel, nested cross-validation
- All 84 utterances ((16 + 12) \times 3), leave-one-subject-out
- Area Under the ROC Curve (AUC) and Equal Error Rate (EER)


4. RESULTS FOR ALL THE YEARS

	Embeddings		AUC
Boston Cookie Theft	Thuuen		0.917 0.744
Opinion	Convolutional	28.6%	0.808
	Hidden	30.9%	0.787
Phonetics	Convolutional	22.6%	0.879
	Hidden	33.3%	0.792

- The results are competitive, and similar to those of previous studies
- Contextualized embeddings are somewhat more suitable for MS detection than fine-tuned ones
- All three tasks are similar with the fine-tuned embeddings
- For the convolutional ones, the 'Opinion' task seems less suited for MS detection than 'Boston Cookie Theft' or 'Phonetics'

Main references

- [1] Dobson et al., "Multiple sclerosis a review", European Journal of Neurology 2019.
- [2] Baevski et al., "wav2vec 2.0: A framework for self-supervised learning of speech representations", Advances in Neural Information Processing Systems, 2020.

- The mean posteriors for the convolutional embeddings are higher than those for the fine-tuned embeddings
- The values for MS subjects (yellow bars) in Year 3 are much higher than for Year 1 & Year 2
- No similar phenomenon for the HC subjects (red bars)

		Convolutional			
Speech Task	Periods	HC	MS	HC	MS
Boston Cookie Theft	Year 1 vs. 2 Year 2 vs. 3		0.955 0.009	0.194 0.624	0.692 0.010
Opinion	Year 1 vs. 2 Year 2 vs. 3		1.000 0.037	0.260 0.371	0.836 0.044
Fine-tuned	Year 1 vs. 2 Year 2 vs. 3		0.337 0.040	0.751 0.403	0.720 0.002

Results with Equal Error Rate (EER)

- We used the Mann-Whitney U test to verify the significance of these differences (significant p values are shown as **bold**)
- Only the Year 2 vs. Year 3. cases are significant, and only for the MS subjects
- It might be caused from a slight deterioration of MS subjects in Year 3
- It can also be due to some speech property or acoustic artifact

7. CONCLUSIONS

- We performed a longitudinal investigation of multiple sclerosis patients and healthy control subjects
- We used 3 speech recordings from 16 MS and 12 HC subjects recorded over 3 consecutive years
- MS identification was much better for Year 3 than for the first two years
- This was also verified by posterior statistics and significance tests

This study was supported by the NRDI Office of the Hungarian Ministry of Innovation and Technology (grants K-132460 and TKP2021-NVA-09), and within the framework of the Artificial Intelligence National Laboratory Program (RRF-2.3.1-21-2022-00004).