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Abstract
Shared tasks or challenges provide valuable opportunities

for the machine learning community, as they offer a chance to
compare the performance of machine learning approaches with-
out peeking (due to the hidden test set). We present the ap-
proach of our team for the Interspeech’24 TAUKADIAL Chal-
lenge, where the task is to distinguish patients of Mild Cognitive
Impairment (MCI) from healthy controls based on their speech.
Our workflow focuses entirely on the acoustics, mixing stan-
dard feature sets (ComParE functionals and wav2vec2 embed-
dings) and custom attributes focusing on the amount of silent
and filled pause segments. By training dedicated SVM classi-
fiers on the three speech tasks and combining the predictions
over the different speech tasks and feature sets, we obtained F1
values of up to 0.76 for the MCI identification task using cross-
validation, while our RMSE scores for the MMSE estimation
task were as low as 2.769 (cross-validation) and 2.608 (test).
Index Terms: Mild Cognitive Impairment, wav2vec 2.0, shared
task, Taukadial Challenge

1. Introduction
Mild cognitive impairment (MCI) is often considered to be a
precursor of Alzheimer’s disease (AD), although it may be a
sign of other neurodegenerative diseases as well [1]. MCI may
be present up to 15 years before a clear clinical manifestation
of dementia, providing a wide time range to reduce the rate of
cognitive decline [2]. The prevalence of MCI ranges from 15%
to 20% in individuals of 60 years and older, and the annual pro-
gression rate from MCI to dementia is between 8% and 15% [3].
MCI affects several memory-related domains, such as the lan-
guage skills, so the changes in language (and speech) perfor-
mance may be early indicators of MCI [4].

This study describes our system for the Interspeech’24
TAUKADIAL Challenge (see [5]). Here, the task is to detect
MCI based on the speech of English and Chinese subjects de-
scribing the contents of pictures. Challenges and shared tasks
are valuable opportunities for the machine learning community,
since they offer a chance to evaluate different machine learning
approaches without peeking due to using a hidden test set and a
limited number of submissions [6].

Our study focuses on the acoustic signal and ignores word-
level information entirely for two reasons. Firstly, our inter-
est lies in the acoustic processing of speech signals, and we
believe that acoustic-only workflows deserve attention even if
omitting Natural Language Processing (NLP) techniques might
lead to some performance loss. Secondly, approaches focusing
only on the acoustics of speech are likely to be more language-
independent than those which utilize NLP tools (e.g. word em-
beddings [7, 8]). This latter reason is even more apparent in

the case of the TAUKADIAL challenge, as here the speech ut-
terances are either in English or in Chinese [5], making NLP
methods more difficult to apply than in a single-language case.

Our system utilizes four feature extraction approaches. The
first one is the ‘ComParE functionals’ feature set, which evolved
into a widely-employed solution for computational paralinguis-
tics, and was utilized, among others, in tasks such as estimat-
ing speaker age [9], sincerity [10] and determining whether the
speaker has a cold [11]. The second approach involved us-
ing a DNN-based technique to summarize the amount of pause
present in the actual utterance [12]. As the third and fourth tech-
niques, we used embeddings from different blocks of a wav2vec
2.0 neural network [13]. Besides employing these methods on
their own, we also employed combinations of the four methods.

2. Data
The acoustic data of the Interspeech’24 TAUKADIAL Chal-
lenge contains the speech of 169 (English and Chinese) sub-
jects describing the content of three pictures [5]. From the 169
subjects, 129 appear in the training set, while 40 consitute the
hidden test set, giving a total of 387 and 120 utterances, respec-
tively. The two machine learning tasks were 1) to distinguish
the MCI and normal control (NC) subjects, and 2) to estimate
the Mini-Mental State Examination (MMSE) score of the sub-
jects. The first one was a binary classification task, where the
official evaluation metric was the Unweighted Average Recall
(UAR) score, while in the second, regression task the metric to
be minimized was the Root-Mean Square Error (RMSE). (Un-
fortunately, our team made the mistake of optimizing the clas-
sification models for the F1 metric; this is elaborated further in
the Conclusions and discussion section (see Section 7).) Up to
five predictions could be submitted at the same time.

3. Experimental setup
In our experiments we employed the same machine learning
workflow for all the feature sets tested, focusing on developing
a procedure to set all the metaparameters as robustly as possi-
ble even with limited data (i.e. low number of subjects), this
being typical in the pathological speech processing area. Next,
we shall discuss the steps we applied in our workflow.

3.1. Preprocessing

Firstly, all the utterances were converted to a 16 kHz sampling
rate monochannel format with a 16-bit resolution (surprisingly,
not all recordings were distributed in this format). Furthermore,
as the volume of the recordings varied greatly (perhaps mir-
roring the typical clinical environments), we applied automatic
volume normalization.
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3.2. Classification

We applied Support Vector Machines (SVM) for classification
in the MCI-HC categorization task, and we used Support Vector
Regression (SVR) to estimate the MMSE scores. For these,
used the LibSVM [14] library. We employed the nu-SVM / nu-
SVR method with linear kernel for the sake of robustness, based
on our previous experiences in pathological speech processing
and paralinguistic tasks [12, 15].

3.3. Metaparameter optimization

The value of the SVM C meta-parameter was tested in the range
10−5, 10−4, . . . , 101, determined via cross-validation over the
whole training set. For this, we applied 20-fold cross-validation,
where each fold consisted of the utterances of both HC and MCI
subjects. To increase model robustness, we repeated the exper-
iments with 5 different fold assignments. In the results sec-
tions, we will always report the mean of the five metric scores
(for cross-validation). Final classifier models were trained us-
ing the optimal C value found this way, using all the examples
of the whole training set. (Since there was no random element
involved in final model training, there was no need to train mul-
tiple models.)

3.4. Evaluation

Performance for the classification task was measured using the
UAR score, but (due to our mistake) we performed (and report)
model selection based on the MCI task’s F1 score. (We will also
report the Area Under the ROC Curve (AUC) values, which
are also commonly applied in pathological speech processing
studies [16].) Regarding the regression experiments, besides
RMSE of the MMSE predictions, we also report the Pearson’s
correlation coefficient [17]. Before evaluation, the predicted
MMSE scores were rounded to the nearest integer value, which
also gave a slight improvement in our preliminary tests.

3.5. Prediction fusion

Following our preliminary experiments, during classification
we treated each speech task separately; that is, we trained sep-
arate SVM / SVR modes for the recordings ending with ‘-1’,
‘-2’ and ‘-3’. To allow for a better modelling of each speech
task, we tuned the metaparameters individually for each speech
task, following the cross-validation procedure described in Sec-
tion 3.2. Since the task was to predict the speaker category
(MCI / HC) or the MMSE value of the subject, in the next step
we fused the predictions obtained for the three speech tasks.
When performing classification, we took the average of the pos-
terior scores, while for the regression task it was quite straight-
forward to take the mean of the predicted MMSE values for
the three speech tasks. To avoid overfitting and to increase
model robustness, we decided not to assign weights for the
speech tasks, but to perform this averaging in an unweighted
(i.e. equivalently weighted) manner.

In later experiments we also fused the predictions obtained
over the various feature sets. The actual procedure for choos-
ing the feature sets to combine will be described in Section 5.1,
but prediction fusion was performed in a similar way as that
described previously: by taking the mean of the posterior es-
timates (classification) or the MMSE predictions (regression),
and by using equal weights to improve model robustness.

3.6. Utterance chunking

In many speech processing tasks it is common to process the
audio in short(er), equal-sized chunks. We also decided to ex-
periment with this technique. We used 30 seconds-long utter-
ance chunks with 50% overlap (i.e. a shift value of 15 sec-
onds); the minimal length of a chunk was 10 seconds. During
cross-validation, all the chunks of one speaker were assigned
to the same fold . The predictions obtained for the chunks were
merged in an unweighted manner (similarly to the procedure de-
scribed in Section 3.5) to get subject-level scores, so evaluation
was still done at the subject level.

4. Feature extraction
Next, we will describe the acoustic feature extraction methods
we utilized.

4.1. ComParE functionals

As the first utterance-level feature extraction approach, we used
the ‘ComParE functionals’ developed by Schuller et al [18].
The feature set includes energy, spectral, cepstral (MFCC)
and voicing related frame-level features, from which specific
functionals (like the mean, standard deviation, 1st and 99th
percentiles or peak statistics) are computed to provide 6373
utterance-level feature values. This feature set was extracted
by using the python port of the openSMILE tool [19].

4.2. Pause statistics

Our second method used seeks to quantify the amount of pause
present in a given recording, which phenomenon is known to be
relevant in acoustic MCI detection [4, 12, 20]. In general, we
distinguish two types of pauses: silent and filled pauses, where
the latter correspond to vocalizations like ’um’, ’uh’, ’er’ etc.
The method used consisted of the following steps:

(i) A standard Deep Neural Network acoustic model (from a
HMM/DNN hybrid model) was evaluated on the actual ut-
terance, using frame-level features (e.g. MFCCs).

(ii) Based on the output provided by the DNN, we estimated the
local posterior probability values of silence and filler events.
This step is still performed at the frame level.

(iii) From the local posterior estimates calculated in step (ii), new
representations were computed at the utterance level by cal-
culating the ratio of frames where the posterior estimate of a
pause type exceeded a given threshold.

Step (iii) was performed with thresholds between 0 and 1
with 0.02 increments, either for the silent pauses, for the filled
pauses, and for both pause types (i.e. adding up the posterior
estimates of the two pauses), resulting in a total of 3×50 = 150
features for each utterance.

The acoustic DNN (of step (i)) was trained on a subset
of the BEA Hungarian Spontaneous Speech Dataset [21]: 60
hours of data from 165 speakers were ’augmented’ by adding
noise, background babble and reverberation to the utterances,
increasing the total amount of training data to 240 hours. Train-
ing was done on log-energies extracted from a Mel-scale filter
bank (using a sliding window 150 ms), including their first and
second order derivatives (i.e. ∆ and ∆∆). The network had
five hidden layers of 1024 ReLU neurons in each, while the
output layer contained 911 neurons (corresponding to context-
dependent phonetic targets) with a softmax activation.
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Table 1: F1 and AUC values obtained via cross-validation in the
classification experiments. Approaches marked with an asterisk
(’*’) were evaluated on the test set

Feature set Chunks F1 AUC

ComParE functionals *
— 71.52% 0.677
yes 72.73% 0.668

Pause statistics
— 61.87% 0.605
yes 54.84% 0.643

wav2vec 2.0 (Conv.) *
— 73.55% 0.721
yes 73.20% 0.698

wav2vec 2.0 (Fine-tuned)
— 73.08% 0.655
yes 70.20% 0.681

4.3. wav2vec 2.0

wav2vec is basically a convolutional neural network (CNN) de-
signed to process raw audio signals as input and generate repre-
sentations suitable for automatic speech recognition (ASR) sys-
tems. The model is trained in a self-supervised manner, where it
learns to predict future observations for the given speech sam-
ple [22]. This self-supervised training allows the model to be
pre-trained on large, unannotated corpora, enabling subsequent
fine-tuning for specific audio processing tasks such as ASR for
low-resource languages [23] or paralinguistic appications (e.g.
emotion detection [24]). The wav2vec 2.0 architecture further
enhances this approach by incorporating masking during train-
ing. Specifically, raw audio is encoded using a block of con-
volutional neural networks, and small segments of the resulting
latent speech representations are masked, akin to masked lan-
guage modeling. These masked representations are then pro-
cessed by a quantizer, which selects speech units from an in-
ventory of learned units, and a transformer network, which in-
corporates information from the entire utterance [13].

The outputs from the multi-layer convolutional block con-
sist of the sequence of extracted feature vectors of the last con-
volutional layer, while the outputs from the second (fine-tuned)
block comprise the sequence of the neural activations of the
last layer in the block. These two types of feature vectors may
carry relevant information for a large range of speech process-
ing tasks: the former vector can be expected to capture lower-
level information (e.g. pause-related information), while the
fine-tuned layer can be expected to store phonetic-related in-
formation; so these vectors could be used as features [25, 26].
As the number of these (frame-level) feature vectors is propor-
tional to the length of the utterance, they have to be aggregated
over the whole recording. To do this, taking the mean and/or
the standard deviation of the values over the whole utterance is
a generally accepted solution [27, 28, 29].

Here, we used the wav2vec 2.0 model
wav2vec2-large-xlsr53-english. The base of
this model is the XLSR-53 model pre-trained by Facebook on
the audio data of 53 languages simultaneously [30]. This base
model was then fine-tuned by jonatasgrosman [31] on the
English part of the Mozilla Common Voice 6.1 corpus (2182
hours). The last layer of the convolutional block of this model
consists of 512 neurons, while the last layer of the fine-tuned
block has 1024 neurons. By using the mean and standard
deviation values of these frame-level embedding vectors, we
obtained 1024 and 2048 utterance-level features, convolutional
and fine-tuned embeddings, respectively.

Table 2: Correlation and RMSE values obtained via cross-
validation in the regression experiments. Approaches marked
with an asterisk (’*’) were evaluated on the test set

Feature set Chunks Corr. RMSE

ComParE functionals
— 0.455 2.971
yes 0.404 3.079

Pause statistics *
— 0.525 2.887

yes 0.489 2.951

wav2vec 2.0 (Conv.)
— 0.421 3.054
yes 0.444 2.988

wav2vec 2.0 (Fine-tuned) *
— 0.533 2.833

yes 0.479 2.932

5. Cross-validation results
Table 1 shows the results obtained for the classification exper-
iments. Due to the high number of possible cases, we present
the values obtained on the level of subjects, i.e. after fusing the
predictions for the three speech tasks. In general, we can see
that by using the ComParE functionals features or those derived
from the wav2vec 2.0 model (either from the convolutional or
the fine-tuned block), we could obtain F1 scores slightly above
70%, while the AUC scores were between 0.655 and 0.721. Us-
ing the pause statistics as attributes, however, was significantly
less efficient, with F1 values below 62% and AUC scores in the
range 0.605 . . . 0.643. Splitting the utterances into chunks both
for training and evaluation was not really efficient: it led to a
slight improvement in the F1 score only in one case out of four,
while in two cases the AUC values were slightly better.

In the regression case (Table 2.) the observed trends are
quite different: the best results were obtained via the fine-tuned
wav2vec 2.0 embeddings, followed closely by the pause statis-
tics attributes (correlation coefficients between 0.479 and 0.533,
and RMSE values between 2.833 and 2.951). With the remain-
ing two feature sets we obtained similar, but notably worse
scores: correlation coefficients between 0.404 and 0.455, and
RMSE scores between 2.971 and 3.079. Using utterance chunk-
ing did not really help either: it helped slightly for the wav2vec
2.0 convolutional attributes, but made the predictions worse in
the remaining three cases. Due to these findings, we will not
report any further results obtained via utterance chunking.

5.1. Feature set combinations

Besides using the four feature extraction methods separately,
we also sought to improve classification and regression perfor-
mance by combining them. Combination was always carried
out by late fusion, i.e. fusing the predictions obtained by the
separate feature sets. To select the best feature set combination,
we used an approach similar to the sequential forward feature
selection technique [32, 33]: first we took the feature set which
led to the highest classification (see Table 1.) or regression (see
Table 2.) performance. Then we tried adding each remaining
feature set, and chose the combination which led to the best per-
formance. We repeated this procedure until all the feature sets
were combined. (Recall that we report only the results obtained
over the full recordings.)

The results of this combination procedure for the classifi-
cation task can be seen in Table 3.; the best values (and those
falling close to them) are shown in bold. In addition to the per-
formance of the standalone wav2vec 2.0 convolutional embed-
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Table 3: F1 and AUC values obtained via cross-validation in
the classification experiments with method combinations (using
the full recordings). Approaches marked with an asterisk (’*’)
were evaluated on the test set

Feature sets F1 AUC
wav2vec2 (C.) + ComParE func. * 76.43 0.726
wav2vec2 (C.) + Pause statistics 70.59 0.710
wav2vec2 (C.) + wav2vec2 (F.) * 76.25 0.733
w2v2 (C.) + ComParE f. + w2v2 (F.) * 75.31 0.729
w2v2 (C.) + ComParE f. + Pause s. 75.32 0.720
All four methods 75.16 0.725

dings feature set (F1 score of 73.55%), notable improvements
were achieved by combination: by including either the Com-
ParE functionals attributes or the fine-tuned wav2vec 2.0 em-
beddings, the F1 value increased over 76%, and the AUC score
increased slightly as well. However, three-wise or four-wise
combinations did not help any further, although these combined
predictions slightly outperformed all standalone methods.

The combined results for the regression task can be seen
in Table 4; the best values (and those close to them) are again
shown as bold. In this case the best performance was achieved
by combining the two best standalone methods, i.e. fine-tuned
wav2vec 2.0 embeddings and pause statistics. Including any
further attributes led to somewhat worse scores, although using
all four methods was still better than any standalone method.

6. Test set results
The top half of Table 5. shows the scores obtained on the test
set, expressed in F1 and UAR. Overall, the results are around
chance level, which we will discuss more in detail in Section 7.
(The main reason is probably that our team optimized for the
wrong metric (F1 instead of UAR) in the classification task.)
Regarding the regression experiments (see the bottom half of
Table 5.), our submissions were more successful. Just as in
cross-validation, we obtained the lowest RMSE and highest cor-
relation values with pause statistics, fine-tuned wav2vec2 em-
beddings and their combinations. Also notice that the range of
RMSE values (2.608. . .2.702) was quite similar to those ob-
tained in the cross-validation setting (2.769. . .2.887). This, in
our opinion, confirms the robustness of our meta-parameter set-
ting procedure, at least for the regression experiments (although
the correlation values are slightly lower (0.400. . .0.457) than
they were in cross-validation (0.525. . .0.597)). Based on the
baseline paper published in the last moments (see [5]), our pre-
dictions scores are quite competitive, as all of them is lower
than the baseline 2.89 score (i.e. the RMSE score of the lin-
guistic features) on the test set.

7. Conclusions and discussion
In this study we presented four feature extraction approaches
applied for MCI detection in the Interspeech’24 TAUKADIAL
Challenge. Due to the bilingual nature of the Challenge (i.e. the
recordings were either in English or in Chinese), we employed
acoustic features, which we expected to be more robust than
NLP techniques. The two machine learning tasks in the Chal-
lenge were separating MCI and normal control subjects (a clas-
sification task), and predicting the MMSE values of the subjects
(a regression task). We tested individual approaches along with

Table 4: Correlation coefficients and RMSE values obtained
via cross-validation in the regression experiments with method
combinations (using the full recordings). Approaches marked
with an asterisk (’*’) were evaluated on the test set

Feature sets Corr. RMSE
wav2vec2 (F.) + ComParE func. 0.532 2.839
wav2vec2 (F.) + Pause statistics * 0.597 2.769
wav2vec2 (F.) + wav2vec2 (C.) 0.514 2.914
w2v2 (F.) + Pause s. + ComParE f. * 0.585 2.790
w2v2 (F.) + Pause s. + w2v2 (C.) 0.565 2.839
All four methods * 0.586 2.812

Table 5: F1 and AUC values obtained on the hidden test set.

Classification F1 UAR
ComParE functionals 52.2 44.4%
wav2vec 2.0 (Conv.) 51.2 47.2%
wav2vec2 (Conv.) + ComParE func. 56.5 49.4%
wav2vec2 (Conv.) + wav2vec2 (F.) 56.5 49.4%
w2v2 (C.) + ComParE f. + w2v2 (F.) 52.2 44.1%

Regression Corr. RMSE
Pause statistics 0.439 2.608
wav2vec 2.0 (Fine-tuned) 0.457 2.660
wav2vec2 (F.) + Pause statistics 0.455 2.612
w2v2 (F.) + Pause s. + ComParE f. 0.400 2.702
All four methods 0.407 2.683

combinations. Our results on the hidden test set were mixed: all
five of our submissions resulted in chance-level predictions in
the classification task, while for regression we obtained scores
similar to those got via cross-validation, and better than those
reported in the baseline paper.

In our opinion, our poor test set results in the classification
task might be due to three reasons. Firstly, by mistake, we opti-
mized for F1, while the official ranking metric in this first task
was UAR. The second reason is that F1 is known to be a metric
hard to optimize [34], which might explain why our classifica-
tion attempts lacked robustness. A third option might simply be
the specific properties of the actual data set, as the classification
results reported in the baseline paper also lacked any robust-
ness [5]. (Of course, a bug in one of our classification-related
scripts cannot be ruled out either.)

In contrast, our regression methods turned out to be quite
robust. This, in our opinion, validates our meta-parameter de-
termination procedure, namely using several cross-validation
loops to maximize robustness during selecting C for SVM and
combining methods in an unweighted manner to avoid overfit-
ting. Also note that, although one might expect the same fea-
tures to be useful for MCI identification as those for MMSE es-
timation, we chose sharply different methods – ComParE func-
tionals and convolutional embeddings for classification, while
pause statistics and the fine-tuned embeddings for regression.
As the former two methods were not exactly effective for de-
tecting MCI, while the latter two attribute sets were robust for
MMSE estimation (judging from test set results), it may be
that the fine-tuned embeddings and pause statistics would have
worked well on the hidden test set in the classification task as
well. Of course, this should be investigated more thoroughly,
which could be a subject for future works.
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A. Beke, “Development of a large spontaneous speech database of
agglutinative Hungarian language,” in TSD, 2014, pp. 424–431.

[22] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec:
Unsupervised pre-training for speech recognition,” in Proceed-
ings of Interspeech, 2019, pp. 3465–3469.

[23] P. Mihajlik, A. Balog, T. E. Gráczi, A. Kohári, B. Tarján, and
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