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1. THE FOCUS OF THIS STUDY

• Self-supervised learning revolutionalized ASR, using pre-trained
models (via self-supervised learning) and fine-tuning them on the ac-
tual (even limited) training data

• This can also be employed for paralinguistic tasks (e.g. emotion
recognition), starting from the same pre-trained layers (even frozen)

• It is equivalent of using the pre-trained model for feature extraction
• In pathological speech processing, training data is even more scarce,

where DNNs are suboptimal. Here, one might use SVM or XGBoost,
which are usually quicker to train and are more robust

• With these classifiers, one can still use embeddings from self-
supervised models as features (similarly as using embeddings from
x-vector or ECAPA-TDNN networks)

We now investigate how competitive are features obtained via self-
supervised models (i.e. wav2vec 2.0 embeddings) for multiple sclerosis
detection, compared to several straightforward feature types.

2. EXPERIMENTAL SETUP

THE MULTIPLE SCLEROSIS RECORDINGS USED

• 23 MS subjects (all RRMS), 22 Healthy Controls (HCs)

Three different speech tasks:

(1) Share their opinions about vegetarianism (Opinion)

(2) Summarize a heard short historical anecdote (Narrative recall)
(3) Read aloud specific non-words (CVCV sequences) (Phonetics)

CLASSIFICATION

• Support Vector Machines + linear kernel, nested cross-validation
• Area Under the ROC Curve (AUC) and Equal Error Rate (EER)

3. THE FEATURE SETS EMPLOYED

COMPARE FUNCTIONALS & EGEMAPS

• Standard ‘general’ feature sets, based on frame-level attributes and
their statistics (e.g. mean, standard deviation, peak statistics)

• ComParE functionals: 6737 attributes, eGeMAPS: 88 features

X-VECTORS & ECAPA-TDNN

• Special-structure neural networks, trained for speaker identification
• Special pooling layer; embeddings taken from a layer above this point

• We used models trained on Voxceleb by the speechbrain team

PAUSE STATISTICS

This method describes the amount of pause present in the recording

(1) A standard HMM/DNN acoustic model is evaluated
(2) The local probabilities of silent and filled pauses are calculated
(3) The ratio of frames where this probability exceeds a threshold is noted

It is repeated with thresholds between 0 and 1 with 0.02 increments.
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EMBEDDINGS FROM A DNN ACOUSTIC MODEL

• We also employed embeddings from a standard DNN acoustic model
• 5×1024 ReLU neurons trained on FBANK + ∆ + ∆∆ on 240 hours
• We used the embeddings from layer #2 (lower) and #4 (higher)
• Frame-level values were aggregated via mean and standard deviation

WAV2VEC 2.0 EMBEDDINGS

• A wav2vec 2.0 XLSR-53 model, fine-tuned on 8 hours
• Embeddings were taken from the last layers of the convolutional and

of the fine-tuned block
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4. RESULTS

Feature set N Opin. Narr.R. Phon. Mean
ComParE functionals 6373 0.810 0.905 0.879 0.865
eGeMAPS v02 88 0.832 0.759 0.800 0.797
x-vectors 512 0.824 0.842 0.555 0.740
ECAPA-TDNN 192 0.480 0.352 0.449 0.427
Pause statistics 150 0.702 0.534 0.745 0.660

DNN acoustic model (layer #2) Mean 1024 0.854 0.828 0.763 0.815
Mean + std. 2048 0.891 0.854 0.721 0.822

DNN acoustic model (layer #4) Mean 1024 0.759 0.816 0.769 0.781
Mean + std. 2048 0.798 0.787 0.783 0.789

wav2vec 2.0 (convolutional)
Mean 512 0.656 0.700 0.872 0.743
Mean + std. 1024 0.713 0.729 0.874 0.772

wav2vec 2.0 (fine-tuned)
Mean 1024 0.733 0.816 0.828 0.792
Mean + std. 2048 0.739 0.820 0.830 0.796

Average for all methods used 0.753 0.749 0.759

RESULTS WITH AREA UNDER THE ROC CURVE (AUC)

Feature set N Opin. Narr.R. Phon. Mean
ComParE functionals 6373 26.7% 17.8% 17.8% 20.8%
eGeMAPS v02 88 22.2% 35.6% 22.2% 26.7%
x-vectors 512 22.2% 26.7% 44.5% 31.1%
ECAPA-TDNN 192 44.5% 51.1% 51.1% 48.9%
Pause statistics 150 31.1% 51.1% 35.6% 39.3%

DNN acoustic model (layer #2) Mean 1024 17.7% 22.2% 31.1% 23.7%
Mean + std. 2048 13.3% 22.2% 31.1% 22.2%

DNN acoustic model (layer #4) Mean 1024 22.2% 17.8% 26.6% 22.2%
Mean + std. 2048 26.7% 26.7% 22.2% 25.2%

wav2vec 2.0 (convolutional)
Mean 512 44.4% 31.1% 17.8% 31.1%
Mean + std. 1024 35.6% 31.1% 22.2% 29.6%

wav2vec 2.0 (fine-tuned)
Mean 1024 31.1% 22.2% 17.8% 23.7%
Mean + std. 2048 26.6% 26.7% 26.7% 26.7%

Average for all methods used 28.0% 29.4% 28.2%

RESULTS WITH EQUAL ERROR RATE (EER)

• No significant difference between the speech tasks (p ≥ 0.573)
• wav2vec 2.0 embeddings gave mediocre performance (mean AUC

between 0.743. . .0.796, mean EER between 23.7%. . .31.1%)
• Fine-tuned embeddings are somewhat better than convolutional ones
• x-vectors and (especially) ECAPA-TDNN led to low performance
• Pause statistics was not efficient either
• Embeddings from the very same DNN model were quite good (lower-

level embeddings were perhaps somewhat better)
• eGeMAPS was competitive, but ComParE functionals was really good

(also quite consistent over the speech tasks)

CLASSIFICATION PERFORMANCE AND THE NUMBER OF FEATURES
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• There is only a moderate correlation between the two values, but a
trend is clearly visible

• More features is usually beneficial for classification performance
• The best model (ComParE functionals) also had the most features

(although the tiny eGeMAPS also turned out to be fine)
• Including standard deviation in aggregation doubled the number of

features, but helped the classification procedure only slightly
• wav2vec 2.0 was by far the largest network (317M weights), but its

performance was far from outstanding

DNN Model #Weights #Embeddings
x-vectors 8M 512
ECAPA-TDNN 22M 192
Pause statistics 7M 150
HMM/DNN acoustic model 7M 1024

wav2vec 2.0 XLSR-53 317M
512 (conv.)

1024 (fine-tuned)

5. CONCLUSIONS

• We compared the performance of wav2vec 2.0-based features to se-
veral other methods in a pathological speech processing task

• It turned out that it is not obvious that self-supervised models auto-
matically lead to high classification performance

• Even classic hand-crafted features can outperform them
• The no. of features correlated well with classification performance
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