

Wav2vec 2.0 Embeddings Are No Swiss Army Knife – A Case Study for Multiple Sclerosis

GÁBOR GOSZTOLYA^{1,2}, MERCEDES VETRÁB¹, VERONIKA SVINDT³, JUDIT BÓNA⁴, ILDIKÓ HOFFMANN^{3,5}

¹ University of Szeged, Institute of Informatics, Szeged, Hungary
² ELRN-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
³ Research Center for Linguistics, ELRN, Budapest, Hungary
⁴ ELTE Eötvös Loránd University, Dept. of Applied Linguistics and Phonetics, Budapest, Hungary
⁵ University of Szeged, Department of Linguistics, Szeged, Hungary

- Self-supervised learning revolutionalized ASR, using pre-trained models (via self-supervised learning) and fine-tuning them on the actual (even limited) training data
- This can also be employed for paralinguistic tasks (e.g. emotion recognition), starting from the same pre-trained layers (even frozen)
- It is equivalent of using the pre-trained model for feature extraction
- In pathological speech processing, training data is even more scarce, where DNNs are suboptimal. Here, one might use SVM or XGBoost, which are usually quicker to train and are more robust
- With these classifiers, one can still use embeddings from selfsupervised models as features (similarly as using embeddings from x-vector or ECAPA-TDNN networks)

We now investigate how competitive are features obtained via selfsupervised models (i.e. wav2vec 2.0 embeddings) for multiple sclerosis detection, compared to several straightforward feature types.

2. EXPERIMENTAL SETUP

The Multiple Sclerosis Recordings Used

• 23 MS subjects (all RRMS), 22 Healthy Controls (HCs)

Three different speech tasks:

- (1) Share their opinions about vegetarianism (Opinion)
- (2) Summarize a heard short historical anecdote (Narrative recall)
- (3) Read aloud specific non-words (CVCV sequences) (Phonetics)

CLASSIFICATION

- Support Vector Machines + linear kernel, nested cross-validation
- Area Under the ROC Curve (AUC) and Equal Error Rate (EER)

3. THE FEATURE SETS EMPLOYED

4. RESULTS

Feature set		N	Opin.	Narr.R.	Phon.	Mean
ComParE functionals		6373	0.810	0.905	0.879	0.865
egeiviaps vuz		88	0.832	0.759	0.800	0.797
x-vectors		512	0.824	0.842	0.555	0.740
ECAPA-TDNN		192	0.480	0.352	0.449	0.427
Pause statistics		150	0.702	0.534	0.745	0.660
DNN acoustic model (layer #2)	Mean	1024	0.854	0.828	0.763	0.815
	Mean + std.	2048	0.891	0.854	0.721	0.822
DNN acoustic model (layer #4)	Mean	1024	0.759	0.816	0.769	0.781
	Mean + std.	2048	0.798	0.787	0.783	0.789
wav2vec 2.0 (convolutional)	Mean	512	0.656	0.700	0.872	0.743
	Mean + std.	1024	0.713	0.729	0.874	0.772
wav2vec 2.0 (fine-tuned)	Mean	1024	0.733	0.816	0.828	0.792
	Mean + std.	2048	0.739	0.820	0.830	0.796
Average for all methods used			0.753	0.749	0.759	

RESULTS WITH AREA UNDER THE ROC CURVE (AUC)

Feature set		N	Opin.	Narr.R.	Phon.	Mean
ComParE functionals		6373	26.7%	17.8%	17.8%	20.8%
eGeMAPS v02		88	22.2%	35.6%	22.2%	26.7%
x-vectors		512	22.2%	26.7%	44.5%	31.1%
ECAPA-TDNN		192	44.5%	51.1%	51.1%	48.9%
Pause statistics		150	31.1%	51.1%	35.6%	39.3%
DNN acoustic model (layer #2)	Mean	1024	17.7%	22.2%	31.1%	23.7%
	Mean + std.	2048	13.3%	22.2%	31.1%	22.2%
DNN acoustic model (layer #4)	Mean	1024	22.2%	17.8%	26.6%	22.2%
	Mean + std.	2048	26.7%	26.7%	22.2%	25.2%
wav2vec 2.0 (convolutional)	Mean	512	44.4%	31.1%	17.8%	31.1%
	Mean + std.	1024	35.6%	31.1%	22.2%	29.6%
wav2vec 2.0 (fine-tuned)	Mean	1024	31.1%	22.2%	17.8%	23.7%
	Mean + std.	2048	26.6%	26.7%	26.7%	26.7%
Average for all methods used		28.0%	29 4%	28.2%		

RESULTS WITH EQUAL ERROR RATE (EER)

- No significant difference between the speech tasks ($p \ge 0.573$)
- wav2vec 2.0 embeddings gave mediocre performance (mean AUC between 0.743...0.796, mean EER between 23.7%...31.1%)
- Fine-tuned embeddings are somewhat better than convolutional ones
- x-vectors and (especially) ECAPA-TDNN led to low performance
- Pause statistics was not efficient either
- Embeddings from the very same DNN model were quite good (lowerlevel embeddings were perhaps somewhat better)
- eGeMAPS was competitive, but ComParE functionals was really good (also quite consistent over the speech tasks)

CLASSIFICATION PERFORMANCE AND THE NUMBER OF FEATURES

COMPARE FUNCTIONALS & EGEMAPS

- Standard 'general' feature sets, based on frame-level attributes and their statistics (e.g. mean, standard deviation, peak statistics)
- ComParE functionals: 6737 attributes, eGeMAPS: 88 features

X-VECTORS & ECAPA-TDNN

- Special-structure neural networks, trained for speaker identification
- Special *pooling layer*; embeddings taken from a layer above this point
- We used models trained on Voxceleb by the speechbrain team

PAUSE STATISTICS

This method describes the amount of pause present in the recording

- (1) A standard HMM/DNN acoustic model is evaluated
- (2) The local probabilities of silent and filled pauses are calculated
- (3) The ratio of frames where this probability exceeds a threshold is noted

It is repeated with thresholds between 0 and 1 with 0.02 increments.

EMBEDDINGS FROM A DNN ACOUSTIC MODEL

- We also employed embeddings from a standard DNN acoustic model
- 5×1024 ReLU neurons trained on FBANK + Δ + $\Delta\Delta$ on 240 hours
- We used the embeddings from layer #2 (lower) and #4 (higher)
- Frame-level values were aggregated via mean and standard deviation

WAV2VEC 2.0 EMBEDDINGS

- A wav2vec 2.0 XLSR-53 model, fine-tuned on 8 hours
- Embeddings were taken from the last layers of the convolutional and of the fine-tuned block

Main references

- Baevski et al., "wav2vec 2.0: A framework for self-supervised learning of speech representations", Advances in Neural Information Processing Systems, 2020.
 Education Content of the self-supervised learning of speech representations.
- [2] Eyben et al., "Opensmile: The Munich versatile and fast open-source audio feature extractor", Proc. ACM MM 2010.
- [3] Pérez-Toro et al., "Alzheimer's detection from English to Spanish using acoustic and linguistic embeddings", Proc. Interspeech 2022.

- There is only a moderate correlation between the two values, but a trend is clearly visible
- More features is usually beneficial for classification performance
- The best model (ComParE functionals) also had the most features (although the tiny eGeMAPS also turned out to be fine)
- Including standard deviation in aggregation doubled the number of features, but helped the classification procedure only slightly
- wav2vec 2.0 was by far the largest network (317M weights), but its performance was far from outstanding

DNN Model	#Weights	#Embeddings
x-vectors	8M	512
ECAPA-TDNN	22M	192
Pause statistics	7M	150
HMM/DNN acoustic model	7M	1024
wav2vec 2.0 XLSR-53	317M	512 (conv.) 1024 (fine-tuned)

5. CONCLUSIONS

- We compared the performance of wav2vec 2.0-based features to several other methods in a pathological speech processing task
- It turned out that it is not obvious that self-supervised models automatically lead to high classification performance
- Even classic hand-crafted features can outperform them
- The no. of features correlated well with classification performance

This study was supported by the NRDI Office of the Hungarian Ministry of Innovation and Technology (grants K-132460 and TKP2021-NVA-09), and within the framework of the Artificial Intelligence National Laboratory Program (RRF-2.3.1-21-2022-00004).