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Abstract
In the past few years, self-supervised learning has revolu-

tionalized automatic speech recognition. Self-supervised mo-
dels such as wav2vec2, due to their generalization ability on
huge unannotated audio corpora, were claimed to be state-of-
the-art feature extractors in paralinguistic and pathological ap-
plications as well. In this study we test embeddings extracted
from a wav2vec 2.0 model fine-tuned on the target language as
features on a multiple sclerosis audio corpus, using three speech
tasks. After comparing the resulting classification performances
with traditional features such as ComParE functionals, ECAPA-
TDNN and activations of a HMM/DNN hybrid acoustic model,
we found that wav2vec2-based models, surprisingly, only pro-
duced a mediocre classification performance. In contrast, the
decade-old ComParE functionals feature set consistently led to
high scores. Our results also indicate that the number of features
correlates surprisingly well with classification performance.
Index Terms: wav2vec 2.0, feature extraction, pathological
speech processing, multiple sclerosis

1. Introduction
In the past few years, self-supervised learning has revolutio-
nalized automatic speech recognition [1]. This learning ap-
proach allows deep models to be pre-trained on huge amounts
of unannotated data by automatically generating training labels
via masking, or by defining the training objective as predict-
ing the next observation of the speech signal. Such pre-trained
models can then be fine-tuned on the actual task at hand, even
if the amount of training material is limited. This approach
was shown to deliver state-of-the-art performance on a couple
of ASR tasks [2, 3]as well as for computational paralinguistic
tasks (e.g. emotion recognition) [4, 5].

In many cases, fine-tuning can be done by even keeping the
lower blocks of the pre-trained network frozen, practically only
attaching a few layers at the top of the network [6, 7]. This
setup, although it still employs one deep (and perhaps end-to-
end) network, practically corresponds to using the pre-trained
network as a feature extractor, while the top (fine-tuned) la-
yers can be considered as a classifier module in their own. (Of
course, there are reasons for having the whole system as one
network, such as simplicity and clarity.)

In some cases, however, the amount of data is so limited
that it is not feasible to use a fine-tuned classifier. Such setups
most notably include pathological speech processing tasks (e.g.
screening Alzheimer’s Disease or Parkinson’s Disease), where

one subject corresponds to one machine learning example. Due
to this data scarcity, in these cases it is common to employ
cross-validation (or nested cross-validation), where a classifier
model is trained on the data of only a few dozen subjects, while
at the same time up to hundreds of classifier models have to be
trained. In such cases it might worth employing other classifier
methods (such as Support Vector Machines, random forests or
XGBoost), which are a lot quicker to train and deliver a more
robust performance even for such a small amount of data [8, 9].

Nevertheless, even in such circumstances one could utilize
deep models trained in a self-supervised manner for feature ex-
traction. This setup, from a theoretical point of view, is not that
different from fine-tuning a pre-trained network, the only dif-
ference being that the final classifier is replaced by some model
which is quicker to train and which can be expected to deliver a
more robust performance. Feature extraction is not even limited
to the lower blocks of the pre-trained network, but embeddings
can also be obtained from the higher layers of a network fine-
tuned for a specific task (e.g. ASR for the given language).
This is quite similar to previous research trends where networks
trained for e.g. speaker identification (such as x-vectors [10]
and ECAPA-TDNN [11]) were used as feature extractors to
identify various diseases (e.g. Parkinson’s Disease) [9, 12].

Perhaps the most widely-used self-supervised speech pro-
cessing network type is wav2vec 2.0 [2], which was employed
both by fine-tuning on the given task [3, 4] and as a feature
extractor [8, 13, 14]. It is common to view it as a state-of-
the-art feature extractor in paralinguistic and pathological ap-
plications as well. This study seeks to measure how much
truth this view holds. We tested embeddings extracted from
a wav2vec 2.0 model fine-tuned on the target language (Hun-
garian) as features on a multiple sclerosis audio corpus, us-
ing three speech tasks. Besides wav2vec 2.0 embeddings, we
also tested various common feature extraction methods: Com-
ParE functionals [15], eGeMAPS [16], x-vectors [10], ECAPA-
TDNN [11], pause statistics [17] and embeddings obtained from
DNN acoustic models of a HMM/DNN hybrid network [18].

2. The multiple sclerosis corpus
All the tests were carried out at the Neurology Department of
Uzsoki Hospital, Budapest, Hungary, and at the Research Insti-
tute for Linguistics of the Eötvös Loránd Research Network,
Budapest, Hungary. The study was approved by the Ethics
Committee of the Uzsoki Hospital, and it was conducted in
accordance with the Declaration of Helsinki. In the current
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study we use the recordings of 23 MS subjects (5 males and
18 females, mean age 39 ± 8.11 years) and 22 healthy con-
trols (6 males and 16 females, mean age 39.95 ± 7.22 years).
All 23 MS subjects belonged to the relapsed-remitting MS sub-
type (RRMS). All the speakers involved in the study were native
Hungarian speakers. The MS and HC groups display no statisti-
cally significant difference in their demographic attributes (age
in years, gender (male / female) and years of education).

The protocol for collecting the speech samples from the
subjects was quite extensive, consisting of 17 different speech
tasks (overall roughly 50 minutes). Due to space restrictions,
now we narrowed it down to using three speech tasks, selected
by their difference in the cognitive processes involved:
• Opinion: The subjects were asked to share their opinions

about vegetarianism.
• Narrative Recall: The subjects listened to a two-minute-

long anecdote that was unknown to them beforehand, and
they had to summarize the story as accurately as possible.

• Phonetics: The subjects were asked to read aloud seve-
ral specific non-words (consonant-vowel-consonant-vowel
(CVCV) sequences, where the first CVs contained a voice-
less plosive [p, t, k] and one of the vowels [i:, a:, u:]).

The recording was performed with a Sony PCM-A10 digital
dictaphone using a tie clip microphone with a sampling rate of
48 kHz; later the recordings were converted to 16 kHz mono
with a 16 bit resolution.

3. Methods
3.1. ComParE functionals & eGeMAPS

As the first feature extraction approach, we used the ‘ComParE
functionals’ attributes developed by Schuller et al [19]. The
feature set includes energy, spectral, cepstral (MFCC) and voi-
cing related frame-level features, from which specific functio-
nals (like the mean, standard deviation, 1st and 99th percentiles
or peak statistics) are computed to provide 6373 utterance-level
feature values. This feature set is still frequently applied both
for pathological and paralinguistic tasks [20, 21].

Later, a minimalistic parameter set was also proposed, con-
sisting only of 18 frame-level attributes (such as pitch, jitter,
shimmer and formant frequencies), which was extended to 25
(by adding e.g. the first four MFCC components). By taking the
mean of these frame-level attributes along with the coefficient
of the variation for specific attributes, the so-called extended
Geneva Minimalistic Acoustic Parameter Set (or eGeMAPS)
was introduced (consisting of only 88 features) [16]. This fea-
ture set is also commonly used for paralinguistic and patholog-
ical speech processing applications [20, 22, 23]

Both feature sets were extracted by using the python port of
the openSMILE tool [15].

3.2. x-vectors and ECAPA-TDNN

x-vectors are neural networks with a special structure, consist-
ing of lower frame-level layers and higher segment-level (i.e.
utterance-level) layers. The connection between the two parts
is established by a special statistics pooling layer, which cal-
culates the mean and the standard deviation of the activations
of the last frame-level layer. This allows utterance-level train-
ing over frame-level features even for variable-length utteran-
ces [10]. This network is typically trained for speaker recog-
nition; when used as a feature extractor, the activations of a
segment-level layer are used as features [24, 25]. The ECAPA-

TDNN model improves over the x-vector architecture on se-
veral points: it contains channel- and context-dependent atten-
tion mechanism, multi-layer feature aggregation and residual
blocks [11]. It is in general considered to be superior to the x-
vector architecture in speaker recognition and diarization [26],
and it is commonly employed as a feature extractor as well [9].

We used the models spkrec-xvect-voxceleb1 and
spkrec-ecapa-voxceleb2 (both released by the official
speechbrain team [27]), both trained on the Voxceleb1
+ Voxceleb2 training data. The networks calculate 512 and
192 embeddings (features), and have 8.2M and 22.2M million
weights, x-vectors and ECAPA-TDNN, respectively.

3.3. Pause statistics

This method describes the amount of pause present in a given
recording, which is known to be relevant in acoustic detection
of multiple diseases [17, 28, 29]. In general, we distinguish two
types of pauses: silent and filled pauses, where the latter cor-
respond to vocalizations like ’um’, ’uh’, ’er’ etc. The method
consists of the following steps:

(i) A standard Deep Neural Network acoustic model (from a
HMM/DNN hybrid model) is evaluated on the actual utter-
ance, using frame-level features (e.g. MFCCs).

(ii) Based on the outputs provided by the DNN, we estimate the
local posterior probability values of silent and filled pauses
by adding up the posterior estimates of the corresponding
phonetic classes (still at the frame level).

(iii) From the local posterior estimates calculated in step (ii), new
representations are computed at the utterance level by calcu-
lating the ratio of frames where the posterior estimate of a
particular pause type exceeds a given threshold.

Step (iii) was performed with thresholds between 0 and 1
with 0.02 increments, and was done for the silent pauses, for
the filled pauses, and for both pause types (i.e. adding up the
posterior estimates of the two types of pause), resulting in a
total of 3× 50 = 150 features for each utterance.

The acoustic DNN (employed in step (i)) was trained on a
subset of the BEA Hungarian Spontaneous Speech Dataset [30]:
60 hours of data from 165 speakers was augmented by adding
noise, background babble and reverberation, increasing the total
amount of training data to 240 hours.Log-energies of Mel-scale
filter banks along with ∆+∆∆ were used as features over a 150
ms wide sliding window. The network had five hidden layers,
each containing 1024 ReLU neurons, while it had 911 neurons
corresponding to context-dependent phonetic states in the out-
put layer (where we used the softmax activation function). This
network consists of about 7M weights.

3.4. Embeddings from a DNN acoustic model

We also employed a standard feed-forward DNN acoustic
model of a traditional HMM/ANN hybrid model, as this ap-
proach was shown to be an efficient feature extactor [18]. To
do this, one first has to train such a model for a standard
ASR corpus for frame-level phoneme identification, using tra-
ditional frame-level features like MFCCs or raw energies of
Mel-frequency filter banks (FBANK). The embeddings of some
hidden layer, obtained by evaluating the network on the target
utterances, might serve as features for a further classification
task. These frame-level activations should be aggregated over

1https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
2https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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Table 1: Number of attributes (N ), Equal Error rate (EER) and AUC values for the various feature sets sed for the three speech tasks

Opinion Narrative Recall Phonetics Mean
Feature set N EER AUC EER AUC EER AUC AUC
ComParE functionals 6373 26.7% 0.810 17.8% 0.905 17.8% 0.879 0.865
eGeMAPS v02 88 22.2% 0.832 35.6% 0.759 22.2% 0.800 0.797
x-vectors 512 22.2% 0.824 26.7% 0.842 44.5% 0.555 0.740
ECAPA-TDNN 192 44.5% 0.480 51.1% 0.352 51.1% 0.449 0.427
Pause statistics 150 31.1% 0.702 51.1% 0.534 35.6% 0.745 0.660

DNN acoustic model (layer #2) Mean 1024 17.7% 0.854 22.2% 0.828 31.1% 0.763 0.815
Mean + std. 2048 13.3% 0.891 22.2% 0.854 31.1% 0.721 0.822

DNN acoustic model (layer #4) Mean 1024 22.2% 0.759 17.8% 0.816 26.6% 0.769 0.781
Mean + std. 2048 26.7% 0.798 26.7% 0.787 22.2% 0.783 0.789

wav2vec 2.0 (convolutional) Mean 512 44.4% 0.656 31.1% 0.700 17.8% 0.872 0.743
Mean + std. 1024 35.6% 0.713 31.1% 0.729 22.2% 0.874 0.772

wav2vec 2.0 (fine-tuned) Mean 1024 31.1% 0.733 22.2% 0.816 17.8% 0.828 0.792
Mean + std. 2048 26.6% 0.739 26.7% 0.820 26.7% 0.830 0.796

Average for all methods used 28.0% 0.753 29.4% 0.749 28.2% 0.759

the whole utterance with functionals like mean and standard de-
viation, resulting in an utterance-level feature set the size of a
few times the number of neurons in the given hidden layer.

Our actual model was the same as we used for calculating
the pause statistics attributes (see Section 3.3). Out of the five
hidden layers, we used the embeddings of layer #2 and #4; the
former one can be expected to capture low-level information,
while the second one can be expected to detect higher-order
phenomena. We used the mean and the mean + standard devia-
tion to aggregate the frame-level embeddings, resulting in 1024
and 2048 utterance-level features for both layers, respectively.

3.5. wav2vec 2.0

Next, we employed wav2vec 2.0 embeddings as features. The
wav2vec network processes raw audio signals as input, and is
trained in a self-supervised manner, where it learns to predict fu-
ture observations for the given speech sample [1]. The wav2vec
2.0 architecture further enhances this by using masking during
training, and employing a quantizer (which selects speech units
from an inventory of learned units) and a transformer network
(incorporating information from the whole utterance) [2].

The two straightforward layers to extract embeddings for
feature extraction are the last layer of the convolutional block,
and the last layer of the fine-tuned block. These two types of
features might carry different kinds of relevant information: the
convolutional layer (located at the lower region of the network)
can be expected to capture lower-level information, while the
fine-tuned layer can be expected to store more phonetic-related
information [31].

Our wav2vec2 model3 is based on the XLSR-53 model
pre-trained by Facebook on 53 languages simultaneously [32]
(consisting of about 317M weights). This base model was fine-
tuned on the Hungarian part of the Mozilla Common Voice 6.1
corpus (8 hours). The last layer of the convolutional block con-
sists of 512 neurons, while the last layer of the fine-tuned block
has 1024 neurons. Similarly to the case of the DNN acoustic
model (see Section 3.4), we calculated the mean and the mean
+ standard deviation of the frame-level embedding vectors, ob-
taining 512, 1024 and 2048 utterance-level features overall.

3https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-
hungarian

4. Experimental Setup
We utilized Support Vector Machines (SVM) to predict whether
the speakers belonged to the MS or the HC group. We used
the libSVM implementation [33] with a linear kernel (nu-SVR
method); the C complexity parameter was set in the range
10−5, . . ., 101. Due to the small number of examples, we
performed cross-validation (CV), being common in pathologi-
cal speech processing (see e.g. [8, 14]), where one fold always
consisted of the features of one control subject and one having
MS. To avoid any form of peeking, we employed nested cross-
validation [34]: each time we trained our model on the data
of 22 folds, another (22-fold) cross-validation session was per-
formed, to find the C meta-parameter value that gave the high-
est AUC score. Afterwards, we trained an SVM model with the
selected C value on all the data of these 22 folds, and then this
model was evaluated on the speakers of the remaining fold.

Before classification, all the feature sets were standardized
to zero mean and unit variance. Performance was measured via
Equal Error Rate (EER) and Area Under the ROC Curve (AUC).

5. Results
Table 1 shows the EER and AUC scores obtained for the dif-
ferent feature sets and for the three speech tasks, the mean of
the three AUC values and the size of the feature vectors (N ).
First, notice that there is no significant difference between the
speech tasks, at least from the perspective of automatically iden-
tifying the MS subjects: the EER values, averaged over all ap-
proaches tested (see the last line of Table 1) lie in the range
28.0% . . . 29.4%, while the AUC scores are even closer to each
other (0.749 . . . 0.759). We verified the lack of any significant
difference by the Mann-Whitney U test (or Wilcoxon rank-sum
test, see [35]), and we found the p values fall between 0.573 and
0.939 (so p > 0.05) for all pairwise comparisons.

However, we found notable differences among the values
obtained by the various feature sets. (Unfortunately, as both
SVM and most of the used feature extraction approaches are
deterministic, we were unable to verify the significance of the
performance differences by statistical tests.) Regarding the fo-
cus of our study, the wav2vec 2.0 models gave mediocre perfor-
mance compared to the other tested methods, with mean AUC
values between 0.743 and 0.796. The convolutional embed-
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Figure 1: Feature set sizes (on logarithmic scale) versus the
AUC score measured on the three tasks.

dings were somewhat less effective than the fine-tuned ones,
although we obtained the highest AUC scores (0.872 and 0.874
for Phonetics) with these embeddings. Regarding the aggrega-
tion functions, there were no huge differences.

The embeddings of the DNN acoustic model were perhaps
the most similar to the wav2vec 2.0 embeddings in nature, but
the trends found were actually quite different. Taking embed-
dings from the lower region of the network (i.e. layer #2) was a
better strategy in this case than taking higher-order embeddings
(i.e. from layer #4). The most difficult speech task for these fea-
tures was actually the reading task Phonetics, with EER values
between 22.2% and 31.1%, outperformed by both spontaneous
speech tasks (i.e. Opinion and Narrative Recall). In contrast,
we obtained the best scores for all types of wav2vec 2.0 embed-
dings on the Phonetics task.

The pause statistics method produced quite low scores as
well, especially when we compare the EER and AUC values to
those obtained via the DNN acoustic model embeddings. (Re-
call that the very same network was used for these feature ex-
traction strategies.) This suggests that it is not worth incorporat-
ing expert knowledge (i.e. pause-related information) into the
feature extraction step, since a better classification performance
can be achieved by using raw statistical data (i.e. mean and
standard deviation of the activations).

Quite surprisingly, the most effective feature set was the
‘ComParE functionals’ with a mean AUC score of 0.865; also
notice that the performance was quite consistent over the three
speech tasks, the lowest AUC score being 0.810 and the highest
EER value being 26.7% (for the Opinion task). eGeMAPS was
less effective, but the mean AUC value 0.797 is still competitive.

x-vectors turned out to be acceptable for two speech tasks
(AUC values over 0.800), but performed quite badly for Pho-
netics. ECAPA-TDNN, however, gave really bad results, with
AUC values below 0.500 and EER scores around 50% in all
cases. This, in our opinion, indicates that ECAPA-TDNN, as
opposed to its precedessor x-vectors, is just not robust enough
to be employed as a feature extractor for a pathological speech
processing task (or, at least, for multiple sclerosis subjects). (As
the x-vector and the ECAPA-TDNN models were trained by the
same group on the same data, it is straightforward to attribute
their performance differences only to the network structure.)

Figure 1 shows the AUC values as a function of the (log-
arithmic) feature set sizes. Although there is only a moderate

correlation between the two values, a trend is clearly visible:
having more features is usually beneficial for classification per-
formance. This is reinforced by the high AUC values of our
largest attribute set tested (ComParE functionals with 6373 at-
tributes). However, there are some exceptions to this trend, like
the most compact attribute set (eGeMAPS) also leading to com-
petitive scores. Also, using both mean and standard deviation
for aggregation (which doubled the number of utterance-level
attributes) usually brought only slight improvements, or in some
cases it outright harmed classification performance (especially
for the EER metric). Feature size and AUC had a correlation
coefficient of 0.507, which indicates a moderate-strength rela-
tion. (We found a similar connection between feature set size
and Equal Error Rate, with a correlation coefficient of -0.513.)

6. Conclusions
In this study we used features calculated from wav2vec 2.0 em-
beddings to detect multiple sclerosis from speech. For a large-
scale comparison, we also used a number of other feature sets,
employing both hand-crafted ones and embeddings from differ-
ent neural networks. We found that wav2vec 2.0 embeddings
were by no means the most competitive features. Although
they outperformed x-vectors, ECAPA-TDNNs and statistical
features describing the amount of pause in the utterance, they
lagged behind embeddings taken from a standard DNN acous-
tic model, the ComParE functionals feature set, and they could
not outperform the tiny eGeMAPS attribute set either (which
consists of only 88 attributes). This indicates that hand-crafted
features are not necessarily outdated, as they might be a better
solution to obtain reliable and effective features.

We also investigated the relation of classification perfor-
mance and the number of features. We found moderate cor-
respondence (with coefficients of -0.513 and 0.507, EER and
AUC, respectively), which was confirmed by the observation
that taking means and standard deviations of frame-level em-
beddings was more effective than using the means alone. An-
other factor worth considering, at least for DNN-based feature
extraction approaches, is network size. The employed wav2vec
2.0 model consists of over 300 million weights, and although
it was able to outperform the x-vector (8M weights) and the
ECAPA-TDNN (22M weights) networks, it lagged behind the
DNN acoustic model, having only 7M (or, by the second hidden
layer, only 2.9M) weights. The fact that wav2vec2 embeddings
were outperformed both by a decade-old hand-crafted attribute
set and by a standard (and, by today’s standards, tiny) DNN
acoustic model, in our opinion, indicates that it is not obvious
that self-supervised models automatically lead to high classi-
fication performance, but (depending on the actual task) other
techniques might turn out to be more competitive alternatives.
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[15] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile: The Mu-
nich versatile and fast open-source audio feature extractor,” in
Proceedings of ACM Multimedia, 2010, pp. 1459–1462.

[16] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. André,
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