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The effect of Alcohol

« Alcohol Is a progressive central nervous system depressant
Alcohol dependence can affect executive functions
« The motor and cognitive functions might be affected as well...

...along with impairing executive functions, affecting speech
production:

— Verbal fluency

— Working memory

— Recent memory

— Visuospatial abllities
— Visual recognition and processing speed §
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Contribution of this Study

« Short-term influence of alcohol is widely studied
— 1.e. Is the speaker drunk?

« Long-term effects are rarely investigated

Alcohol Dependency Syndrome (ADS)
— We focus the long-term effects of alcohol consumption on speech

In this study we

— Present a speech corpus with 35 ADS speakers and 35 healthy controls,
having two spontaneous speech tasks

— We automatically distinguish the two speaker groups by machine learning
— We also distinguish the recordings of the two speech tasks
— We investigate the extent of pauses present in the speech of the subjects
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Speech Recordings

* Subjects

— 35 ADS, 35 healthy controls (HC), Hungarian native speakers

— No statistically significant differences in age, gender & education
 Two separate speech tasks

— As a neutral topic, describe the events of their previous day

— As an alcohol-related speech task, describe their relationship to alcohol
and situations where they found it hard to resist drinking

* The duration of the recordings Is the following (in sec):

Speech task ADS

Previous day 76.7 £45.0 84.1 £+ 33.3
Alcohol-related 80.9 + 45.8 86.4+31.4
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Automatic Speech Analysis
of ADS subjects

« Due to data scarcity, end-to-end models are difficult to use
— E.g. 70 subjects in our case (3h 11m total duration)

— For cross-validation (nested cross-validation) we have to train lots of
(DNN) models

— In general, this is the case in the pathological speech processing area

* Due to this, feature extraction and classification are typically
distinct steps

* We focus on “general” (i.e. not task-specific) features

— Like I-vectors, x-vectors, ECAPA-TDNN...

— Standard approach for detecting Parkinson’s or Alzheimer’s Disease,
depression, etc.
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of ADS subjects

Automatic Speech Analysis

« Even feature extraction is split into two f
steps

\.

General
speech
corpus

— 1) we train (or fine-tune) some model (on a

general corpus) (
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— 2) by using the model on the actual utterances, Training
we extract (model-specific) features from them
* From another point of view ( MogﬂN
e.g
— 1) we build a “general” model for “normal X-vector..
speech”

— 2) we express (with the features) the difference
of the given utterance and this “normal speech”
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wav2vec 2.0
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— Transformer layer, its output is the
contextualized representation

Linear projection layer
— Obtained by fine-tuning for the final task (e.g. ASR for the given language)

Cross-lingual Representation Learning (XLSR) wav2vec 2.0

— For tasks with limited unlabeled data: we pre-train the model for multiple
languages simultaneously

Speech signal in
any language "«M* "M « i



Experimental Setup

wav2vec 2.0 model
— wav2vec2-large-xlIsr53-hungarian (from Huggingface)
— Fine-tuned on the Hungarian part of the Common Voice 6.1 corpus (8 hrs)

« Feature extraction: embeddings from last hidden layers of blocks
— Convolutional & contextualized (“fine-tuned”)

— Frame-level embeddings > mean, standard deviation
— 512, 1024 - 1024 (convolutional) and 2048 (fine-tuned) features

Classification: SVM
— liIbSVM, linear kernel, 35-fold nested cross-validation, repeated 5 times

- Evaluation: EER (Equal Error Rate), AUC (Area under ROC)
 Significance tests: Mann-Whitney U test
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Results (ADS vs. HC)

_ Convolutional 11.4% 0.947
Previous day
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Fine-tuned 20.0% 0.885

Convolutional 16.6% 0.906
Alcohol-related _

Fine-tuned 9.1% 0.982

* The results are overall quite good
— Probably ADS changes the subjects’ speech, which can be detected

* The speech tasks are similarly useful
— Convolutional embeddings work better for the Previous day task (p < 0.01)
— Fine-tuned embeddings work better for the Alcohol-related task (p < 0.01)

» Overall, the results for the Alcohol-related task are a bit better



Results (Previous day vs. Alcohol-related)

Convolutional 39.4% 0.605
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| Fine-tuned 43.4% 0.576 ]
e Convolutional 16.6% 0.892
Fine-tuned 14.9% 0.893
Convolutional 31.7% 0.699
ADS + HC .
Fine-tuned 22.3% 0.829

* ADS subjects: the results are barely better than random
— Convolutional embeddings were slightly better
— EER: p =0.0397, AUC: p > 0.05
— Probably there was not a huge difference in the speech during the two

speech tasks (or it was not captured by the wav2vec 2.0 embeddings)



Results (Previous day vs. Alcohol-related)

Embedding

Convolutional 39.4% 0.605
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ADS :
Fine-tuned 43.4% 0.576
[H - Convolutional  16.6%  0.892 )
Fine-tuned 14.9% 0.893
Convolutional 31.7% 0.699
ADS + HC .
\_ Fine-tuned 22.3% 0.829 )

 HC subjects: the results are overall quite good
— Both with convolutional and fine-tuned embeddings (p > 0.05)

« ADS + HC subjects: the results are in-between
— Fine-tuned embeddings were significantly better (p < 0.01 for EER & AUC)



Investigating the Amount of Pauses

« Lastly, we Investigated usefulness of the amount
of pauses

— Silent pauses and filled pauses (“er”,
durations = 30 ms

« Calculated by a standard HMM/DNN hybrid model

— The acoustic model was trained on 60 hours of
Hungarian spontaneous speech (increased to 240 hours
by noise augmentation)

— Phone-level speech recognition
— Filled pause was treated as a special phone

— Amount of duration (%) was calculated over
the whole utterance
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Amount of Pauses Produced

50

45 « ADS subjects, in
Previous Day Alcohol-related

40 general,

35 produced more

30 pauses than

healthy controls

* This is true for all
three pause

10 types (“silent”,

; =1 m | B E “filled”, “both”)

Silent Filled Both Silent Filled Both and all speech
Pause types tasks

« ADS subjects also produced more silent pauses in the Previous day speech

task than in the Alcohol-related speech task
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Previous day 21.1%
ADS vs. HC
Alcohol-related 33.1%
9 ADS 57.4%
Previous day vs. X
Alcohol-related HC 53.4%
ADS + HC 55.0%

Classification task

0.826
0.730
0.409
0.431
0.497

Classification Results with Pause Stats

Classification
experiments with
only the three
pause statistics
as features

Experimental
setup Is the same

* The two speaker groups could efficiently be separated
* The two speech tasks were indistinguishable

— EER > 50%, AUC < 0.5

— On the figure, the two speech tasks had similar pause characteristics
— However, the ADS subjects clearly produced more silent pauses



Summary

 We presented a speech corpus with 35 ADS and 35 HC subjects
— Speech tasks: a neutral topic (previous day) and an alcohol-related one

We tried to automatically distinguish the two speaker groups
— A standard workflow: wav2vec 2.0 embeddings + SVM, cross-validation

We tried to distinguish the two speech tasks

— They proved to be quite similar for the ADS speakers, but quite different
for the HC subjects

 We measured the amount of pauses
— Silent and filled pauses, detected by a HMM/DNN hybrid model

— Besides a manual investigation of the tendencies, we also performed
classification experiments
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Limitations

 The number of subjects (35 + 35) is not that high
— Although it is a common-sized corpus for pathological speech processing

« The wav2vec 2.0 model was fine-tuned on a limited amount of
data (only 8 hours)

Only the last hidden layers of the two wav2vec 2.0 blocks
(convolutional and contextualized) were used

Further interpretable attributes? (Just like the amount of pauses)
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