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Abstract. Alcohol is a progressive central nervous system depressant.
Increased alcohol consumption leads to alterations in cognitive processes
and also affects speech production. In this study we present a corpus
of n=35 patients diagnosed with Alcohol Dependency Syndrome (ADS)
and n=35 matched healthy controls, and attempt to automatically dis-
tinguish the two speaker groups based on their spontaneous speech. By
using wav2vec 2.0 embeddings as features, we were able to identify the
two speaker categories with quite high accuracy (EER scores between
9% and 20%, and AUC scores above 0.885). We also sought to find the
difference between the two speech tasks (a general spontaneous task and
an alcohol-related one) performed by the subjects. Lastly, we analyzed
the amount of pauses present in the speech of the subjects. Based on our
results, even three simple pause-related attributes are sufficient for the
automatic identification of the ADS subjects with an acceptable perfor-
mance for both speech tasks.
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1 Introduction

Alcohol, as a progressive central nervous system depressant, can cause changes
in cognitive functions. The prevalence of cognitive impairment in alcohol use
disorder is 40%. Alcohol dependence can affect executive functions, may impair
verbal fluency, working memory, recent memory, visuospatial abilities, visual
recognition and processing speed [7,9,14]. Changes in cognitive functions can
also affect language processes, speech perception and production [32]. There
have been several studies on how alcohol dependence affects cognitive abilities,
but only a few studies examine the effects of long-term alcohol use on language
processes (e.g. [16,25,26]).
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From the aspect of automatic speech processing, investigating the effect of
alcohol on speech production is not an uncommon topic. Several studies investi-
gated the effects of alcohol intoxication, to distinguish speakers who are under
the influence of alcohol from sober subjects [3,17,23,32]. What is common among
these studies is that they focused on the short-term influence of alcohol. This is
understandable as detecting whether the speaker is under the short-term effects
of alcohol (i.e. is the speaker drunk?) has straightforward applications like deny-
ing the speaker to drive a motorized vehicle. However, to the best of our knowl-
edge, no study has attempted to automatically detect the long-term effects of
alcohol consumption on speech.

In this study we focus on the spontaneous speech production of patients
suffering from Alcohol Dependency Syndrome (ADS) by performing machine
learning experiments. In such experiments in the pathological speech processing
area, due to the scarcity of data and the fact that each subject corresponds to
one machine learning example, it is still common to employ traditional classi-
fication methods like a Support Vector Machine (SVM) instead of end-to-end
deep neural network (DNN) systems [22]. This means that the feature extrac-
tion and classification steps are distinct, but the type of features used is not
a trivial question. One still can find studies employing hand-crafted attributes
(e.g. [8,13,22]), but utilizing general-purpose features like embeddings of deep
learning models is becoming ever more common [15,27,31]. Due to this, we shall
employ the embeddings of wav2vec 2.0 self-supervised models [2] as features.

The contribution of our study is four-fold: i) we present a corpus containing
the speech of 35 patients with diagnosed Alcohol Dependency Syndrome and 35
matched healthy controls (HC); ii) we carry out machine learning experiments
to identify two speaker groups based on the spontaneous speech production of
the subjects; iii) we try to distinguish the two speech tasks by machine learning;
iv) we investigate the extent of pauses present in the speech of the subjects, and
compare the tendencies with the results of the classification experiments.

2 Data

Inpatients (n=35) admitted with a diagnosis of alcohol dependency syndrome
(F.10.20) with Mini-Mental State Examination (MMSE) score of at least 28
were recruited at the Department of Psychiatry, University of Szeged, Hungary
between July, 2022 and June, 2023. Patients suffering from alcohol withdrawal
syndrome (CIWA > 7) and with cognitive impairment (MMSE < 28) were
excluded. Recording the speech was performed on the eighth day of abstinence.
In addition, the speech of demographically statistically matched healthy control
subjects (n=35) was also recorded. The research was authorized by the Ethical
Committe of the University of Szeged, Hungary. Collection of data was done in
accordance with the Declaration of Helsinki.

For each subject (both for ADS and HC subjects), two speech recordings
were collected: in the first one, as an emotionally neutral topic, they were asked
to describe their previous day (task Previous day). Afterwards, as an alcohol-
related topic, they had to describe their relationship to alcohol and situations
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Table 1. Average durations and corresponding standard deviation values for the record-
ings (mean ± std), expressed in seconds.

Speaker Groups

Speech task ADS HC

Previous day 76.7 ± 45.0 84.1 ± 33.3

Alcohol-related 80.9 ± 45.8 86.4 ± 31.4

where they found it hard to resist to drink (task Alcohol-related). Recording was
done in a clinical environment, by using a digital dictaphone; the recordings were
later converted to 16 kHz mono format for digital processing.

The means and the standard deviations of the recording durations can be seen
in Table 1. The responses of the subjects were around 1.5 min on average for both
speech tasks and both speaker groups, although the HC subjects produced some-
what more speech on average (+8 and +6 s, Previous day and Alcohol-related
speech tasks, respectively). Furthermore, there were significant individual vari-
ations, reflected by the high standard deviation values. The standard deviation
of the durations of the speech produced by the HC speakers turned out to be
notably lower than that of the responses of the ADS patients.

3 Methods

3.1 Wav2vec 2.0

wav2vec is a convolutional neural network (CNN) designed to process raw audio
signals as input and generate representations suitable for automatic speech recog-
nition (ASR) systems. The model is trained in a self-supervised manner, during
which it learns to predict future observations for the given speech sample [24].
This self-supervised training allows the model to be pre-trained on large, unan-
notated corpora, enabling subsequent fine-tuning for specific audio processing
tasks such as ASR for low-resource languages [19] or paralinguistic applications
(e.g. emotion detection [20]). The wav2vec 2.0 architecture further enhances
this approach by incorporating masking during training. Specifically, raw audio
is encoded using a block of convolutional neural networks, and small segments
of the resulting latent speech representations are masked, akin to masked lan-
guage modeling. These masked representations are then processed by a quantizer,
which selects speech units from an inventory of learned units, and a transformer
network, which incorporates information from the entire utterance [2]. Figure 1
shows the layout of the (fine-tuned) wav2vec 2.0 structure.

3.2 Wav2vec 2.0 for Feature Extraction

The outputs from the multi-layer convolutional block are the sequence of
extracted feature vectors of the last convolutional layer, while the outputs from
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Fig. 1. The fine-tuned wav2vec 2.0 framework structure.

the second (fine-tuned) block comprise the sequence of the hidden states of the
last layer of the block. These two types of feature vectors may carry relevant
information for a large range of speech processing tasks: the former vector can
be expected to capture lower-level information (e.g. pause-related information),
while the fine-tuned layer can be expected to store phonetic-related information;
so they could be used as features [10]. However, the number of these (frame-level)
feature vectors is proportional to the length of the utterance. To employ them
as utterance-level features, they have to be aggregated over the whole recording.
To do this, taking the mean and/or the standard deviation of the values over
the whole utterance is a generally accepted solution [11,21,30].

4 Experimental Setup

4.1 Feature Extraction

We used the wav2vec 2.0 model wav2vec2-large-xlsr53-hungarian. The base
of this model is the XLSR-53 model pre-trained by Facebook on the audio data
of 53 languages simultaneously [1]. This base model was then fine-tuned by the
user jonatasgrosman [12] on the Hungarian part of the Mozilla Common Voice
6.1 corpus (8 h). The last layer of the convolutional block of this model consists
of 512 neurons, while the last layer of the fine-tuned block has 1024 neurons. By
using mean and standard deviation of these frame-level embedding vectors, we
obtained 1024 and 2048 utterance-level features, convolutional and fine-tuned
embeddings, respectively.

4.2 Utterance-Level Classification

We employed the approach common in pathological speech processing studies
(e.g. [4,13,28]): due to the low number of examples (subjects) from a machine
learning perspective, we did not define separate training, development and test
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Table 2. Equal Error Rate (EER) and Area Under the ROC Curve (AUC) values
obtained when discriminating the ADS and HC subjects for the two speech tasks.

Speech task Embedding EER AUC

Previous day Convolutional 11.4% 0.947

Fine-tuned 20.0% 0.885

Alcohol-related Convolutional 16.6% 0.906

Fine-tuned 9.1% 0.982

sets, but used cross-validation. Each fold consisted of the data of one ADS and
one HC speaker, leading to 35 folds overall. Classification performance was mea-
sured via Equal Error Rate (EER) and the Area Under the ROC Curve (AUC)
metrics, also commonly applied in pathological speech processing studies [4].

We applied Support Vector Machines for classification, using the LibSVM [6]
library. We employed the nu-SVM method with a linear kernel; the value of C was
tested in the range 10{−5,...,1}. The optimal value for the C meta-parameter was
determined by the technique called nested cross-validation [5]: for the 2×34=68
speakers being in the training fold in the actual CV step, we performed another
cross-validation. We chose the C value which led to the highest AUC score in
this “inner” cross-validation loop; “final” SVM model was trained on the data
of the 68 speakers with this C value, and it was evaluated on the data of the
last fold (i.e. two speakers). With this procedure we sought to avoid the bias in
our scores which would have been present if we used standard cross-validation.

To reduce the random factor unavoidably present in our workflow, we
repeated each classification experiment 5 times, using a different random seed
value when constructing the folds for cross-validation. In the results, we always
report the mean of the five EER and AUC scores. When comparing the signifi-
cance of differences, we employed the Mann-Whitney U test (see [18], also known
as the Wilcoxon rank-sum test).

5 Classification Results

Table 2 shows the EER and AUC values measured, averaged over the five runs,
for the two speech tasks and the two embedding types. Overall, the results are
quite good: the Equal Error Rate scores were between 9.1% and 20.0%, while
the AUC values lay in the range 0.885 . . . 0.982. This, in our opinion, indicates
that massive alcohol consumption, i.e. Alcohol Dependency Syndrome affects
the speech production of the subjects significantly, and in a way which can be
detected by automatic means. Regarding the usefulness of the speech tasks, it is
hard to see any general trend, as we obtained better classification results for the
Previous day speech task when using the convolutional embeddings (p < 0.01),
and for the Alcohol-related speech task using the fine-tuned embeddings (again
p < 0.01). This might indicate that changes in speech production are mostly
not specific to these two speech tasks, but more general in nature such as tone,
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pronunciation, pausing patterns or speech rate. Still, the scores for the Alcohol-
related task are somewhat better on the average, which might indicate that asking
the subjects about their experiences with alcohol is somewhat better suited to
reveal the differences in speech production of ADS patients compared to healthy
controls.

Table 3. Equal Error Rate (EER) and Area Under the ROC Curve (AUC) values
obtained when discriminating the two speech tasks.

Subjects Embedding EER AUC

ADS Convolutional 39.4% 0.605

Fine-tuned 43.4% 0.576

HC Convolutional 16.6% 0.892

Fine-tuned 14.9% 0.893

ADS + HC Convolutional 31.7% 0.699

Fine-tuned 22.3% 0.829

5.1 Distinguishing the Two Speech Tasks

Although there was no great difference between the two speech tasks in clas-
sification performance (when we sought to distinguish the ADS subjects from
the HC ones), we were also interested in how much the speech produced by the
subjects differed in the two tasks. To this end, first we performed further binary
classification experiments, where the classifiers were trained to distinguish the
two speech tasks of the subjects. The experimental setup of these experiments
mirrored those of our previous experiments: we utilized SVM with a linear ker-
nel in a nested cross-validation setup, using the mean and standard deviation
of (frame-level) wav2vec 2.0 embeddings as features. To avoid any further bias,
each fold consisted of the two utterances of one speaker (so no SVM model was
trained and evaluated on the speech of the same speaker).

The results obtained in this set of experiments can be seen in Table 3. For
the ADS subjects, classification performance was above that of random guessing,
but the results are quite low: we measured EER values of 39.4% and 43.4%, and
AUC scores of 0.605 and 0.576, convolutional and fine-tuned embeddings, respec-
tively (the AUC values displayed no statistically significant difference, although
for the EER metric scores we measured p = 0.0397). This probably indicates
that there was not much difference in the speech of the ADS subjects in the
two tasks, at least for properties that the wav2vec 2.0 embeddings captured.
In contrast, for the healthy control speakers, the two speech tasks proved to be
markedly different, judging from the low EER (16.6% and 14.9%) and quite high
AUC (0.892 and 0.893) values. (In these cases there was no significant difference
between the two embedding types.) As might be expected, when we used all 70
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Fig. 2. The amount (percentage of duration) of silent and filled pauses for the two
speaker categories and speech tasks (determined automatically by phone-level ASR).

subjects (i.e. all 140 utterances), the metric scores were in-between; in this case,
the fine-tuned embeddings were significantly better (p < 0.01 for both metrics).

6 Pause Analysis

6.1 Classification Experiments Using the Amount of Pauses

As the last contribution of our study, we investigated the amount of pause present
in the speech of the two speaker groups for the two speech tasks. For this, two
pause types were distinguished: silent pause (the absence of speech for at least
30ms) and filled pause (vocalizations such as ‘er’, ‘um’ etc.). Pause identification
was achieved using a standard HMM/DNN hybrid ASR system by perform-
ing phone-level recognition; the acoustic DNN model was trained on 240 h of
noise-augmented Hungarian spontaneous speech. We treated a filled pause as a
special phone, while several labels (breath intakes, sighs and gasps) were han-
dled together with silent pauses. The amount of silent and filled pauses was
calculated from the phonetic output of the ASR system as the total duration of
the corresponding pause type divided by the duration of the utterance (and we
calculated the third attribute corresponding to all pause occurrences as the sum
of the amount of silent and filled pauses). For more details about this process,
see [29].

The amount of pauses for the two speaker types and for the two speech tasks
can be seen in Fig. 2. Perhaps the most obvious observation is that the ADS
subjects produced more pauses on average than the healthy controls, which was
the case for both pause types and both speech tasks (although the difference was
quite small for filled pauses). Regarding the two speech tasks, the (mean) amount
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Table 4. Equal Error Rate (EER) and Area Under the ROC Curve (AUC) values
obtained when discriminating the ADS and HC subjects for the two speech tasks (up),
and when discriminating the two speech tasks (down), using only the pause-related
attributes.

Classification task Data EER AUC

ADS vs. HC Previous day 21.1% 0.826

Alcohol-related 33.1% 0.730

Previous day vs. Alcohol-related ADS 57.4% 0.409

HC 53.4% 0.431

ADS + HC 55.0% 0.497

of filled pause was practically the same both for the ADS patients and the HC
subjects. In contrast, there were clearly more silent pauses present in the Previous
day recordings of the ADS subjects than for their Alcohol-related responses. This
is in sharp contrast with the contents of Table 3, where the responses of the HC
subjects could be identified with a good classification performance, while the two
speech recordings of the ADS speakers proved to be almost indistinguishable.
This, in our opinion, indicates that the speech properties which are represented
by the (means and standard deviations of) wav2vec 2.0 embeddings (be they
convolutional or fine-tuned) are quite different from the amount of pauses.

Lastly, we performed classification experiments using only the three pause-
related attributes. Since the experimental setup again was the same as that of
our previous machine learning experiments, the EER and AUC scores presented
next are directly comparable to those reported in Tables 2 and 3.

The two speaker groups could be identified with a surprisingly high efficiency
(see the top half of Table 4), particularly for the Previous day speech task: the
mean EER value of 21.1% and the mean AUC score of 0.826 fall quite close to
the scores obtained with the fine-tuned embeddings (see Table 2). The statistical
tests show no significant difference between the EER scores for the two feature
sets (p = 0.444), although the AUC scores of the pause-related attributes are
significantly (p < 0.01) worse. Compared to the convolutional embeddings, the
performance gap is wider, just as for the Alcohol-related speech task with both
embedding types. (The difference is statistically significant for all three cases and
for both evaluation metrics.) According to the bottom half of Table 4, however,
our classifier models were unable to distinguish the two speech tasks: the EER
values exceeded 50% and the AUC scores were below 0.500, showing lower-than-
chance level performance.

The tendencies of these scores is in accordance with Fig. 2. Clearly, the ADS
subjects tend to produce more silent pauses for both speech tasks, which allowed
an acceptable classification performance even when we used only the three pause
statistic values. The difference between the amount of silent pauses produced by
the two speaker groups is more apparent in the Previous day speech task (see
Fig. 2 again), and indeed, the AUC value is higher and the EER value is lower
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for this speech task than those for the Alcohol-related one (see Table 3). However,
although this difference allowed a better distinction of the two speaker groups for
the Previous day speech tasks, it was not enough to adequately characterize the
individual speech tasks. This might especially hold for the control subjects, where
the difference between the amount of pauses between the two speech tasks was
small. (Also note that Fig. 2 shows only the average values and does not reflect
any individual variation.)

7 Conclusion and Discussion

In this study we investigated the spontaneous speech of subjects suffering from
Alcohol Dependency Syndrome (ADS). We presented a corpus consisting of n=35
ADS patients and n=35 matched healthy controls, containing the recordings of
two spontaneous speech tasks for each subject. In the first part of our study,
we performed classification experiments in order to identify the speaker groups,
using wav2vec 2.0 embeddings as features. We also investigated whether the two
speech tasks can be distinguished, and found that they were quite different for the
healthy control speakers, but differed only slightly for the ADS subjects (at least
from the aspects which were represented by the wav2vec 2.0 embeddings). In
the second part of our study we calculated the amount of (both silent and filled)
pauses for each recording by a simple phone-level ASR system, and verified that
the two speaker categories could be automatically identified by using these values
alone as features. No difference was found, however, between the two speech
tasks, in the sense that the metric scores reflected chance-level classification
performance.

Regarding the limitations of our study, perhaps the most apparent one is
the number of subjects. Although 35 patients and the same number of (demo-
graphically matched) control subjects is not an uncommonly low number in
pathological speech investigations, we plan to collect more data to increase the
statistical significance of our findings. Another limitation might be the wav2vec
2.0 model used: although wav2vec 2.0 is considered to be a competitive feature
extractor, and the actual model was fine-tuned for Hungarian, the amount of
data used for fine-tuning was limited (only 8 h). Also, the XLSR-53 network
architecture contains 24 layers in its contextualized (i.e. fine-tuned) block, from
which we used only the embeddings taken from the last layer. Other studies
already experimented with utilizing embeddings taken from an inner layer as
features (see e.g. [22]). In the near future we plan to repeat our experiments
both with self-supervised models fine-tuned on more data and with other types
of acoustic features.

Furthermore, to describe the speech production characteristics of patients
suffering from Alcohol Dependency Syndrome, it would make sense to employ
interpretable attributes, which is not the case for embedding vectors. Although
the amount of silent and filled pauses were indeed such interpretable features,
and they also allowed satisfactory discrimination of the two subject groups, clas-
sification performance was significantly lower than what was obtained via the



Automatic Assessment of Signs of Alcohol Dependency Syndrome 27

wav2vec 2.0 embeddings. Therefore, some speech properties of the ADS sub-
jects was not captured by these attributes; finding further meaningful features
which characterize the speech production of ADS patients is a straightforward
extension of our current investigations.
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28. Tóth, L., et al.: Automatic detection of mild cognitive impairment from sponta-
neous speech using ASR. In: Proceedings of Interspeech, pp. 2694–2698. Dresden,
Germany (2015)
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