

Automatic Longitudinal Investigation of Multiple Sclerosis Subjects

GÁBOR GOSZTOLYA^{1,2}, LÁSZLÓ TÓTH², VERONIKA SVINDT³, JUDIT BÓNA⁴, ILDIKÓ HOFFMANN^{3,5}

¹ HUN-REN–SZTE Research Group on Artificial Intelligence, Szeged, Hungary ² University of Szeged, Institute of Informatics, Szeged, Hungary ³ HUN-REN Research Center for Linguistics, Budapest, Hungary ⁴ ELTE Eötvös Loránd University, Dept. of Applied Linguistics and Phonetics, Budapest, Hungary ⁵ University of Szeged, Department of Linguistics, Szeged, Hungary

- Multiple sclerosis, among other symptoms, might deteriorate the speech of the patient
- Due to this, automatic speech analysis can serve as a tool to detect the disease, or monitor its progression
- We employed a standard pathological speech processing workflow (wav2vec 2.0 embeddings as features, SVM as classifier in a nested cross-validation setup)
- We tested the embeddings taken from all layers of the fine-tuned block
- We found that statistically significant improvements could be achieved with the lower one-third of layers (8 layers out of 24)

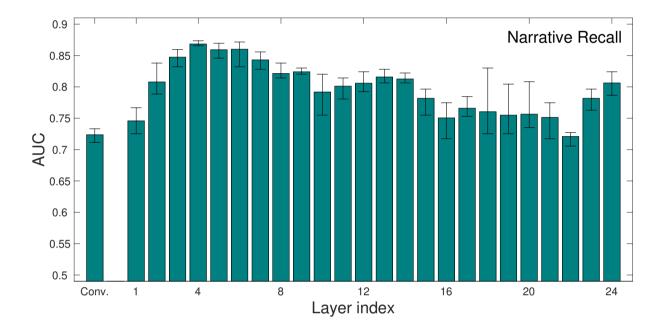
2. MULTIPLE SCLEROSIS

MULTIPLE SCLEROSIS AND LANGUAGE

- A chronic inflammatory disease of the central nervous system
- Impairments in the patient's gross and fine motor skills
- cca. 60% of MS subjects have some cognitive impairments (cognitive flexibility, disorders of orientation, working-memory limitation, information processing speed) [1]
- cca. one-third of MS patients report (temporary or persistent) speech disorders
- Motor speech disorders (dysarthria, dysphonia); word finding difficulties; limitations of the higher level cognitive processes

THE MULTIPLE SCLEROSIS RECORDINGS USED

- 23 MS subjects (5/18 m/fm), 22 Healthy Controls (HC) (6/16 m/fm)
- No statistically significant differences between the two groups in demographic attributes (age / gender / years of education)


Two different speech tasks:

- (1) Share their opinions about vegetarianism (**Opinion**)
- (2) Retell a short historical anecdote just heard (Narrative Recall)

Opinion 0.85 0.8 0.75 AUC 0.7 0.65 0.6 0.55 0.5 Conv. Layer index

5. Results with the Embeddings of the Inner Layers

- All inner layers outperformed both baseline approaches
- The improvement is significant in all cases vs. the convolutional layer, and in 20 cases out of 23 vs. the last fine-tuned one

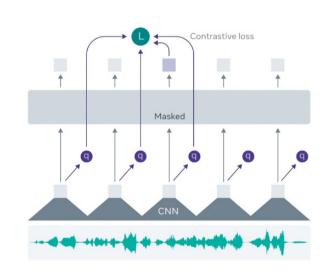
- A significant improvement was achieved vs. the last layer of the convolutional block in 20 cases (out of 23)
- ...but only in 6 cases (out of 23) was the improvement statistically significant vs. the last fine-tuned layer (all in the 1...9 region)

RESULTS FOR SPECIFIC LAYERS

3. CLASSIFICATION AND EVALUATION

Context

representations


Transformer encode

Quantizer

CNN encoder

any language

- We used a wav2vec 2.0 model (XLS-53) fine-tuned on 17 hours of the target language (Hungarian)
- Embeddings from the last layers of the convolutional and contextualized (finetuned) blocks as baseline, aggregated by mean and standard deviation (1024 Speech signal in and 2048 features)

- Embeddings from all 24 hidden layers from the fine-tuned block (mean and standard deviation, 2048 features)
- Support Vector Machines + linear kernel
- Nested cross-validation, repeated 5 times with different folds
- Area Under the ROC Curve (AUC) for evaluation
- Mann-Whitney U-test for significance testing

4. RESULTS WITH THE EMBEDDINGS OF THE LAST LAYERS

		AUC			
Speech task	Embedding type	Mean	Std.	Range	
Opinion	Convolutional Fine-tuned	0.707 0.736	0.032 0.025	0.654, 0.737	
Narrative Recall	Convolutional Fine-tuned	0.724 0.806	0.008 0.014	[0.712, 0.733] [0.787, 0.824]	

- The results are competitive, and similar to those of previous studies
- Fine-tuned embeddings are somewhat more suitable for MS detection than convolutional ones
- The AUC scores for the Narrative Recall task were higher for both embedding types than for the Opinion one
- Standard deviation values were also smaller (\Rightarrow more robust classification performance)

Main references

- [1] Dobson et al., "Multiple sclerosis a review", European Journal of Neurology 2019.
- [2] Baevski et al., "wav2vec 2.0: A framework for self-supervised learning of speech representations", Advances in Neural Information Processing Systems, 2020.

		AUC			
Speech task	Embedding type	Mean	Std.	Range	
Opinion	Fine-tuned (#2)**/**	0.847	0.018	[0.818, 0.866]	
	Fine-tuned (#4)	0.800	0.023	[0.777, 0.826]	
	Fine-tuned (#6)**/**	0.802	0.019	[0.779, 0.824]	
	Fine-tuned (#8)**/**	0.818	0.008	[0.806, 0.826]	
Narrative Recall	Fine-tuned (#2)**/	0.808	0.022	[0.789, 0.838]	
	Fine-tuned (#4)**/**	0.868	0.004	[0.866, 0.874]	
	Fine-tuned (#6)**/**	0.860	0.016	[0.832, 0.872]	
	Fine-tuned (#8)**/-	0.821	0.010	[0.814, 0.838]	

• Notation: convolutional / fine-tuned (*: p < 0.05, **: p < 0.01)

- In most cases a statistically significant improvement was achieved
- Classification performance is also more robust (smaller std.), especially for the 4th layer for the Narrative Recall speech task

IMPROVEMENTS FOR LAYER REGIONS

We also investigated the scores for layer regions (40 AUC scores each)

		AUC		
Speech task	Embedding type	Mean	Std.	Range
Opinion	Fine-tuned (#1#8)**/**	0.820	0.028	[0.778, 0.867]
	Fine-tuned (#9#16)**/**	0.783	0.022	[0.749, 0.827]
	Fine-tuned (#17#24)**/**	0.773	0.025	[0.729, 0.810]
Narrative Recall	Fine-tuned (#1#8)**/*	0.832	0.040	[0.740, 0.872]
	Fine-tuned (#9#16)**/	0.798	0.026	[0.741, 0.828]
	Fine-tuned (#17#24)**/	0.762	0.033	[0.719, 0.817]

- We outperformed the convolutional embeddings in all cases
- The lowest region is robust for both speech tasks (p < 0.01)
- The upper layers (9...23) did not bring a significant improvement for Narrative Recall (or led to a significant drop in the AUC scores)

6. CONCLUSIONS

- We used embeddings taken from the inner hidden layers of the finetuned block of a wav2vec 2.0 model
- We obtained statistically significant improvements in most cases, the most effective region being the lowest one
- Combining the embeddings could be a possible extension of this work

This study was supported by the NRDI Office of the Hungarian Ministry of Innovation and Technol-ogy (grants K-132460 and TKP2021-NVA-09), and within the framework of the Artificial Intelligence National Laboratory Program (RRF-2.3.1-21-2022-00004).