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Abstract. Multiple sclerosis (MS) is a chronic autoimmune neurode-
generative disease, affecting the central nervous system. The disease can
induce various symptoms, such as adversarily affecting the speech of the
subject in various ways, therefore allowing the use of automatic speech
analysis for the detection of MS and for monitoring the condition of
the patient. Owing to data scarcity, however, deep neural networks are
usually not employed for this task as classifiers, but are used as fea-
ture extractors. This is the case for self-supervised networks such as
wav2vec 2.0 as well, where a straightforward source of embeddings (used
as features) are the last layers of the convolutional (lower) and fine-
tuned (higher) blocks. In this study we investigate whether extracting
the embeddings from some other, inner layer of the fine-tuned (trans-
former) block can help improve MS detection performance. Tested on
two speech tasks, we found that the lowest one-third of the 24 fine-tuned
layers proved to be the most suitable for feature extraction, which led to
statistically significant improvements in the AUC scores for both speech
tasks.

Keywords: Multiple sclerosis · Pathological speech processing ·
Wav2vec 2.0 · Feature extraction

1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease,
affecting the central nervous system, which can result in various cognitive and
linguistic impairments of the subjects [29]. The progression of MS may vary con-
siderably from subject to subject, and it can change over time. Several changes
may occur as the disease progresses: an increase in disability (affecting walking,
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balance, coordination, and other physical abilities of the patient); an increase
in fatigue; sensory changes (affecting the ability to feel cold, heat and touch)
and changes in cognitive and language functions. Noting these points, auto-
matic speech analysis might contribute to detect the disease in an automatic,
contact-free and (relatively) cheap way, or serve as a screening technique.

In the past decade, automatic speech analysis has developed into a broad area
within speech technology. It includes computational paralinguistics, which seeks
to automatically identify different speaker traits and states, such as emotion
recognition [13,21], speaker age and gender determination [22], assessing the
degree of sleepiness [15], whether the speaker has cold [33], or the presence of
stuttering [12]. It also includes pathological speech processing tasks, where the aim
is to automatically decide whether the speaker is suffering from a specific disease
such as Parkinson’s Disease [17,19], Alzheimer’s Disease [16,27], mild cognitive
impairment [25] or depression [9,18]. After the deep learning revolution, deep
networks also found their way into the pathological speech processing area [9,
17,27].

Nowadays, with the emergence of self-supervised learning, perhaps the most
widely-used speech processing network type is wav2vec 2.0 [2]. Besides direct
speech processing applications [6,24], evaluating the network on a specific speech
utterance and noting the activations of a specific hidden layer (i.e. the embed-
dings) and using these vectors as features (and thus, the whole network as a
feature extractor) is a common approach as well [7,26]. Due to the scarcity of
resources in the pathological speech processing area, deep networks are rarely
used as classifiers there, but they primarily serve as feature extractors [7,27,30].

To employ neural networks (including those with a wav2vec 2.0 architecture)
as feature extractors, one has to choose a specific layer to take the embeddings
from. A wav2vec 2.0 network has two main blocks: the lower convolutional one
and the higher fine-tuned one, and the straightforward sources of embeddings are
the last layers of each block [20]. In this study, however, we investigate whether
some inner layer of the fine-tuned block might supply better features. For this, we
take a network fine-tuned on the target language (in our case, Hungarian), and
test the embeddings taken from all of the inner layers of the fine-tuned block as
machine learning features to distinguish multiple sclerosis patients from healthy
control (HC) subjects.

2 The Hungarian Multiple Sclerosis Corpus

All the tests were carried out at the Neurology Department of Uzsoki Hospital,
Budapest, Hungary, and at the Research Center for Linguistics of the Hungarian
Research Network, Budapest, Hungary. The study was approved by the Ethics
Committee of the Uzsoki Hospital, and it was conducted in accordance with the
Declaration of Helsinki. In the current study we use the recordings of 23 MS sub-
jects (5 males and 18 females) and 22 healthy controls (6 males and 16 females).
All 23 MS subjects belonged to the relapsed-remitting MS subtype (RRMS). All
the speakers involved in the study were native Hungarian speakers. The MS and



Utilizing wav2vec 2.0 Hidden Layers for Multiple Sclerosis Detection 299

HC groups displayed no statistically significant difference in their demographic
attributes (age in years, gender (male / female) and years of education).

The protocol for collecting the speech samples from the subjects was quite
extensive, involving 17 different speech tasks. In the current study, due to space
limitations, we use the recordings of two spontaneous speech tasks: in the Opin-
ion task the subjects were asked to share their opinions about vegetarianism,
while in the Narrative Recall speech task the subjects listened to a two-minute-
long historical anecdote that was unknown to them beforehand, and they had
to summarize the story heard as accurately as possible. Although participants
have to produce coherent, complex narratives in both tasks, there are some sig-
nificant differences in the cognitive requirements of these task. Namely, in the
Narrative Recall task the speakers had to rely significantly on their working
memory, and they had to inhibit irrelevant information, compared to the clearly
simpler Opinion speech task.

The recording was performed with a Sony PCM-A10 digital dictaphone using
a tie clip microphone with a sampling rate of 48 kHz; later the recordings were
converted to 16 kHz mono with a 16 bit resolution.

3 Wav2vec 2.0

wav2vec is a convolutional neural network (CNN) designed to process raw audio
signals as input and generate representations suitable for automatic speech recog-
nition (ASR) systems. The model is trained in a self-supervised manner, during
which it learns to predict future observations for the given speech sample [28].
This self-supervised training allows the model to be pre-trained on large, unan-
notated corpora, enabling subsequent fine-tuning for specific audio processing
tasks such as ASR for low-resource languages [24] or paralinguistic appications
(e.g. emotion detection [26]). The wav2vec 2.0 architecture further enhances
this approach by incorporating masking during training. Specifically, raw audio
is encoded using a block of convolutional neural networks, and small segments
of the resulting latent speech representations are masked, akin to masked lan-
guage modeling. These masked representations are then processed by a quantizer,
which selects speech units from an inventory of learned units, and a transformer
network, which incorporates information from the entire utterance [2]. Figure 1
shows the layout of the (fine-tuned) wav2vec 2.0 structure.

3.1 Wav2vec2 for Feature Extraction

The outputs from the multi-layer convolutional block are the sequence of
extracted feature vectors of the last convolutional layer, while the outputs from
the second (fine-tuned) block comprise the sequence of the hidden states of the
last layer of the block. These two types of feature vectors may carry relevant
information for a large range of speech processing tasks, so they are quite pop-
ular as features [8,20]. Of course, these embeddings are at the frame level, so
the number of these vectors is proportional to the length of the utterance. To
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Fig. 1. The fine-tuned wav2vec 2.0 framework structure. Source: https://ai.meta.com/
blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio.

employ them as utterance-level features, they have to be aggregated over the
whole recording. To do this, taking the mean and/or the standard deviation of
the values over the whole utterance is a generally accepted solution [10,27,32].

In this study we, however, focus on the inner layers of the fine-tuned block.
Since in a standard XLSR-53 network (see e.g. [1]), there are 24 such transformer
layers, we have 24 options of feature extraction. Besides the standard assump-
tions that lower-laying layers capture lower-level phenomena (e.g. silence, noise,
acoustic conditions), while higher-level layers tend to capture high-level (e.g.
phonetic) information, we do not have any further guidance. Due to this, in our
experiments we tested the activations taken from all 24 layers for the two speech
tasks for multiple sclerosis detection.

4 Experimental Setup

4.1 Feature Extraction

We used the wav2vec 2.0 model wav2vec2-large-xlsr53-hungarian. The base
of this model is the XLSR-53 model pre-trained by Facebook on the audio data
of 53 languages simultaneously, and it was ensured that the quantization module
of the wav2vec 2.0 neural network also delivers multilingual quantized speech
units [1]. This base model was then fine-tuned by the user jonatasgrosman [11]
on the Hungarian part of the Mozilla Common Voice 6.1 corpus (8 h). The last
layer of the convolutional block of this model consists of 512 neurons, while all the
layers of the fine-tuned block have 1024 neurons. By using mean and standard
deviation of these frame-level embedding vectors, we obtained 1024 and 2048
utterance-level features, convolutional and fine-tuned embeddings, respectively.
Since we focused on the fine-tuned embeddings, in most of our experiments we
had feature vectors with a length of 2048.

https://ai.meta.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio
https://ai.meta.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio
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4.2 Utterance-Level Classification

We employed the approach common in pathological speech processing studies
(e.g. [3,14,31]): due to the low number of examples (subjects) from a machine
learning perspective, we did not define separate training, development and test
sets, but used cross-validation. Each fold consisted of the data of one MS and one
HC speaker, leading to 23 folds overall. Classification performance was measured
using the Area Under the ROC Curve (AUC) metric, also commonly applied in
pathological speech processing studies [3,10].

We employed Support Vector Machines (SVM) for classification, using the
LibSVM [5] library. We employed the nu-SVM method with a linear kernel; the
value of C was tested in the range 10{−5,...,1}. The optimal value for the C meta-
parameter was determined by the technique called nested cross-validation [4]: for
the speakers of 22 folds in the training subset of the actual CV step, we performed
another cross-validation. We chose the C value that gave the highest AUC score
in this “inner” cross-validation loop; the “final” SVM model was then trained on
the data of 22 folds with this C value, and it was evaluated on the data of the last
fold (i.e. two speakers). With this procedure we sought to avoid the bias in our
scores that would have been present if we had used standard cross-validation.

To measure the robustness of the AUC scores, we repeated each classification
experiment five times, using a different random seed value when assigning the
speakers to specific folds for cross-validation. In the results, we report the mean
of the five AUC scores. When inspecting robustness, we calculate the standard
deviation (Std.) of the five AUC values, and report the range (i.e. [min,max]) of
the scores as well.

5 Results with the Embeddings of the Last Layers

Table 1 shows the results obtained for both speech tasks when we used the
embeddings from the last layers of the convolutional and the fine-tuned blocks.
In general, the results are acceptable, with AUC values lying between 0.654 and
0.824, and mean AUC scores between 0.707 and 0.806. Focusing on the mean

Table 1. AUC values obtained for the two speech tasks, when using the embeddings
from the last layers of the convolutional and the fine-tuned blocks. AUC is reported
as the average (Mean) of the five values measured with the five random speaker fold
assignments, along with the standard deviation (Std.) and the range ([ min, max ]).

Speech task Embedding type AUC

Mean Std. Range

Opinion
Convolutional 0.707 0.032 [ 0.654, 0.737 ]

Fine-tuned 0.736 0.025 [ 0.698, 0.763 ]

Narrative Recall
Convolutional 0.724 0.008 [ 0.712, 0.733 ]

Fine-tuned 0.806 0.014 [ 0.787, 0.824 ]



302 G. Gosztolya et al.

AUC values (averaged over the five classification runs, constructing the folds
from different speaker pairs), we can see that the embeddings taken from the
last layer of the fine-tuned block outperform those from the convolutional block.
Furthermore, the Opinion speech task was less effective for detecting multiple
sclerosis than the Narrative Recall task, since the mean AUC values were higher
for both embedding types. When inspecting the standard deviations and the
ranges of the AUC scores, we also see that the variance was definitely smaller for
the Narrative Recall speech task than for the Opinion task, suggesting a more
robust classification performance. Of course, as the main focus of our inves-
tigation is the embeddings taken from the inner fine-tuned layers, the values
presented in Table 1 serve only as reference values.

6 Results with the Embeddings of the Inner Layers

Fig. 2. Mean AUC values (bars) and the [min, max] range (error bars) obtained when
using the embeddings from the last layer of the convolutional block (Conv.), and when
using the hidden layers of the fine-tuned block, for the Opinion speech tasks.

Figure 2 shows the mean AUC values obtained for the Opinion speech task
for the last layer of the convolutional block (Conv) and for all the layers of
the fine-tuned block (1. . . 24). (Of course, the 24th layer is the last layer of the
fine-tuned block, i.e. that shown in Table 1) Quite surprisingly, the embeddings
taken from any inner layers (i.e. 1. . . 23) outperformed both those taken from the
convolutional layer and those taken from the last fine-tuned layer. The difference,
measured by the Mann-Whitney U test (see [23], also known as the Wilcoxon
rank-sum test), was statistically significant in almost all cases, with only three
exceptions (the embeddings of the 15th, 16th and the 23th layers relative to the
last layer of the fine-tuned block). In general, lower layers tend to work better
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Fig. 3. Mean AUC values (bars) and the [min, max] range (error bars) obtained when
using the embeddings from the last layer of the convolutional block (Conv.), and when
using the hidden layers of the fine-tuned block, for the Narrative Recall speech task.

than those in the higher regions of the fine-tuned block, and we measured the
highest mean AUC score with the 2nd layer.

We observe similar tendencies for the Narrative Recall task (see Fig. 3),
although here the last layer of the fine-tuned block was more competitive.
The inner layers outperformed the convolutional embeddings statistically sig-
nificantly in 20 cases (with the exception of the 16th, 18th and 22nd layers), but,
compared to the last fine-tuned layer, the improvement (if any) was statisti-
cally significant only in 6 cases (lying in the 1. . . 9 region). This suggests that
it is worth exploring the inner hidden layers of the fine-tuned block for feature
extraction, and that the lower hidden layers of this block might be more useful
than those higher up in the wav2vec 2.0 structure, at least for detecting multiple
sclerosis.

Table 2 shows the AUC values measured for some specific inner layers of the
fine-tuned block; * and ** indicate a significant difference, p < 0.05 and p < 0.01,
respectively, while “—” means there is no statistically significant improvement
compared to the reference values. Symbols before and after the slash symbol
(i.e. “/”) show the difference compared to the last layer of the convolutional
and the fine-tuned block, respectively. For the Opinion speech task, we obtained
the best results with the 2nd hidden layer (mean AUC value of 0.847), while
this was the 4th layer for the Narrative Recall task. Both variations brought
significant improvements over both reference values (with p < 0.01), with abso-
lute improvements of 0.111 and 0.060, Opinion and Narrative Recall speech
tasks, respectively. Inspecting the standard deviation and range values, we can
also see that classification models relying on the embeddings of these inner lay-
ers as features are somewhat more robust, having smaller standard deviation
scores. In particular, for the Narrative Recall speech task, when we used the
embeddings from the 4th hidden layer, the five AUC values fell into a narrow
range (0.866, 0.874).
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Table 2. Area Under the ROC Curve (AUC) values obtained for the two speech tasks,
when using the embeddings from specific fine-tuned layers. Here, * and ** indicate
a statistically significant difference (p < 0.05 and p < 0.01, respectively), while “—”
indicates there is no such difference.

Speech task Embedding type AUC

Mean Std. Range

Opinion

Fine-tuned (#2)**/** 0.847 0.018 [ 0.818, 0.866 ]

Fine-tuned (#4)**/** 0.800 0.023 [ 0.777, 0.826 ]

Fine-tuned (#6)**/** 0.802 0.019 [ 0.779, 0.824 ]

Fine-tuned (#8)**/** 0.818 0.008 [ 0.806, 0.826 ]

Last convolutional 0.707 0.032 [ 0.654, 0.737 ]

Last fine-tuned 0.736 0.025 [ 0.698, 0.763 ]

Narrative Recall

Fine-tuned (#2)**/— 0.808 0.022 [ 0.789, 0.838 ]

Fine-tuned (#4)**/** 0.868 0.004 [ 0.866, 0.874 ]

Fine-tuned (#6)**/** 0.860 0.016 [ 0.832, 0.872 ]

Fine-tuned (#8)**/— 0.821 0.010 [ 0.814, 0.838 ]

Last convolutional 0.724 0.008 [ 0.712, 0.733 ]

Last fine-tuned 0.806 0.014 [ 0.787, 0.824 ]

Lastly, Table 3 shows the mean, standard deviation and range of all the AUC
values obtained for the lower, middle and top one-third of the fine-tuned lay-
ers. (In this table the range property is calculated by taking the 5th and 95th

percentiles of the 40 AUC scores.) We can say that all three blocks significantly
outperformed the convolutional layer, which is not surprising—as it appears that
the convolutional embeddings are just too low-level to serve as a base for effective
multiple sclerosis detection. Regarding the comparison with the last layer of the
fine-tuned block, however, the lowest region of the fine-tuned block is the only
one that is sufficiently robust. Although for the Opinion speech task, all three
regions gave an improvement with a p < 0.01 significance level, for the Narrative
Recall speech task only the layers #1. . . #8 brought a significant improvement
(p = 0.0377). The middle region (layers #9. . . #16) were just on par with the
last hidden layer, while the topmost one-third of the fine-tuned layers actually
led to a significant decrease in the AUC values. This, in our opinion, suggests
that the embeddings from the lower layers are, in general, more suited for auto-
matic multiple sclerosis detection, but they still have to come from the fine-tuned
block, as embeddings from the convolutional block performed the worst of all
configurations tested for both speech tasks.
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Table 3. Area Under the ROC Curve (AUC) values obtained for the two speech tasks,
when using the embeddings from specific regions of fine-tuned layers. Here, * and **
indicate a statistically significant difference (p < 0.05 and p < 0.01, respectively), while
“—” indicates there is no such difference.

Speech task Embedding type AUC

Mean Std. Range

Opinion Fine-tuned (#1. . . #8)**/** 0.820 0.028 [ 0.778, 0.867 ]

Fine-tuned (#9. . . #16)**/** 0.783 0.022 [ 0.749, 0.827 ]

Fine-tuned (#17. . . #24)**/** 0.773 0.025 [ 0.729, 0.810 ]

Narrative Recall Fine-tuned (#1. . . #8)**/* 0.832 0.040 [ 0.740, 0.872 ]

Fine-tuned (#9. . . #16)**/— 0.798 0.026 [ 0.741, 0.828 ]

Fine-tuned (#17. . . #24)**/— 0.762 0.033 [ 0.719, 0.817 ]

7 Conclusion and Discussion

In this study we investigated whether multiple sclerosis could be automatically
detected from the speech of the subjects. For this, we built a workflow consisting
of a wav2vec 2.0 model for feature extraction and an SVM model for classifi-
cation. We used the speech recordings of 45 native Hungarian speakers (23 MS
patients of the relapsing-remitting subtype, and 22 healthy controls), performing
two spontaneous speech tasks. Besides using the last layers of the convolutional
and the fine-tuned blocks of the wav2vec 2.0 model, we experimented with the
other hidden layers of the fine-tuned block as potential sources of the embedding
vectors. We found that most inner layers were indeed more effective than the
final layers of the two blocks: we achieved statistically significant improvements
over the convolutional embeddings in 43 cases out of 46, while the last fine-tuned
layer was significantly outperformed in roughly half the cases (i.e. 26 times out of
46). Regarding tendencies, we found that the lower-lying hidden layers were more
effective for both speech tasks, indicating that lower-level information might be
more suitable for multiple sclerosis detection than high-level one, but the convo-
lutional layers alone cannot capture this information. The reason for this might
lie in the efficiency of transformers, which are present only in the fine-tuned
block.

Of course, the information stored by the independent layers is not mutually
exclusive. Therefore, it might be worth using the embedding vectors obtained
from different hidden layers in some way, as this combination might improve the
classification performance further. However, a fair validation of such combination
algorithms might require more subjects than our 45 (which, in other respects, is
a fair number of speakers in the pathological speech processing area). Still, we
aim to perform such combination experiments in the near future.
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18. Kiss, G., Tulics, M.G., Sztahó, D., Vicsi, K.: Language independent detection pos-
sibilities of depression by speech. In: Proceedings of NoLISP, pp. 103–114 (2016)

19. Klumpp, P., et al.: The phonetic footprint of Parkinson’s disease. Comput. Speech
Lang. 72, 101321 (2022)

20. Kodali, M., Kadiri, S.R., Alku, P.: Classification of vocal intensity category from
speech using the wav2vec2 and whisper embeddings. In: Proceedings of Interspeech,
pp. 4134–4138 (2023). https://doi.org/10.21437/Interspeech.2023-2038

21. Kondratenko, V., Karpov, N., Sokolov, A., Savushkin, N., Kutuzov, O., Minkin, F.:
Hybrid dataset for speech emotion recognition in Russian language. In: Proceedings
of Interspeech, pp. 4548–4552 (2023). https://doi.org/10.21437/Interspeech.2023-
311

22. Kumar, N., Nasir, M., Georgiou, P., Narayanan, S.S.: Robust multichannel gen-
der classification from speech in movie audio. In: Proceedings of Interspeech, San
Francisco, CA, USA, pp. 2233–2237 (2016)

23. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)

24. Mihajlik, P., Balog, A., Gráczi, T.E., Kohári, A., Tarján, B., Mády, K.: BEA-Base:
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