10. Gyakorlat
A kobj ect struktira

A VisiQuest-ben magunk is 1étrehozhatunk képfeldolgoz6 miiveleteket. A miiveleteknek altaldban
van egy vagy tobb inputja és van egy vagy tdbb outputja. A dobozok inputja és outputja egy kobject
struktdraban tarolédik el. A struktira ismeri az attributumokat és tarolja képi adatot is. Az adat
tulajdonképpen egy tobbdimenzids tomb. (A valésagban lehet, hogy egydimenzids vektorban van
emulalva, de kezelését tekintve tobbdimenzios.)

[T 110
i

Az adatstruktira rendelkezik szélességi (W), magassagi (H), mélységi (D), idébeli (T)
paraméterekkel, valamint egy extra dimenzioval (E), amit mondjuk szines képek vagy pedig
tobbdimenzids adatok taroldsara hasznalhatunk fel. Vegylink egy példat! Ha van egy kétdimenzids
képiink, akkor annak a szélessége és magassaga valamilyen pozitiv érték. Mivel kétdimenzios ezért
a mélysége 1, mivel all6kép, ezért az id6beli dimenzidja 1, és attél fiiggéen, hogy sziirkedrnyalatos
vagy szines képrdl van sz6,az extra dimenzié lehet 1 vagy 3.

A kobject struktira nem csak képeket tud tarolni, hanem barmilyen adatot, mondjuk fiiggvényeket’,
vagy gorbét is. Ekkor meg kell hatarozni, hogy mely dimenzidkat hasznaljuk. PI. fiiggvény esetében
hasznalhatjuk az id6t és az extra dimenziot. Nincs sziikség a masik harom dimenzié hasznalatara,
tehat azok értéke 1.

A Kkboj ect strukturat kezelo fiiggvények:

kobj ect in_object = NULL;
kobj ect out _object = NULL;

e in_object = kpds_open_i nput_obj ect (clui _i nfo->i _fil e): megnyitja az input file-t
és betolti az i n_obj ect objektumba.

e out_object = kpds_open_out put_obj ect (cl ui _i nfo->o_fil e): megnyitja az output
file-t és betolti az out _obj ect objektumba.

e kpds_cl ose_obj ect (kobject obj):lezarja az objektumot.

e kpds_create_val ue(kobject obj):minden kobject objektumnak rendelkeznie kell egy
value szegmenssel, ami az adatot tarolja. Ez a fliggvény iires objektumhoz hoz létre egy iires
value szegmenst.

e int kpds_copy_object(kobject from kobject to):egy objektumot atmasol egy
masikba, ekkor a két objektum minden attribiituma és szegmense megegyezik. A visszatérési
érték azt jelzi, hogy sikeriilt-e a masolas.

1 Példakat talaltok a http://www.cab.u-szeged.hu/local/doc/khoros/Tutorial/snippets1.html weboldalon.

http://www.cab.u-szeged.hu/local/doc/khoros/Tutorial/snippets1.html

e kpds_set_attribute(kobject obj, ATTRI BUTUM ERTEK(EK)): ezzel a fiiggvénnyel
allithato be egy adott kobject objektum valamely attribituma.
Attribitumok:
- KPDS_VALUE_DATA_TYPE: adattipus (KUBYTE, KUINT, KINT, ...)
- KPDS_VALUE_SIZE: az adat mérete (minden dimenzéban)
- KPDS_VALUE_POSITION: pozicionalas az adatban
- KPDS_HISTORY: a history string beéllitasa (a program végén)

e kpds_get_attribute(kobject obj, ATTRI BUTUM ERTEK(EK)): ezzel a fiiggvénnyel
kérdezhetd le egy adott kobject objektum valamely attributuma.

e kpds_get_data(kobject obj, ADAT_FLAG VALTQzO) :az ADAT_FLAG tipust adat
lekérése az VALTOZO-ba. A véltoz6 tipusanak meg kell egyeznie a Value szegmens
tipusaval!

e kpds_put_data(kobject obj, ADAT _FLAG VALTOzZO) :az ADAT_FLAG tipust adat
masolasa az VALTOZO-b6L. A véltozé tipusdnak meg kell egyeznie a Value szegmens
tipusaval!

Program készitése VisiQuest-ben:

Lassunk egy C nyelvii mintaprogramot, amely bemutatja, hogy hogyan is kell kezelni a kobject
objektumokat! FONTOS, hogy a VisiQuest mar eldallit egy programkodot, amit nekiink kell
kiegésziteniink.

int run_mythreshol d(voi d)

{
/*-- Put Your Code Here --*/

/* -main_variable_list */
char lib = "nythreshold_obj"; /* ez a kerror() fuggvényhez kell */

char rtn = "main"; /* ez a kerror() flggvényhez kell */

kobj ect in_object = NULL; /* input objektum inicializalva */

kobj ect out _object = NULL; /* output objektum inicializéalva */

unsi gned char *pl ane; [* tonmb az input adat szamara */

unsi gned char *res_pl ane; /* tonb az erednménykép szamara */

int w, h, d, t, e /* ezekbe a vél tozdékba kérdezzuk | e az attribdtunokat */
int cw, ch, ct, pos; /* segédval tozdok */

/* -main_variable_|ist_end */

/* -main_before_lib_call */
/* megnyitjuk az input fajlt és az adatot bemésoljuk az input struktaraba
le kell ellenérizni, hogy sikeriilt-e nmegnyitni a fajlt, és atméasolni a struktdréat,
kul 6nben ki kell |épni a progranbé
*/
if ((in_object = kpds_open_input_object(clui _info->i _file))
== KOBJECT_| NVALI D) {
kerror(lib, rtn, "Can not open input object %.\n", clui_info-> file);
kexi t (KEXI T_FAI LURE) ;
}

/* megnyitjuk az input f4jlt és az adatot bemésoljuk az input struktuaréaba
le kell ellenérizni, hogy sikertult-e negnyitni a fajlt, és atméasolni a struktdarat,
kil 6nben ki kel l 1épni a progranbél
*/
if ((out_object = kpds_open_out put_object(clui_info->o0_file))
== KOBJECT_I NVALI D) {
kerror(lib, rtn, "Can not open output object %.\n", clui_info->o0_file);
kexi t (KEXI T_FAI LURE)

}

/* atmésol juk az input képet az outputba, ezzel egydttal be is allitjuk m nden
szegnmensét és attri batunat
*/

if (!kpds_copy_object(in_object, out_object)) {
kerror(lib, rtn, "Can not copy input object to output object.\n");
kexi t (KEXI T_FAI LURE)

}

/* beallitjuk m ndkét objetum adattipusat UNSI GNED BYTE-ra */
kpds_set _attribute(in_object, KPDS_VALUE DATA TYPE, KUBYTE)
kpds_set _attri bute(out_object, KPDS_VALUE DATA TYPE, KUBYTE)

/* | ekérdezzik a valtozékba a néret attribltunokat */
kpds_get _attribute(in_object, KPDS VALUE SIZE, &w, &h, &d, &, &e)

/* | étrehozunk egy tonbdt a képi adat szamara. A tonb egydi nenzés | esz, nérete
negegyezi k a kép neretével

*/

pl ane = (unsigned char *)kmal | oc(w"h*si zeof (unsi gned char));

res_plane = (char *)knal | oc(wh*si zeof (unsi gned char));

if (!'plane || !'res_plane) {
kerror(lib, rtn, "Could not allocate nmenory for the inage\n");
kexi t (KEXI T_FAI LURE)

/* -main_before_lib_call_end */

/* -main_library_call */

/* 1tt kezdédi k a képfel dol gozé nivel et érdeni része. Végi ghal adunk a képen, és
kiszobol j ok a paranméterként (clui _info->threshold valtozé) negadott értékkel
Am ez alatti intenzitas, az O lesz, az e folottiek pedig 255 értéket kapnak
Most csak az altalunk |efoglalt nendria teril eten dol gozunk, nem mani pul al j uk
a kobj ect strukurak adatait.

*/

for (ct =0; ct <t; ct++) {

/* pozicional &s: a ct-edi k kép kezdépozici 6jara allunk és kimasoljuk a képi adatot a
segeédt 6mbbe

*/

kpds_set _attribute(in_object, KPDS VALUE PCSITION, O, 0, 0, ct, 0);

kpds_get _dat a(i n_obj ect, KPDS VALUE PLANE, (kaddr)pl ane)

knenset (res_pl ane, 0, w*h*sizeof(char)); /* kinullazzuk az erednény képet */

for (ch = 0; ch < h; ch++) {
for (cw=0; cw<w cwt) {
pos = ch*w + cw; /* Az adott pozicionak megfelel 6 tonb i ndexet

igy szanoljuk ki */
if (plane[pos] <= clui_info->threshold_int)
res_pl ane[pos] = (unsigned char)O0;
el se
res_pl ane[pos] = (unsigned char) 255;
}
}

/* beallitjuk a poziciét ugy, hogy a strukturan belidli nutaté a képi adat
ct-edi k képének kezdépozici dj ara nut asson és bemésoljuk erre a pozicioéra az
eredneény képet

*/

kpds_set _attribute(out_object, KPDS VALUE PCSITION, 0, 0, 0, ct, 0);

kpds_put _dat a(out _obj ect, KPDS_VALUE PLANE, (kaddr)res_pl ane);

[* -main_library_call_end */

/* -main_after_lib_call */
/* beallitjuk a history stringet (ezt mndig ugyanigy kell csinalni) */
if (!'kpds_set_attribute(out_object, KPDS_H STORY, kpds_history string())) {
kerror(lib,rtn,"Unable to set history on the destination object");
kexi t (KEXI T_FAl LURE) ;

}

/* felszabaditjuk a lefoglalt nenoriateril etet */
if (plane)

kfree(pl ane);
if (res_plane)

kfree(res_pl ane);

/* a program végén | ezarjuk az objektunokat, ezek a flggvények el végzi k a struktdran
bel Gl'i nendri af el szabditast is.
*/
kpds_cl ose_obj ect (i n_obj ect);
kpds_cl ose_obj ect (out _obj ect);
/* -main_after_lib_call _end */

return TRUE;

Feladatok:

1. Készitsd el egy sziirkearnyalatos kép inverzét! (Egészitsd ki a myinverse.c forrast!)
2. Transzponald a sziirkearnyalatos input képet! (Egészitsd ki a mytranspose.c forrast!)

A megoldasok az ora utan kertilnek fel a weboldalra.

