
12. Gyakorlat
Példaprogramok VisiQuest-ben

Hisztogramszéthúzás:

A hisztogram operátoroknál már esett szó arról, hogy hisztogram széthúzással javítjatjuk a kép
kontrasztját. A hisztogram széthúzás három lépésből áll:
– meghatározzuk a hisztogram szélességét
– eltoljuk a hisztogramot a 0-ba (hogy a bal széle a 0-ban legyen)
– transzfolmáljuk a hisztogramot 0-255 intenzitástartományba
Lássuk, hogyan is működik:

int run_myhistogramstretch(void)
{
 /*-- Put Your Code Here --*/

 /* -main_variable_list */
 char *lib = "myhistorgramstretch_obj";
 char *rtn = "main";
 kobject in_object = NULL;
 kobject out_object = NULL;
 unsigned char *plane;
 unsigned char *res_plane;
 int w, h, d, t, e;
 int cw, ch, ct, pos;
 int histw, min, max; /* segédváltozók a hisztogram szélésségének

 meghatározásához */

/* -main_variable_list_end */

/* -main_before_lib_call */
 if ((in_object = kpds_open_input_object(clui_info->i_file))
 == KOBJECT_INVALID) {
 kerror(lib, rtn, "Can not open input object %s.\n", clui_info->i_file);
 kexit(KEXIT_FAILURE);
 }
 if ((out_object = kpds_open_output_object(clui_info->o_file))
 == KOBJECT_INVALID) {
 kerror(lib, rtn, "Can not open output object %s.\n", clui_info->o_file);
 kexit(KEXIT_FAILURE);
 }
 if (!kpds_copy_object(in_object, out_object)) {
 kerror(lib, rtn, "Can not copy input object to output object.\n");
 kexit(KEXIT_FAILURE);
 }
 kpds_set_attribute(in_object, KPDS_VALUE_DATA_TYPE, KUBYTE);
 kpds_set_attribute(out_object, KPDS_VALUE_DATA_TYPE, KUBYTE);

 kpds_get_attribute(in_object, KPDS_VALUE_SIZE, &w, &h, &d, &t, &e);

 plane = (unsigned char *)kmalloc(w*h*sizeof(unsigned char));
 res_plane = (char *)kmalloc(w*h*sizeof(unsigned char));
 if (!plane || !res_plane) {
 kerror(lib, rtn, "Could not allocate memory for the image\n");
 kexit(KEXIT_FAILURE);
 }
/* -main_before_lib_call_end */

/* -main_library_call */
 for (ct = 0; ct < t; ct++) {

min = 255;
max = 0;

 kpds_set_attribute(in_object, KPDS_VALUE_POSITION, 0, 0, 0, ct, 0);
 kpds_get_data(in_object, KPDS_VALUE_PLANE, (kaddr)plane);
 kmemset(res_plane, 0, w*h*sizeof(char));

 /* meghatározzuk a hisztogram szélességét */
 for (ch = 0; ch < h; ch++) {
 for (cw = 0; cw < w; cw++) {
 pos = ch*w + cw;

if (min > plane[pos]) min = plane[pos];
if (max < plane[pos]) max = plane[pos];

 }
 }
 histw = max � min; /* a szélesség a maximum és minimum különbsége lesz */

 /* eltoljuk a hisztogramot a 0-ba */
 for (ch = 0; ch < h; ch++) {
 for (cw = 0; cw < w; cw++) {
 pos = ch*w + cw;

 res_plane[pos] = plane[pos] - min;

 }
 }

 /* transzformáljuk a hisztogramot 0-255 közé */
 for (ch = 0; ch < h; ch++) {
 for (cw = 0; cw < w; cw++) {
 pos = ch*w + cw;

 res_plane[pos] = res_plane[pos] * 255 / histw;

 }
 }

 kpds_set_attribute(out_object, KPDS_VALUE_POSITION, 0, 0, 0, ct, 0);
 kpds_put_data(out_object, KPDS_VALUE_PLANE, (kaddr)res_plane);
 }
/* -main_library_call_end */

/* -main_after_lib_call */
 if (!kpds_set_attribute(out_object, KPDS_HISTORY, kpds_history_string())) {
 kerror(lib,rtn,"Unable to set history on the destination object");
 kexit(KEXIT_FAILURE);
 }
 if (plane)
 kfree(plane);
 if (res_plane)
 kfree(res_plane);
 kpds_close_object(in_object);
 kpds_close_object(out_object);
/* -main_after_lib_call_end */
 return TRUE;
}

Laplacian of Gaussian Filter:

A szűrő képlete a következőképpen adható meg:

G x , y=
1

2
2
e
−
x2
 y2

22

Nincs más dolgunk, minthogy ezt beírjuk a kódba. A konstans értékeket előre ki lehet számolni. A
GUI-n lesz három paraméter, a kép szélessége és magassága, valamint a képletben szereplő σ érték.
Fontos megjegyezni, hogy a szűrőnek nincs inputja!!

int run_mylaplacianofgaussian(void)
{
 /*-- Put Your Code Here --*/

 /* -main_variable_list */

 char *lib = "mylaplacianofgaussian_obj";
 char *rtn = "main";

 kobject out_object = NULL;

 double *res_plane;
 int w, h, d, t, e;

 int cw, ch, ct, pos, cx, cy, x, y; /* x, y segédváltozó, cx, cy a kép közepe lesz */
 double sigma2; /* új változó: a szigma négyzete */
 double k; /* ebbe fogjuk letárolni a konstans értéket */

/* -main_variable_list_end */

/* -main_before_lib_call */

 /* nincs input kép, csak az output képet kell megnyitni */
 if ((out_object = kpds_open_output_object(clui_info->o_file))
 == KOBJECT_INVALID) {
 kerror(lib, rtn, "Can not open output object %s.\n", clui_info->o_file);
 kexit(KEXIT_FAILURE);
 }
 /* létre kell hozni a Value szegmenst */
 kpds_create_value(out_object);

 kpds_set_attribute(out_object, KPDS_VALUE_DATA_TYPE, KDOUBLE); /* az adattípus KDOUBLE lesz */

 /* itt állítjuk be a méret attribútumokat */
w = clui_info->width_int; /* a GUI-ból származik */
h = clui_info->height_int; /* a GUI-ból származik */
d = 1;
t = 1;
e = 1;

 kpds_set_attribute(out_object, KPDS_VALUE_SIZE, w, h, d, t, e);

cx = w / 2; /* a kép középső pixele */
cy = h / 2; /* a kép középső pixele */

 res_plane = (double *)kmalloc(w*h*sizeof(double));
 if (!res_plane) {
 kerror(lib, rtn, "Could not allocate memory for the image\n");
 kexit(KEXIT_FAILURE);
 }
/* -main_before_lib_call_end */

/* -main_library_call */

 sigma2 = clui_info->sigma_double * clui_info->sigma_double; /* a GUI-ból származik, négyzetet számolunk */
 k = 1.0 / sqrt(2.0 * 3.14 * sigma2) ; /* előre kiszámolható konstans érték */
 for (ct = 0; ct < t; ct++) {

 kmemset(res_plane, 0, w*h*sizeof(double));

 for (ch = 0; ch < h; ch++) {
 for (cw = 0; cw < w; cw++) {
 pos = ch*w + cw;

x = cw - cx;
y = ch - cy;

/* a kepletet beirom */
res_plane[pos] = k * exp(- (x * x + y * y) / (2.0 * sigma2));

 }
 }

 kpds_set_attribute(out_object, KPDS_VALUE_POSITION, 0, 0, 0, ct, 0);
 kpds_put_data(out_object, KPDS_VALUE_PLANE, (kaddr)res_plane);
 }
/* -main_library_call_end */

/* -main_after_lib_call */
 if (!kpds_set_attribute(out_object, KPDS_HISTORY, kpds_history_string())) {
 kerror(lib,rtn,"Unable to set history on the destination object");
 kexit(KEXIT_FAILURE);
 }
 if (res_plane)
 kfree(res_plane);

 kpds_close_object(out_object);
/* -main_after_lib_call_end */

 return TRUE;
}

Az eredmény:

