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« Data Is accumulated In data centers

» Costly storage and processi
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Motivation — ML Applications

* Personalized Queries

* Recommender Systems * »
* Document Clustering

« Spam Filtering b“] I ~ S

~ + Image Segmentation Q . gﬂ;}
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Gossip Learning

* ML is often an optimization problem
* Local data is not enough
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. Gossip Learning

2+ ML is often an optimization problem
: « Local data is not enough
: * Models are sent and updated on nodes
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Gossip Learning

* ML is often an optimization problem
* Local data is not enough

* Models are sent and updated on nodes
— Taking random wal E

e s T
— Updated instance-b ance 2 = Q%E/
— Data is never sent E/ -
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Gossip Learning

* ML is often an optimization problem
* Local data is not enough
* Models are sent and updated on nodes

- Taking random walksi g E/YS Q%E
&WSGD) D%E/
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— Updated instance-bysnstance |5
— Data Is never sent

~» Stochastic Gradient Des




SGD

* Objective function \
w = argman ZE (fuw(xi), yi) §||w||2
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SGD

* Objective function \
w = argmmJ ZE (fuw(xi), yi) §||w||2

Gradient method wi+1 = w — m(g—i)
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SGD

* Objective function \
w = argmmJ ZF (fuw(xi), yi) §||w||2

 Gradient method w1 =w; — m(g—i)
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= we— A~ VU fu(1). 92))
e SGD, data can be i=1

processed online W+t = we = ne(Aw + VI(fu (7). Y1)
(instance by instance)
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SGD

Objective function \
w = argmmJ ZF (fuw(xi), yi) §||w||2

Gradient method wi+1 = w — m(g—i)
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SGD, data can be
processed online W+t = we = ne(Aw + VI(fu (7). Y1)
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Gossip-Based Learning

« SGD-based machine learning algorithms can be
applied, e.g.
— Logistic Regression
— Support Vector Machines
— Perceptron
— Artificial Neural Networks

« Training data never leave the nodes

« Models can be used locally additional
communication is not required
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Boosting

« Boosting is achieved by online weak learning
* Online FilterBoost is proposed
« Results are competitive to AdaBoost method
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Handling Concept Drift

« Two adaptive learning mechanisms by
— Managing model age distribution
— Model performance monitoring

 Drift handling and detection capabillities
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SVD

« SGD based low-rank matrix approximation

1 1 Jn 7 k
J(X,Y) = §HA — XY} = 5 YN (ai; =Y xqyi)?
i=1j=1 [=1
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* A modification that converges to the SVD

Can be used for
— Recommender systems
— Dimension reduction

Sensitive data never leave the nodes as well
IEEE P2P’14 best paper
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Conclusion

* A possible way of machine learning on fully
distributed data was proposed

* A gossip-based framework was presented with
numerous learning algorithms
— Logistic regression, SVM, Perceptron, Boosting, SVD

« Concept drift handling capabilities were
iImproved as well
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Questions(Alberto Montresor)

What are the advantages of executing your approach not
In completely decentralized systems (like P2P networks),
but instead in a cluster of distributed machines. This
should be answered for all the proposed techniques.
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Questions (Attila Kiss) I.

In these algorithms, nodes exchange model parameters. While this is better
than sharing personal data, it is well-known that exchanging such information
can still leak some sensitive information about the data used to compute
these parameters/gradients. In machine learning, the most popular notion of
privacy is differential privacy, which gives strong probabilistic guarantees.
Differential privacy can be achieved by adding noise to various quantities:
either the data itself, the model updates, the objective function, or the output
(see e.qg. C. Dwork. Differential privacy: A survey of results. In Proceedings of
the 5th International Conference on Theory and Applications of Models of
Computation, pages 1-19, 2008.)Could the algorithms in the thesis be
extended merits and drawbacks in terms of convergence rate and
communication cost?
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Questions (Attila Kiss) Il.

The author assumes that the homogenous network graph reflects the
similarity between nodes (i.e., neighbors in the network graph have similar
objectives). However, in practical scenarios, nodes could be different, one
node can store larger or more reliable data than the other nodes,
communicates faster, has more computing capacity or providing more useful
information. This requires strategies to discover good peers and combining
this information with the algorithms in the thesis to obtain more efficient
decentralized protocols. What could be a good trade-off between exploration
and exploitation in peer discovery to improve decentralized learning?
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Questions (Attila Kiss) IlI.

What is the impact of the network topology on the convergence speed of the
algorithm in the thesis? How does this speed depend from the usual graph
parameters e.g. from clustering coefficient of the network in general or in
special cases?
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Questions (Attila Kiss) IV.

Could the author give negative cases, machine learning methods in the field
of classification, clustering or association rules, where gossip based approach
Is not applicable?
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