
Created by: Zoltán Richárd Jánki

Date: 14.04.2021

1

Apple Swift Course

Practice 9

Core Data:
- a framework that manages objects in the model layer of the application

- it gives a general and automatized solution for managing the lifecycle of objects and the object graphs

- persistence is implemented

- no SQL codes are needed

Creating an application with CoreData:
 - when creating a new project, put a tick in the box of ”Use Core Data” option

~ we get an extended project (extended AppDelegate.swift file and a new .xcdatamodeld file)

~ never use CoreData or Core Data as project name because the library that contains the
implementation of the CoreData framework uses the same name, and an import statement will be

ambiguous.

How to use CoreData:
 - CoreData lib must be imported
 import CoreData

 - create a data model for creating a database instance

 ~ open the ProjectName.xcdatamodeld file

 ~ create an entity (Add Entity button)

~ add the attributes to the Entity (+), set the type of attribute (Integer, String, etc.)
 - create an array for the objects in your source code (in order to manage object locally)
 var items = [NSManagedObject]()

~ the type is array of NSManagedObjects because the CoreData records use this type

Created by: Zoltán Richárd Jánki

Date: 14.04.2021

2

 - saving a record in database:
~ access the AppDelegate instance in order to create a context and access the objects and methods of

AppDelegate class
let appDelegate = UIApplication.shared.delegate as? AppDelegate

~ create a context – (it works as a sheet of paper that can be used to create and modify objects)
let managedContext = appDelegate.persistentContainer.viewContext

~ access the entity in the database
let entity = NSEntityDescription.entity(forEntityName:

”EntityName”, in: managedContext)!
~ create a database record object connected to the entity
let record = NSManagedObject(entity: entity, insertInto:

managedContext)

~ the values of record fields can be modified by using their name (e.g.: if the attribute name is

stringAttr and its type is string)

record.setValue(”someString”, forKeyPath: "stringAttr”)
~ save the context (this is the persistence)
do {

 try managedContext.save()

 items.append(record)

} catch let error as Error {

 print(error)

}

 - reading records from database:
~ access the AppDelegate instance in order to create a context and access the objects and methods of

AppDelegate class
let appDelegate = UIApplication.shared.delegate as? AppDelegate

~ create a context – (it works as a sheet of paper that can be used to create and modify objects)
let managedContext = appDelegate.persistentContainer.viewContext

~ create a Fetch request
let fetchRequest = NSFetchRequest<NSManagedObject>(entityName:

”entityName”)
~ do fetching and put the results into our local array (items)
do {

 items = try managedContext.fetch(fetchRequest)

} catch let error as Error {

 print(error)

}

 - deleting records from database:

~ access the AppDelegate instance in order to create a context and access the objects and methods of
AppDelegate class
let appDelegate = UIApplication.shared.delegate as? AppDelegate

~ create a context – (it works as a sheet of paper that can be used to create and modify objects)
let managedContext = appDelegate.persistentContainer.viewContext

~ if the concrete NSManagedObject is available that we want to delete, we can call the delete()

method immediately (e.g.: delete the 6th element from the list (indices start from 0!))
managedContext.delete(items[5])

~ do not forget to keep the array up-to-date
items.remove(at: 5)

~ save the context (this is the persistence)

Created by: Zoltán Richárd Jánki

Date: 14.04.2021

3

do {

 try managedContext.save()

} catch let error as Error {

 print(error)

}

