
T-Man: Gossip-based Fast Overlay Topology ConstructionI

Márk Jelasity∗

Research Group on AI, University of Szeged and HAS, PO Box 652, H-6701 Szeged, Hungary

Alberto Montresor

University of Trento, Italy

Ozalp Babaoglu

University of Bologna, Italy

Abstract

Large-scale overlay networks have become crucial ingredients of fully-decentralized applications and peer-to-peer

systems. Depending on the task at hand, overlay networks are organized into different topologies, such as rings, trees,

semantic and geographic proximity networks. We argue that the central role overlay networks play in decentralized

application development requires a more systematic study and effort towards understanding the possibilities and limits

of overlay network construction in its generality. Our contribution in this paper is a gossip protocol called T-MAN that

can build a wide range of overlay networks from scratch, relying only on minimal assumptions. The protocol is fast,

robust, and very simple. It is also highly configurable as the desired topology itself is a parameter in the form of a

ranking method that orders nodes according to preference for a base node to select them as neighbors. The paper

presents extensive empirical analysis of the protocol along with theoretical analysis of certain aspects of its behavior.

We also describe a practical application of T-MAN for building Chord distributed hash table overlays efficiently from

scratch.

Key words: gossip-based protocols, overlay networks, bootstrapping, self-organizing middleware

1. Introduction

Overlay networks have emerged as perhaps the

single-most important abstraction when implementing

a wide range of functions in large, fully decentralized

systems. The overlay network needs to be designed

appropriately to support the application at hand effi-

ciently. For example, application-level multicast might

need carefully controlled random networks or trees, de-

pending on the multicast approach [1, 2]. Similarly,

decentralized search applications benefit from special

IDOI: 10.1016/j.comnet.2009.03.013. In: Computer Networks,

53(13):2321–2339, 2009. This work was completed while the authors

were with the University of Bologna, Italy.
∗Corresponding author

Email addresses: jelasity@inf.u-szeged.hu (Márk

Jelasity), montreso@dit.unitn.it (Alberto Montresor),

babaoglu@cs.unibo.it (Ozalp Babaoglu)

URL: http://inf.u-szeged.hu/ jelasity/ (Márk

Jelasity)

overlay network structures such as random or scale-free

graphs[3, 4], superpeer networks [5], networks that are

organized based on proximity and/or capacity of the

nodes [6, 7], or distributed hash tables (DHT-s), for ex-

ample, [8, 9].

In current work, protocol designers typically assume

that a given network exists for a long period of time,

and only a relatively small proportion of nodes join

or leave concurrently. Furthermore, applications either

rely on their own idiosyncratic procedures for imple-

menting join and repair of the overlay network or they

simply let the network evolve in an emergent manner

based on external factors such as user behavior.

We believe that there is room and need for interesting

research contributions on at least two fronts. The first

concerns the question whether a single framework can

be used to develop flexible and configurable protocols

without sacrificing simplicity and performance to tackle

the plethora of overlay networks that have been pro-

Preprint submitted to Elsevier February 4, 2010

posed. The second front concerns scenarios in overlay

construction that are often overlooked, such as massive

joins and leaves, as well as quick and efficient bootstrap-

ping of a desired overlay from scratch or some initial

state. Current approaches either fail or are prohibitively

expensive in such scenarios. Combining results on these

two fronts would enable several interesting possibilities.

These include: (i) overlay network creation on demand,

(ii) deployment of temporary and adaptive decentralized

applications with custom overlay topologies that are de-

signed on-the-fly, (iii) federation or splitting of different

existing architectures [10].

In this paper we address both questions and present

an algorithm called (T-MAN) for creating a large class of

overlay networks from scratch. The algorithm is highly

configurable: the network to be created is defined com-

pactly by a ranking method. The ranking method for-

malizes the following idea: when shown a set of nodes,

we assume each node in the network is able to decide

which ones it likes from the set more and which ones

it likes less (we will later use this ability of nodes to

help them have neighbors they like as much as possi-

ble). In other words, each node can order any set of

nodes. Formally speaking, the ranking method is able to

order any set of nodes given a so called base node. By

defining an appropriate ranking method, we will be able

to build a wide variety of topologies, including sorted

rings, trees, toruses, clustering and proximity networks,

and even full-blown DHT networks, such as the CHORD

ring with fingers. T-MAN relies only on an underlying

peer sampling service [11] that creates an initial overlay

network with random links as the starting point.

The algorithm is gossip based: all nodes periodically

communicate with a randomly-selected neighbor and

exchange (bounded) neighborhood information in order

to improve the quality of their own neighbor set. This

approach, while requiring no more messages than the

heartbeats already present in proactive repair protocols,

is simple, and achieves fast and robust convergence as

we demonstrate.

In this paper we limit our study to the overlay con-

struction problem. Using T-MAN for overlay mainte-

nance is also possible [12] with performance and cost

that are not dramatically different from existing peri-

odic repair protocols currently used in most overlay net-

works. The originality and attractiveness of T-MAN as

a maintenance protocol lies in its generality and config-

urability. The main contribution of this paper is to show

that a single, generic gossip-based algorithm can create

many different overlay networks from scratch quickly

and efficiently.

Related Work.. Related work in bootstrapping include

the algorithm of Voulgaris and van Steen [13] who pro-

pose a method to jump-start PASTRY [9]. This proto-

col is specifically tailored to PASTRY and its message

complexity is significantly higher than that of T-MAN.

More recently, the bootstrapping problem has been ad-

dressed in other specific overlays [14, 15, 16]. These

algorithms, although reasonably efficient, are specific

to their target overlay networks.

An approach closer to T-MAN is VICINITY, described

in [17]. Although VICINITY was inspired by the ear-

liest version of T-MAN, it does contain notable origi-

nal components related to overlay maintenance, such as

churn management, and other techniques to boost per-

formance.

Finally, we mention related work that use gossip-

based probabilistic and lightweight algorithms. We

note that these algorithms are targeted neither at effi-

cient bootstrapping, nor at generic topology manage-

ment. Massoulié and Kermarrec [18] propose a protocol

to evolve a topology that reflects proximity. More recent

protocols applying similar principles include [19] and

[20]. Repair protocols used extensively in many DHT

overlays also belong to this category (e.g., [8, 21, 22]).

Contribution.. Our contribution with respect to related

work is threefold. First, we introduce a lightweight

probabilistic protocol that can construct a wide range

of overlay networks based on a compact and intuitive

representation: the ranking method. The protocol has

a small number of parameters, and relies on minimal

assumptions, such as nodes being able to obtain a ran-

dom sample from the network (the peer sampling ser-

vice). The protocol is an improved and simplified

version of earlier variants presented at various work-

shops [12, 23, 10]. Second, we develop novel insights

for the tradeoffs of parameter settings based on an anal-

ogy between T-MAN and epidemic broadcasts. We de-

scribe the dynamics of the protocol considering it as an

epidemic broadcast, restricted by certain factors defined

by the parameters and properties of the ranking method

(that is, the properties of the desired overlay network).

We also analyze storage complexity. Third, we present

novel algorithmic techniques for initiating and terminat-

ing the protocol execution. We describe how to con-

struct the CHORD overlay as a practical application of T-

MAN. We present extensive simulation results that sup-

port the efficiency and reliability of T-MAN.

Road map.. Sections 2 and 3 present the system model

and the overlay construction problem. Section 4 de-

scribes the T-MAN protocol. In Section 5 we present

2

theoretical and experimental results to characterize key

properties of the protocol and to give guidelines on pa-

rameter settings. Section 6 presents practical extensions

to the protocol related to bootstrapping and termination,

and extensive experimental results are also given to ex-

amine the behavior of the protocol in different failure

scenarios. Section 7 presents a practical application: the

creation of the CHORD overlay network [8]. Section 8

concludes the paper.

2. System Model

We consider a set of nodes connected through a

routed network. Each node has an address that is nec-

essary and sufficient for sending it a message. Further-

more, all nodes have a profile containing any additional

information about the node that is relevant for the def-

inition of an overlay network. Node ID, geographical

location, available resources, etc. are all examples of

profile information. The address and the profile together

form the node descriptor. At times, we will use “node

descriptor” and “node” interchangeably if this does not

cause confusion.

The network is highly dynamic; new nodes may join

at any time and existing nodes may leave, either vol-

untarily or by crashing. Our approach does not require

any mechanism specific to leaves: spontaneous crashes

and voluntary leaves are treated uniformly. Thus, in

the following, we limit our discussion to node crashes.

Byzantine failures, with nodes behaving arbitrarily, are

excluded from the present discussion.

We assume that nodes are connected through an ex-

isting routed network, where every node can potentially

communicate with every other node. To actually com-

municate, a node has to know the address of the other

node. This is achieved by maintaining a partial view

(view for short) at each node that contains a set of node

descriptors. Views can be interpreted as sets of edges

between nodes, naturally defining a directed graph over

the nodes that determines the topology of an overlay

network.

Communication incurs unpredictable delays and may

be subject to failures. Single messages could lost, links

between pairs of nodes may break. Nodes have access

to local clocks that can measure the passage of real time

with reasonable accuracy, that is, with small short-term

drift. Local clocks are not required to be synchronized.

Finally, we assume that all nodes have access to the

peer sampling service [11] that returns random sam-

ples from the set of nodes in question. From a theo-

retical point of view we will assume that these samples

are indeed random. From a practical point of view, re-

sults in [11] as well as our own experimental results in

this paper indicate that the peer sampling service indeed

has suitable realistic implementations that provide high

quality samples at a low cost.

3. The Overlay Construction Problem

Intuitively, we are interested in constructing some de-

sirable overlay network, possibly from scratch, by fill-

ing the views at all nodes with descriptors of the appro-

priate neighbors. For example, we might want to or-

ganize the nodes into a ring where the nodes appear in

increasing order based on their ID. Or we might want to

construct a proximity network, where the neighbors of

a node are those that are closest to it according to some

metric.

We allow for arbitrary initial content of the views of

the nodes in this problem definition (including empty

views), noting that, as mentioned in our system model,

nodes have access to random samples from the network,

so they have access to at least random nodes from the

network. In other words, starting from any arbitrary

network, we want to fill the node views with the ap-

propriate neighbors as fast as possible at a reasonable

cost.

In order to have a well defined problem, we need to

specify how the desired overlay is represented as an in-

put to the protocol. The representation must be com-

pact, intuitive, yet descriptive enough to capture the

widest possible range of topologies.

Our proposal for the representing the desired overlay

is the ranking method. As explained before, the rank-

ing method sorts a set of nodes (potential neighbors)

according to the “taste” of a given base node. More

formally, the input of the problem is a set of N nodes,

the target view size K (bounded by N) and a ranking

method RANK. The ranking method takes as parameters

the base node x and a set of nodes {y1, . . . , y j}, j ≤ N,

and outputs an ordered list of these j nodes. All nodes

in the network apply the same ranking method, which

they are assumed to know a priori. Throughout the pa-

per, we will analyze and test only ranking methods that

are based on a partial ordering of the given set, and that

return some total ordering consistent with this partial

ordering (note however, that this is not an inherent re-

striction). Accordingly, we allow for an element of un-

certainty (if there can be many total orderings consistent

with the partial ordering we pick a random one).

A target graph that we wish to construct is defined by

the ranking method. We present the definition of a tar-

get graph in a constructive way, through the following

3

(inefficient) approach, for illustration. In this approach,

each node disseminates its descriptor to all other nodes

such that eventually, every node has collected locally

the descriptor of every node in the network. At this

point, each node sorts this set of descriptors according

to the ranking method and picks the first K elements to

be its neighbors. The resulting structure is called a tar-

get graph. Note that in this manner we define a graph,

and not only a topology, because in addition to know-

ing the structure of the network, such as a ring, we also

know the exact location of each node in the structure.

A practical solution to the overlay construction prob-

lem has to significantly reduce both the communication

cost (which is at least linear in N for each node) and the

storage cost (which is also linear in N for each node) of

the full dissemination approach outlined above in build-

ing the target graph. The T-MAN protocol described in

the next section does precisely this.

Although representing the target graph through the

ranking method and parameter K clearly restricts the

scope of the algorithm, through the examples presented

here and in the rest of this paper we will see that a wide

range of interesting applications are covered. One (but

not the only!) way of actually defining useful ranking

methods is through a distance function that defines a

metric space over the set of nodes. The ranking method

can simply return an ordering of the given set according

to non-decreasing distance from the base node.

To clarify the notions of ranking method and target

graphs, let us consider a few simple examples, where

K = 2 and the profile of a node is a real number in the in-

terval [0, M[. We can define a ranking method based on

the one-dimensional distance function between nodes a

and b as d(a, b) = |a − b|, or alternatively, d(a, b) =

min(M− |a−b|, |a−b|) to obtain a circular structure. As

illustrated in Figure 1(a), if the node profiles are more-

or-less uniformly distributed over the interval [0, M[,

the resulting target graph will be a connected line (or

ring). If the node profiles are not evenly distributed over

[0, M[but are clustered, the same ranking method will

result in a target graph that consist of disconnected clus-

ters (Figure 1(b)).

It is important to note that there are target graphs of

practical interest that cannot be defined through a global

distance function. This is the main reason for using

ranking methods, as opposed to relying exclusively on

the notion of distance; the ranking method is a more

general concept than distance. This fact will become

important in Section 7 (practical application example),

where it is necessary to be able to build, for example,

a ring, even in the case of uneven node descriptor dis-

tributions when distance-based ranking methods would

1: loop

2: wait(∆)

3: p← selectPeer(ψ, rank(myDescriptor, view))

4: buffer← merge(view, {myDescriptor})

5: buffer← rank(p, buffer)

6: send first m entries of buffer to p

7: receive bufferp from p

8: view← merge(bufferp, view)
(a) active thread

1: loop

2: receive bufferq from q

3: buffer← merge(view, {myDescriptor})

4: buffer← rank(q, buffer)

5: send first m entries of buffer to q

6: view← merge(bufferq, view)
(b) passive thread

Figure 2: The T-MAN protocol.

define clustered target graphs (as in Figure 1(b)). Fig-

ure 1(c) illustrates how a direction-dependent ranking

can be used to avoid clustering in the target graph. Here,

the output of the ranking method RANK(x, {y1, . . . , y j}) is

defined as follows. We first construct a sorted ring out

of the set of input profiles y1, . . . , y j and the base node x.

We then assign a rank value to each node defined as the

minimal hop count to the node from x in this ring. The

output of the ranking method is a list of the input pro-

files ordered according to this rank value. In this man-

ner, the first 2α positions in the ranking contain α nodes

preceeding x and α nodes following x in the sorted ring;

hence the name “direction-dependent”

4. The T-MAN Protocol

As mentioned earlier, the T-MAN protocol is based on

a gossiping scheme, in which all nodes periodically ex-

change node descriptors with peer nodes, thereby con-

stantly improving the set of nodes they know — their

partial views.

Each node executes the protocol in Figure 2. Any

given view contains the descriptors of a set of nodes.

Method MERGE is a set operation in the sense that it

keeps at most one descriptor for each node. Parameter

m denotes the message size as measured in the number

of node descriptors that the message can hold. Method

SELECTPEER selects a random sample among the first ψ

entries in the ordered list given as its second parameter.

In this section we do not specify how node views are

initialized. In the rest of the paper, we always describe

the particular node view initialization procedure that

4

(b) (c)(a)

Figure 1: Target graphs for different ranking methods and K = 2. (a) One-dimensional distance-based, circular ranking method applied to a set

of uniform node profiles; (b) same ranking method as before but with a different set of node profiles that are clustered; (c) direction-dependent

ranking method achieves sorting even for clustered node profiles.

we assume. These procedures include random initial-

ization for the purposes of theoretical analysis in Sec-

tion 5 and practical solutions based on various broad-

casting schemes and realistic random peer sampling in

Section 6.

We note that the protocol does not place a limit on

the view size. This is done in order to decrease the

number of parameters, thereby simplifying the presen-

tation. One might expect that lack of a limit on view size

might present scalability problems due to views grow-

ing too large. As we will show in Section 5, however,

the storage complexity of nodes due to views grows only

logarithmically as a function of the network size. Fur-

thermore, preliminary experiments for the applications

we consider show that imposing a comfortable limit on

view sizes (larger than both m and K) does not result

in any observable decrease in performance. This sug-

gests that the simplification of ignoring view size limits

is justified and is not critical for these applications.

Although the protocol is not round based at the global

level, it is often convenient to refer to cycles of the pro-

tocol execution in the network. We define a cycle to be

an interval of ∆ time units where ∆ is another parameter

of the protocol in Figure 2.

Figure 3 illustrates the results of T-MAN for con-

structing a small torus (visualizations were obtained us-

ing [24]). For this example, it is clear that only a few cy-

cles are sufficient for convergence, and the target graph

is already evident even after the first few cycles. In the

next sections we will show that this rapid convergence

is not unique to the torus example but that T-MAN per-

forms well in a wide range of settings and that it is scal-

able, very similarly to epidemic broadcast protocols.

In Table 1 we summarize the parameters of the pro-

tocol. Note that K (target view size) is not a parameter

of the protocol but is part of the target graph characteri-

zation. As such, it controls the size of the target graph,

and consequently, affects the running time of the proto-

col. For example, if we increase K while keeping the

ranking method fixed, then the protocol will take longer

to converge since it has to find a larger number of links.

In fact, K could be omitted if the target graph was de-

fined in some other, more complex manner.

RANK() Ranking method: determines the prefer-

ence of nodes as neighbors of a base node

∆ Cycle length: sets the speed of conver-

gence but also the communication cost

ψ Peer sampling parameter: peers are se-

lected from the ψ most preferred known

neighbors

m Message size: maximum number of node

descriptors that can be sent in a single mes-

sage

Table 1: Parameters of the T-MAN protocol.

5. Key Properties of the Protocol

In this section we study the behavior of our protocol

as a function of its parameters, in particular, m (mes-

sage size), ψ (peer sampling parameter) and the rank-

ing method RANK. Based on our findings, we will ex-

tend the basic version of the peer selection algorithm

with a simple “tabu-list” technique as described below.

Furthermore, we analyze the storage complexity of the

protocol and conclude that on the average, nodes need

O(log N) storage space where N is the network size.

5

after 2 cycles after 3 cycles after 4 cycles after 7 cycles

Figure 3: Illustration of constructing a torus over 50 × 50 = 2500 nodes, starting from a uniform random graph with initial views containing 20

random entries and the parameter values m = 20, ψ = 10, K = 4.

To be able to conduct controlled experiments with

T-MAN on different ranking methods, we first select a

graph instead of a ranking method, and subsequently

“reverse-engineer” an appropriate ranking method from

this graph by defining the ranking to be the ordering

consistent with the minimal path length from the base

node in the selected graph. We will call this selected

graph the ranking graph, to emphasize its direct rela-

tionship with the ranking method.

Note that the target graph is defined by parameter K,

so the target graph is identical to the ranking graph only

if the ranking graph is K-regular. However, for conve-

nience, in this section we will not rely on K because

we either focus on the dynamics of convergence (as op-

posed to convergence time), which is independent of K,

or we study the discovery of neighbors in the ranking

graph directly.

In order to focus on the effects of parameters, in this

section we assume a greatly simplified system model

where the protocol is initiated at the same time at all

nodes, where there are no failures, and where mes-

sages are delivered instantly. While these assumptions

are clearly unrealistic, in Section 6 we show through

event-based simulations that the protocol is extremely

robust to failures, asynchrony and message delays even

in more realistic settings.

5.1. Analogy with the Anti-Entropy Epidemic Protocol

In Section 3 we used an (unspecified) dissemination

approach to define the overlay construction problem.

Here we would like to elaborate on this idea further.

Indeed, the anti-entropy epidemic protocol, one imple-

mentation of such a dissemination approach, can be

seen as a special case of T-MAN, where the message size

m is unlimited (i.e., m ≥ N such that every possible node

descriptor can be sent in a single message) and peer se-

lection is uniform random from the entire network. In

this case, independent of the ranking method, all node

descriptors that are present in the initial views will be

disseminated to all nodes. Furthermore, it is known that

full convergence is reached in less than logarithmic time

in expectation [25].

For this reason, the anti-entropy epidemic protocol is

important also as a base case protocol when evaluating

the performance of T-MAN, where the goal is to achieve

similar convergence speed to anti-entropy, but with the

constraint that communication is limited to exchanging

a constant amount of information in each round. Due

to the communication constraint, performance will no

longer be independent of the ranking method.

5.2. Parameter Setting for Symmetric Target Graphs

We define a symmetric target graph to be one where

all nodes are interchangeable. In other words, all nodes

have identical roles from a topological point of view.

Such graphs are very common in the literature of over-

lay networks. The behavior of T-MAN is more easily

understood on symmetric graphs, because focusing on a

typical (average) node gives a good characterization of

the entire system.

We will focus on two ranking graphs, both undi-

rected: the ring and a k-out random graph, where k

random out-links are assigned to all nodes and subse-

quently the directionality of the links is dropped. We

choose these two graphs to study two extreme cases for

the network diameter. The diameter (longest minimal

path) of the ring is O(N) while that of the random graph

is O(log N) with high probability.

Let us examine the differences between realistic pa-

rameter settings and the anti-entropy epidemic dissemi-

nation scenario described above. First, assume that the

message size m is a small constant rather than being un-

limited. In this case, the random peer selection algo-

rithm is no longer appropriate: if a node i contacts peer

j that ranks low with i as the base node, then i cannot

expect to learn new useful links from j because now

6

(due to the small m) node j has a strong bias in its view

towards nodes that rank high with j as a base node.

On the other hand, if a node i selects peers that rank

too high with i as the base node, then convergence might

slow down as well. The reason for this is that con-

secutive peers returned by the peer selection method

will more often get repeated; in part because a node

i is more likely to select a peer to communicate with

that selected i shortly before, and in part because there

are simply fewer nodes that are “close” to any given

node than nodes that are far from it. This in turn re-

sults in increased correlation between the partial views

of communicating partners, so the epidemic process is

not maximally efficient.

Figure 4 illustrates this tradeoff using two ranking

graphs: the ring and a random graph. The latter is gen-

erated by first constructing a 2-out directed regular ran-

dom graph by selecting two random out-edges for each

node, and subsequently taking the undirected version of

this graph. The average degree of a node is thus 4, with a

small variance. The basic version in Figure 4(a) applies

the peer selection algorithm which picks a random peer

from the highest ranking ψ nodes from the view, as de-

scribed earlier. The pointψ = N and m = N corresponds

to an anti-entropy epidemic dissemination (i.e., peer se-

lection is unbiased and there are no limits on message

size) which is optimal.

As predicted, with no limits on the message size

(m = N), we can observe the effect due to the lack

of randomness if the selected peer ranks too high (ψ is

small). Furthermore, for large ψ performance again de-

grades when we place a limit on the message size since

the correlation between communicating peers’ ranking

of the same set of nodes is reduced. This effect is less

pronounced for larger m because now we might obtain

useful information by chance even if there is little cor-

relation between the rankings.

To verify our explanation as to why performance de-

grades with decreasing ψ, we apply a tabu list at all

nodes in order to avoid contacting the same peers over

and over again. The tabu list contains a fixed number

of peers that a given node communicated with most re-

cently. The node then does not initiate connection with

any nodes in its tabu list. We experimented with a tabu

list size of 4. This mechanism does not add any com-

munication overhead since it simply records the last 4

communications, but it is rather effective in reducing

the negative effects of small ψ values as Figure 4(b) il-

lustrates.

We can draw several other conclusions from the re-

sults in Figure 4. First, the tabu list slightly improves

even the performance of anti-entropy epidemic dissemi-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100 1000 10000

N
u
m

b
er

 o
f

co
n
ta

ct
s

Node Profile

average contacts
empirical standard deviation

Figure 5: Number of contacts made by nodes while constructing a

binary tree. Statistics are over 30 independent runs. The parameters

are N = 10000, m = 20, number of cycles is 15, ψ = 10 and the tabu

list size is 4. In the ranking graph, the root is node 0 and the out-links

of node i are 2i + 1 and 2i + 2.

nation with completely random peer selection (m = ψ =

N). This is due to the fact that initially views contain

only few nodes (to be precise, five, in this case). With-

out a tabu list, this significantly increases the chance of

contacting the same peers in the first few cycles, while

the views are still small. Such communications are not

effective in advancing dissemination due to the corre-

lated views of the communicating peers. Also note that

when there is no limit on message size, the random

graph outperforms the ring, especially when the tabu

list is applied. This is due to the fact that the number

of neighbors of a node in the random graph increases

exponentially, so even for a small set of closest nodes,

diversity is very high.

Finally, we note that the exponentially increasing

neighborhood becomes a disadvantage when ψ is larger,

because the view of peers that are further away from

the base node in the ranking graph will be more uncor-

related to the view of the original peer. This suggests

that for such graphs, peer selection should be aggres-

sive (ψ = 1) and should be combined with the use of

tabu lists.

5.3. Notes on Asymmetric Target Graphs

The topological role of nodes in asymmetric target

graphs is not identical. For example, some nodes can

be more central or more connected than others, there

can be bridge nodes connecting isolated clusters, and so

on. While symmetric graphs already exhibit complex

behavior, we argue that asymmetric graphs cannot be

treated reasonably in a common framework. Each case

7

 3.5

 4

 4.5

 5

 5.5

 6

 1 10 100 1000 10000

cy
cl

es

ψ

m=10

m=20

m=2000

4-out Random
Ring

(a) Basic T-Man protocol

 3.5

 4

 4.5

 5

 5.5

 6

 1 10 100 1000 10000

cy
cl

es

ψ

m=10

m=20

m=2000

4-out Random
Ring

(b) T-Man with Tabu List

Figure 4: Time to collect 50% of the neighbors at distance one in the ranking graph. Network size is N = 2000. Node views are initialized to

contain 5 random links each. Graph (b) was obtained using a tabu list of size 4.

needs a separate analysis that needs to take into account

the particular structure of the graph.

To understand the problem better, consider a rank-

ing method that is independent of the base node. This

ranking method will induce a star-like structure since

all nodes will be attracted to the very same high rank-

ing nodes. In this case, more and more nodes will con-

tact the nodes that rank high in the (in this case, com-

mon) ranking. As a result, convergence speeds up enor-

mously, at the cost of a higher load on the central nodes.

The reason is simple: the central nodes can collect the

high ranking descriptors faster because they are con-

tacted by many nodes. Due to their central position,

they also distribute them very rapidly. One can even ex-

ploit this effect. For example, if the goal is to build a

super-peer topology, with the high bandwidth nodes in

the center, then the central nodes might actually be able

to deal with the extra load, thus resulting in an efficient,

but still fully self-organizing solution.

This effect can be observed in other interesting

topologies as well. For example, rooted regular trees,

where the non-leaf nodes have k out-links and one in-

link, except the root, that has no in-links. If the ranking

graph has such a topology, the resulting target graph will

be asymmetric with highly nonuniform average traffic at

nodes, as shown in Figure 5. One reason for this result

is that a large proportion of the nodes are leaves. Leaf

nodes, having only one neighbor, will have a tendency

to talk to nodes that are further up in the hierarchy. This

adds extra load on internal nodes and puts them in a

more central position.

This in turn has a non-trivial effect on the conver-

gence of the protocol, and allows T-MAN to have better

performance for trees than for symmetric graphs. Fig-

ure 6 illustrates this effect. In Figure 6(a), we can ob-

serve the performance of T-MAN for a rooted and bal-

anced binary tree as a ranking graph. We can see that

there is a peculiar minimum when message size is un-

limited but ψ is small. In this region, the binary tree

consistently outperforms the ring, even for a small m.

This effect is due to the asymmetry of a binary tree.

To show this, we ran T-MAN with an additional balanc-

ing technique, to cancel out the effect of central nodes.

In this technique, we limit the number of times any node

can communicate (actively or passively) in each cycle to

two. In addition, nodes also apply hunting [25], that is,

when a node contacts a peer, and the peer refuses the

connection due to having exceeded its quota, the node

immediately contacts another peer until the peer accepts

connection, or the node runs out of potential contacts.

The results are shown in Figure 6(b). In the region of

practical settings of ψ and m, the advantage of the bi-

nary tree disappears, while the ring preserves the same

performance.

More detailed analysis reveals that in the initial cy-

cles, nodes that are close to the root play a bootstrap

function and communicate more than the rest of the

nodes. After that, as the overlay network is taking

shape, nodes that are further down the hierarchy take

over the management of their local region, and so on.

This is a rather complex behavior, that is emergent (not

planned), but nevertheless beneficial. This also suggests

that if the target graph is not symmetric, then extra atten-

tion is needed when explaining the behavior of T-MAN.

8

 3.5

 4

 4.5

 5

 5.5

 6

 1 10 100 1000 10000

cy
cl

es

ψ

m=10

m=20

m=2000

Binary Tree
Ring

(a) T-Man with Tabu List

 3.5

 4

 4.5

 5

 5.5

 6

 1 10 100 1000 10000

cy
cl

es

ψ

m=10

m=20

m=2000

Binary Tree
Ring

(b) T-Man with Tabu List and Balancing

Figure 6: Time to collect 50% of the neighbors at distance one in the ranking graph. The network size is N = 2000. Node views are initialized by

5 random links each. The tabu list size is 4.

5.4. Storage Complexity Analysis

We derive an approximation for the storage space that

is needed for maintaining views by the nodes (recall that

there is no hard limit enforced by the protocol). This

approximation is based on a number of simplifying as-

sumptions that convert the problem into a model of dis-

seminating news items, where only the most interest-

ing news items can spread due to limited message size.

Subsequently, we present experimental validation of the

approximation using T-MAN on different realistic target

graphs.

5.4.1. The News Spreading Model

To derive the approximation, we assume that the

ranking method is independent of the base node, that

is, all nodes rank a given set of node descriptors the

same way. The rational for this assumption is the fol-

lowing. One conclusion of previous sections was that

the success of T-MAN crucially depends on the fact that

whenever a node i selects a peer j using SELECTPEER,

the ranking of the current neighbors of i with node j

as a base node is similar to the ranking with node i as

a base node, because this way node j can provide rel-

evant node descriptors to node i. Assuming that the

ranking does not depend on the base node means that

any selected node j is guaranteed to produce an identi-

cal ranking to node i, which is the ideal case for T-MAN,

and this case is approximated well on all graphs where

T-MAN has good performance.

This assumption, however, introduces a side-effect:

it implies that the target graph is a star-like structure,

with the m highest ranking nodes forming a clique, and

all the other nodes pointing to these m nodes. This

level of asymmetry is highly non-typical and therefore

is an unrealistic scenario for T-MAN. To “fix” this side-

effect, we assume that SELECTPEER returns a random

node from the entire network, which makes the role of

all nodes identical.

In this setting, node descriptors have no relation to

actual nodes anymore (that is, the node addresses in

the descriptors are never used), so we can think of the

model as spreading news items that have a natural rank-

ing based on “interestingness”.

Let n(j) denote the number of nodes in the network

that know about the news item of rank j. The notation

n(j, t) allows us to express the time dependence of the

same value. We start by showing that n(j, t) = Nm/ j

if j > m for a large enough t. The main idea is based

on the observation that, due to symmetry, n(j, t) grows

according to the same curve for all j, but only until the

overall number of items in the node’s view grows too

large and the item with rank j no longer makes it into

the exchanged messages (and therefore its replication

stops). At that point n(j, t) assumes its final value.

To allow for an approximation of the average storage

cost, we model the representation of each news item as

a single continuous variable, that is, we assume that all

nodes store exactly 0 ≤ n(j, t)/N ≤ 1 instances of the

news item of rank j. Under this assumption we can say

that the function n(j, t) stops growing when higher rank-

ing items already fill all the available m slots in the mes-

sages, since from that point, the news item of rank j will

be excluded from all communication:

j∑
k=1

n(k, t∗) = Nm, (1)

9

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

n
(

j)

j

N=10000, m=20

N=100000, m=40

observed
predicted

Figure 7: Experimental results and values predicted by Equation (2)

for n(j) with two sets of parameters N = 10000,m = 20 and N =

100000,m = 40. For each j, the converged value of n(j) is indicated

as a separate point. The observed values correspond exactly to the

predicted one for the initial constant section, and are covered by the

line segment on the graph.

where t∗ denotes the point in time when this equation

holds for the first time. Since n(j, t) never decreases,

we have n(j, t) = n(j, t∗) for t ≥ t∗. We know that the

functions n(k, t) grow at exactly the same rate for all k,

so we can simplify the expressions as jn(j, t∗) = Nm,

that is,

n(j, t) =
Nm

j
, t ≥ t∗. (2)

This proves the result. Figure 7 compares the theoret-

ical prediction and the converged distribution obtained

experimentally via simulation.

Equation (2) allows us to approximate the actual stor-

age space that is required for the views of the nodes.

We focus only on the items that rank lower than m. The

highest ranking m items represent a small constant fac-

tor. The sum of all entries with a rank higher than m

stored in the system is

N∑
j=m

Nm

j
≈

∫ N

m

Nm

j
d j = Nm(ln N − ln m) =

Nm ln
N

m
= O(N log N). (3)

Therefore each view stores O(log N) entries on the av-

erage. Note that this result is independent of the number

of iterations executed, and it is also independent of the

actual form of the functions n(j, t); recall that the only

assumption we made was that these functions are mono-

tonically increasing.

Finally, we note that Nm/ j = Nm j−1 is technically a

power law distribution, as it follows the form j−γ. Power

laws are very frequently observed in complex evolv-

ing networks [26]. The phenomenon is often due to

some form of “the rich get richer” effect. One can link

our results to the study of other complex networks, for

example, social networks. All nodes start with a ran-

dom constant-size set of news items, and they gossip

always only the m most interesting ones that they cur-

rently know. This dynamics results in a power law dis-

tribution of news items, with the most interesting news

being known to everyone. Furthermore, each participant

learns only about O(log N) news items from the overall

O(N) news items available.

5.4.2. Empirical Validation

We verify experimentally that the prediction in (2)

holds for T-MAN when different ranking methods are

employed. This would support as a consequence the

claim that Equation (3) characterizes the storage com-

plexity of the protocol.

We need to generalize n(j) since ranking can now de-

pend on the base node. Let n(j) be the number of nodes

that know about the node with rank j according to their

own ranking of the entire network. Figure 8 shows the

values of n(j) for three ranking graphs at three different

times. Although the experiments reported in Figure 8

were performed without a tabu list, further experiments

(not shown) show that tabu lists have no observable ef-

fect on the distribution of ranks in the views. They only

speed up convergence of the protocol as discussed ear-

lier.

In Figure 8 we can observe that the ring fulfills the

assumptions of Section 5.4.1 best: the n(j) values that

have not stopped growing have the same value at each

time point, which means they indeed grow at the same

rate. The largest deviation can be observed in the case of

the random graph. There, the growth of the n(j) values

slows down smoothly which implies that the assumption

they grow at the same rate does not hold. This results

in a slight “overshoot” where the observed values are

slightly higher than those predicted.

Note that in the case of the binary tree, the predicted

values match closely the observed ones even though the

topology is not symmetric. This further underlines the

robustness of the prediction. In other words, the seem-

ingly strong assumptions of the theory in fact leave the

essential dynamics almost unchanged, which indicates

that we could understand important features of the pro-

tocol. Of course, the more central nodes need more

storage capacity, the prediction holds only on average.

However, in our preliminary experiments (not shown),

we have seen that setting a reasonable hard limit on the

view size that is significantly larger than m (for example,

10

 10

 100

 1000

 10000

 1 10 100 1000 10000

n
(

j)

j

after cycle 2

after cycle 4

after cycle 10

observed
predicted

(a) Ring

 10

 100

 1000

 10000

 1 10 100 1000 10000

n
(

j)

j

after cycle 2

after cycle 4

after cycle 10

observed
predicted

(b) Binary Tree

 10

 100

 1000

 10000

 1 10 100 1000 10000

n
(

j)

j

after cycle 2

after cycle 4

after cycle 10

observed
predicted

(c) 4-Out Random

Figure 8: Experimental and predicted values of n(j) for three different

ranking graphs. Experiments were run with N = 10000, m = 20

and ψ = 10, without a tabu list. Note that the plots contain three

snapshots of the simulation for cycles 2, 4 and 10. In Figure (a), the

dots representing the situation after 10 cycles for values j ≤ 100 are

covered by the predicted line.

1000 items) does not result in any significant difference

in performance. For this reason we opted for the simpli-

fied discussion and we omit hard limits on the view size

in this paper.

6. Experimental Results

In the previous section we considered the most ba-

sic version of the protocol to shed light on its conver-

gence properties and storage complexity. This section

is concerned with developing additional techniques that

allow for the practical application of the protocol; in

particular, we address two important problems: how to

start and how to stop the protocol. We also present an

extensive empirical analysis under different parameter

settings and different failure scenarios, introduced by a

brief discussion of the simulation environment and the

figures of merit analyzed in this paper.

6.1. A Practical Implementation

So far we assumed that the protocol is started at all

nodes at once, in a synchronous fashion, and we were

not dealing with termination at all. We also assumed

that at all nodes the initial set of known peers is a ran-

dom sample from the network. In this section, we re-

place these unrealistic assumptions with practically fea-

sible solutions.

6.1.1. Peer Sampling Service

The peer sampling service provides each node with

continuously up-to-date random samples of the entire

population of nodes. Such samples fulfill two purposes:

they enable the random initialization of the T-MAN view,

as discussed in Section 4, and make it possible to imple-

ment a starting service as well, allowing for the deploy-

ment of various gossip based broadcast and multicast

protocols.

In this paper we consider an instantiation of the peer

sampling service based on the NEWSCAST protocol [11],

chosen for its low cost, extreme robustness and minimal

assumptions. The basic idea of NEWSCAST is that each

node maintains a local set of random node addresses:

the (partial) view. Periodically, each node sends its view

to a random member of the view itself. When receiving

such a message, a node keeps a fixed number of freshest

addresses (based on timestamps), selected from those

locally available in the view and those contained in the

message.

Each node sends one message to one other node

during a fixed time interval. Implementations exist in

11

which these messages are small UDP messages con-

taining approximately 20-30 IP addresses, along with

the ports, timestamps, and descriptors such as node IDs.

The time interval is typically long, in the range of 10 s.

The cost is therefore small, similar to that of heartbeat

messages in many distributed architectures. The proto-

col provides high quality (i.e., sufficiently random) sam-

ples not only during normal operation (with relatively

low churn), but also during massive churn and even af-

ter catastrophic failures (up to 70% nodes may fail),

quickly removing failed nodes from the local views of

correct nodes.

6.1.2. Starting and Terminating the Protocol

We implemented a simple starting mechanism based

on well-known broadcast protocols. The content of the

broadcast message may be a simple “wake up” spec-

ifying when to build a predefined network, or it may

include additional information specifying what network

to build (e.g., by providing the implementation of a spe-

cific ranking function). To simplify our simulation en-

vironment, we adopt the first approach; technical issues

related to the second one may be easily solved in a real

implementation.

The following terminology is used when discussing

the starting mechanism. We say that a node is active if

it is aware of and explicitly participating in a specific in-

stance of T-MAN; if the node is not aware that a protocol

is being executed, it is called inactive.

Initially, there is only one active node, the initiator,

activated by an external event (e.g., a user’s request). An

inactive node may become active by exchanging infor-

mation with nodes that are already active. When a node

becomes active, it immediately starts executing the T-

MAN protocol. The final goal is to activate all nodes in

the system, i.e., to start the protocol at all nodes.

The actual implementation of the broadcast can take

many forms that differ mainly in communication over-

head and speed.

Flooding As soon as a node becomes active for the first

time, it sends a “wake up” message to a small set

of random nodes, obtained from the peer sampling

service. Subsequently, it remains silent.

Anti-Entropy, Push-only Periodically, each active

node selects a random peer and sends a “wake-up”

message [25].

Anti-Entropy, Push-Pull Periodically, each node (ac-

tive or not) exchanges its activation state with a

random peer. If either of them was active, they both

become active [25].

As described above, a node becomes active as soon

as it receives a message from another active node. Note,

however, that messages belonging to the starting proto-

col are not the only source of activation; a node may

also receive a T-MAN message, from a node that has al-

ready started to execute the protocol. This message also

activates the recipient node.

As is well known, flooding is fast and effective but

very expensive due to message duplications. In compar-

ison, the most important advantage of the other two ap-

proaches is the dramatically lower communication over-

head per unit time. The overhead can further be reduced

to almost zero, due to the fact that the starting service

messages can be piggybacked, for example, on NEWS-

CAST messages that implement the peer sampling ser-

vice.

After the target graph has been built, the protocol

does not need to run anymore and therefore must be ter-

minated. Clearly, detecting global convergence is dif-

ficult and expensive: what we need is a simple local

mechanism that can terminate the protocol at all nodes

independently.

We propose the following mechanism. Each node

monitors its own local view. If no changes (i.e., node

additions) are observed for a specified period of time

(δidle), it suspends its active thread. We call this state

suspended. If a view change occurs when a node is sus-

pended (due to an incoming message initiated by an-

other node that is still active), the node switches again

to the active state, and resets its timer that measures idle

time.

6.2. Simulation Environment

All the experiments are event-based simulations, per-

formed using PEERSIM, an open-source simulator de-

signed for large-scale P2P systems and publicly avail-

able at SourceForge [27]. The applied transport layer

emulates end-to-end delays between pairs of nodes

based on the traces of the King data set [28]. Delays

reported in these traces range from 1 ms to 400 ms, and

the probability distribution is as shown in Figure 9.

The following parameters are fixed in the experi-

ments: the size of the tabu list is 4, and the peer selection

parameter (ψ) is 1. If different values are not explicitly

mentioned, the message size (m) is 20, the cycle length

(∆) is 1 s, and the value of δidle is set to 4 s. Each exper-

iment is repeated 50 times with different random seeds.

Plots show the average of the observed measures, along

with error bars; when graphically feasible, individual

experiments are displayed as separate dots with a small

random translation.

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

p
ro

b
a

b
ili

ty
 (

%
)

Delay

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

c
u

m
m

u
la

ti
v
e

 p
ro

b
a

b
ili

ty
 (

%
)

Delay

Figure 9: Probability distribution of end-to-end delays as reported in

the King data set [28].

6.3. Ranking Methods

To emphasize the robustness of T-MAN to the actual

target graph being built, we performed all experiments

on two different tasks: building a sorted ring, and build-

ing a binary tree. These two graphs have very differ-

ent topologies: the ring has a large (linear) diameter

while the tree has a small (logarithmic) one. Besides,

as pointed out in Section 5.3, in the tree some nodes are

more central than others, while in the ring all nodes are

equal from this point of view.

In the previous sections, we applied the concept of a

ranking graph to (implicitly) define the ranking method.

This approach is not practical, so we need to define ex-

plicit and locally computable ranking methods.

6.3.1. Sorted Ring

Creating a sorted ring is very useful, for example,

for the decentralized computation of the ranking of

nodes [29] or jump-starting distributed hash tables, such

as CHORD [8]. The latter application is further discussed

in Section 7.

We assume that the node profile is an element of a

collection, over which a total ordering relation is de-

fined. In particular, we work with 60-bit integers as

node profiles that are initialized at random for each

node. We want the target graph to be a ring, in which

the node profiles are ordered (except one pair where the

largest and smallest values meet) to close the ring.

To achieve this target graph, the output of the ranking

method RANK(x, y1, . . . , yk) is defined as follows. First

we construct a sorted ring (as defined above) out of

the set of input profiles y1, . . . , yk and the base node x,

and assign a rank value to all nodes: the minimal hop

count from x in this ring. The output of the ranking

method is an ordered list of the input profiles accord-

ing to these assigned rank values. Note that this is a

direction-dependent ranking method, that cannot be in-

duced by a distance metric over the node profiles. For

simplicity, we will call T-MAN with this ranking method

SORTED RING.

6.3.2. Binary Tree

The second topology we consider is an undirected

rooted binary tree. To achieve a well controlled target

graph for the sake of experimental comparison, the node

profiles are defined as follows. If there are N nodes, then

we assign the integers 1, . . . ,N to the nodes in some ar-

bitrary order. The node with value 1 is the root. Us-

ing the binary representation of these integers, the node

0a2 . . . am has two children: a2 . . . am0 and a2 . . . am1.

Numbers starting with 1 belong to leafs.

It is easy to calculate the shortest path length in this

tree between two arbitrary nodes, based on the two node

profiles. This notion of distance is used to define the

ranking function required by T-MAN to build the tree:

RANK(x, y1, . . . , yk) sorts the input profiles y1, . . . , yk ac-

cording to distance from the base node x. For simplicity,

we will call T-MAN with this ranking method TREE.

6.4. Performance Measures

We are interested both in the effectiveness (speed and

quality) and efficiency (cost) of the protocol. We evalu-

ate our protocols using the following performance mea-

sures: convergence time, target links found, termination

time and communication costs.

convergence time The time needed to obtain the per-

fect target graph. In the case of SORTED RING, each

node must know at least its first successor and pre-

decessor in the sorted ring. For TREE, each node

different from the root must know its parent, and

non-leaf nodes must know their children.

13

target links found The number of links in the target

graph that are actually found by T-MAN at a cer-

tain time, typically at termination time. This allows

for a more fine-grained assessment of performance

than convergence time.

termination time The total time needed to complete

(start, execute and stop) the protocol at all nodes.

This may be considerably longer than convergence

time, although, as we will see, typically only few

nodes are still active after reaching convergence.

communication cost The number of messages ex-

changed. Note that all messages ever exchanged

are of the same size.

The unit of time will be cycles or seconds, depending

on which is more convenient (note that cycle length de-

faults to 1 s). We also note that convergence time is not

defined if the protocol terminates before converging. In

this case, we use the number of identified target links as

a measure.

6.5. Evaluating the Starting Mechanism

Figure 10 shows the convergence time for SORTED

RING and TREE, using the starting protocols described

in Section 6.1.2. The cycle length of the anti-entropy

versions was the same as that of T-MAN, and the flood-

ing protocol used 20 random neighbors at all nodes. The

case of synchronous start is also shown for comparison.

Note that these figures do not represent a direct mea-

sure of the performance of well-known starting proto-

cols; rather, convergence time plotted here represents

the overall time needed to both start the protocol and

reach convergence, with T-MAN and the broadcast pro-

tocol running concurrently.

In the case of flooding, “wake-up” messages quickly

reach all nodes and activate the protocol; almost no de-

lay is observed compared to the synchronous case. Anti-

entropy mechanisms result in a few seconds of delay. In

the experiments that follow, we adopt the anti-entropy,

push-pull approach, as it represents a good trade-off be-

tween communication costs and delay. Note however

that (unlike the push approach) the push-pull approach

assumes that at least the starting service was started at

all nodes already.

6.6. Evaluating the Termination Mechanism

We experimented with various settings for δidle rang-

ing from 2 s to 12 s. Figure 11 shows both convergence

time (bottom three curves) and termination time (top

three curves) for different values of δidle, for SORTED

 5

 10

 15

 20

 25

 30

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
)

Network Size

Anti-Entropy (Push)
Anti-Entropy (Push-Pull)

Flooding
Synchronous start

(a) SORTED RING

 5

 10

 15

 20

 25

 30

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
)

Network Size

Anti-Entropy (Push)
Anti-Entropy (Push-Pull)

Flooding
Synchronous start

(b) TREE

Figure 10: Convergence time as a function of size, using different

starting protocols.

RING and TREE, respectively. In both cases, termina-

tion time increases linearly with δidle. This is because,

assuming the protocol has converged, each additional

cycle to wait simply adds to the termination time.

For small values convergence was not always

reached, especially for TREE. For SORTED RING, all

runs converged except the case when δidle = 2 and

N = 216, when 76% of the runs converged. For TREE,

all runs converged with δidle > 5 and no runs converged

for (δidle = 2,N = 213), (δidle = 2,N = 216), and

(δidle = 3,N = 216). Even in these cases, the quality

of the target graph at termination time was almost per-

fect, as shown in Figure 12. In the worst of our experi-

ments, we observed that no more than 0.1% of the target

links were missing at termination. This may be suffi-

cient for most applications, especially considering that

the target graphs will never be constructed perfectly in a

dynamic scenario, where nodes are added and removed

14

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8

T
im

e
 (

s
)

δidle (s)

size = 2
16

size = 2
13

size = 2
10

(a) SORTED RING

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8

T
im

e
 (

s
)

δidle (s)

size = 2
16

size = 2
13

size = 2
10

(b) TREE

Figure 11: Convergence time (bottom curves) and termination time

(top curves) as a function of δidle.

 99.9

 99.91

 99.92

 99.93

 99.94

 99.95

 99.96

 99.97

 99.98

 99.99

 100

 2 4 6 8 10 12

T
a

rg
e

t
L

in
k
s
 F

o
u

n
d

 (
%

)

δidle (s)

size=2
10

size=2
13

size=2
16

Figure 12: Quality of the target TREE graph at termination time as a

function of δidle

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

a
c
ti
v
e

 n
o

d
e

s
 (

%
)

Time (s)

size=2
10

size=2
13

size=2
16

(a) SORTED RING

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

a
c
ti
v
e

 n
o

d
e

s
 (

%
)

Time (s)

size=2
10

size=2
13

size=2
16

(b) TREE

Figure 13: Proportion of active nodes during execution.

continously. Nevertheless, from now on, we discard the

parameter combinations that do not always converge.

Apart from longer executions, an additional conse-

quence of choosing large values of δidle is a higher com-

munication cost. However, since not all nodes are ac-

tive during the execution, the overall number of mes-

sages sent per node on average is less than one quarter

of the number of cycles until global termination. To un-

derstand this better, Figure 13 shows how many nodes

are active during the construction of SORTED RING and

TREE, respectively. The curves show both an exponen-

tial increase in the number of active nodes when start-

ing, and an exponential decrease when stopping. The

period of time in which all nodes are active is relatively

short.

These considerations suggest the use of higher val-

ues for δidle, at the cost of a larger termination time and

a larger number of exchanged messages. The chosen

15

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
e

rm
in

a
ti
o

n
 T

im
e

 (
c
y
c
le

s
)

Cycle Length (s)

(a) SORTED RING

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
e

rm
in

a
ti
o

n
 T

im
e

 (
c
y
c
le

s
)

Cycle Length (s)

(b) TREE

Figure 14: Termination time as a function of cycle length.

value of δidle (4 s) represents a good trade-off between

the desire of obtaining a perfect target graph and the

consequently larger cost in time and communication.

6.7. Parameter Tuning

Cycle Length. If a faster execution is desired, one can

always decrease the cycle length. However, after some

point, decreasing cycle length does not pay off because

message delay becomes longer than the cycle length

and eventually the network will be congested by T-MAN

messages. Figure 14 shows the behavior of T-MAN with

a cycle length varying between 0.2 s and 4 s. The figure

shows the number of cycles required to terminate the

protocol. Small cycle lengths require a larger number

of cycles, while after a given threshold (around 1 s), the

number of cycles required to complete a protocol is al-

most constant. The reason for this behavior is that with

short cycles, multiple cycles may be executed before

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

T
e

rm
in

a
ti
o

n
 T

im
e

 (
c
y
c
le

s
)

Message Size

(a) SORTED RING

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

T
e

rm
in

a
ti
o

n
 T

im
e

 (
c
y
c
le

s
)

Message Size

(b) TREE

Figure 15: Termination time as a function of message size.

a message exchange is concluded, thus wasting band-

width in sending and receiving old information multiple

times.

Message Size. In Section 5, we have examined the ef-

fect of the message size parameter (m) in detail. Here

we are interested in the effect of message size on ter-

mination time. Figure 15 shows that by increasing the

size of messages exchanged by SORTED RING termina-

tion time slightly increases after around m = 20. The

reason is that a node becomes suspended only after the

local view remains unchanged for a fixed number of cy-

cles, but increasing the message size has the effect of

increasing the number of cycles in which view changes

might occur, thus delaying termination. The results for

TREE have more variance, which might have to do with

the unbalanced nature of the topology, as discussed in

Section 5.3.

16

6.8. Failures

The results discussed so far were obtained in static

networks, without considering any form of failure.

Here, we consider two sources of failure: message

losses and node crashes. Since in this paper we consider

only the overlay construction problem, and not mainte-

nance, we do not explicitly consider scenarios involv-

ing node churn. Instead, we model churn through nodes

leaving, and do not allowing joining nodes to partici-

pate in an ongoing construction. Furthermore, since we

do not have a leave protocol, leaving nodes are identical

to crashing nodes from our point of view.

Message Loss. While a simple solution could be to

adopt a reliable, connection-oriented transport protocol

like TCP, it is more attractive to rely on a lightweight

but perhaps unreliable transport. In this case, we need

to demonstrate that T-MAN can cope well with message

loss. Figure 16 shows that T-MAN is highly resilient to

message loss and so a datagram-oriented protocol like

UDP is a perfectly suitable choice, as message losses

only slow down the protocol slightly. Many message

exchanges are either never started or never completed,

thus requiring more cycles to terminate the protocol exe-

cution. The quality does not suffer much either. In both

SORTED RING and TREE, around 1% of the target links

may be missing, as shown by Figure 17. Note that the

mean message loss ratio for geographic networks like

the Internet is around 2% [30], an order of magnitude

smaller than the maximum message loss ratio tested in

our experiments.

Node Crashes. Figure 18 shows the behavior of T-MAN

with a variable failure rate, measured as the total num-

ber of nodes leaving the network per second per node.

We experimented with values ranging from 0 to 10−2,

which is two orders of magnitude larger than the value

of 10−4 suggested as the typical behavior of some P2P

networks [31]. The results show that both SORTED RING

and TREE are robust in normal scenarios, with TREE be-

ing considerably more reliable in the range of extreme

failure rates. This is due to the unbalanced nature of the

topology as discussed in Section 5.3.

7. Bootstrapping Chord

After analyzing the behavior of T-MAN on relatively

basic examples, in this section we present a more com-

plex application: rapidly bootstrapping CHORD-like net-

works [8]. We call this protocol T-CHORD.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

T
e

rm
in

a
ti
o

n
 t

im
e

 (
s
)

Message loss (%)

size = 2
10

size = 2
13

size = 2
16

(a) SORTED RING

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

T
e

rm
in

a
ti
o

n
 t

im
e

 (
s
)

Message loss (%)

size = 2
10

size = 2
13

size = 2
16

(b) TREE

Figure 16: Termination time as a function of message loss rate.

7.1. A Brief Introduction to Chord

CHORD is an example of a key-based overlay routing

protocol. In such protocols, subsets of the key space

are assigned to nodes, and each node has a routing ta-

ble that it uses to route messages addressed by a spe-

cific key towards the node that is responsible for that

key. These routing protocols are used as a component

in the implementation of the distributed hash table ab-

straction, where (key, object) pairs are stored over a de-

centralized collection of nodes and retrieved through the

routing protocol.

We provide a simplified description of CHORD, nec-

essary to understand T-CHORD. Nodes are assigned ran-

dom t-bit IDs; keys are taken from the same space. The

ID length t must be large enough to make the probabil-

ity of two nodes or two keys having the same ID negli-

gible. Nodes are ordered in an sorted ring as described

in Section 6.3.1. The way this ring is constructed natu-

17

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20

T
a

rg
e

t
L

in
k
s
 F

o
u

n
d

 (
%

)

Message loss (%)

size = 2
10

size = 2
13

size = 2
16

(a) SORTED RING

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20

T
a

rg
e

t
L

in
k
s
 F

o
u

n
d

 (
%

)

Message loss (%)

size = 2
10

size = 2
13

size = 2
16

(b) TREE

Figure 17: Target links found by the termination time as a function of

message loss rate.

rally inspires a follows relation over the entire ID (and

key) space: we say that a follows b if (a − b + 2t)

mod 2t < 2t−1; otherwise, a precedes b. We also define

a notion of distance, again, inspired by the sorted ring,

as follows: d(a, b) = min(|a − b|, 2t − |a − b|). The suc-

cessor of an arbitrary number i (that is, not necessarily

existing node ID) is the node with the smallest ID that

follows i, as defined above. We denote the successor of i

by succ1(i). The concepts of predecessor, jth successor,

and jth predecessor are defined similarly. Key k is under

the responsibility of node succ1(k).

Each node maintains a routing table that has two

parts: leaves and fingers. Leaves define an r-regular

lattice, where each node n is connected to its r near-

est successors succ1(n) . . . succr(n). Fingers are long

range links: for each node n, its jth finger is defined

as succ1(n + 2 j), with j ∈ [0, t − 1]. Routing in CHORD

works by forwarding messages following the successor

 98

 98.5

 99

 99.5

 100

 0 0.002 0.004 0.006 0.008 0.01

T
a

rg
e

t
L

in
k
s
 F

o
u

n
d

 (
%

)

Node failures per node per second

size=2
16

size=2
13

size=2
10

(a) SORTED RING

 98

 98.5

 99

 99.5

 100

 0 0.002 0.004 0.006 0.008 0.01

T
a

rg
e

t
L

in
k
s
 F

o
u

n
d

 (
%

)

Node failures per node per second

size=2
16

size=2
13

size=2
10

(b) TREE

Figure 18: Target links found by the termination time as a function of

failure rate.

direction: when receiving a message targeted at key k,

a node n forwards it to its leaf or finger that precedes

(or is equal to) and is closest to succ1(k), the intended

recipient of the message.

Due to the fingers, the number of nodes that need

to be traversed to reach a destination node is O(log N)

(with high probability), where N is the size of the net-

work [8]. Leaves, on the other hand, are used to im-

prove the probability of delivering a message in case of

failures, and to avoid that the ring can be broken into

disjoint partitions.

7.2. The T-Chord Protocol

In the context of CHORD, our overlay construction

problem translates to initializing the routing tables of

all nodes simultaneously from scratch. The existing join

protocol is not designed to handle the massive concur-

rency involved in a jump-starting process, when all the

18

nodes are trying to join at the same time [8]. On the

other hand, naive approaches where nodes are forced

to join the overlay in some specified order results in at

least linear time needed to construct the network (not to

mention the serious problem of synchronizing the oper-

ations).

For constructing the leaf set and the fingers simulta-

neously, we apply T-MAN with an appropriate ranking

method. As usual, we use node ID-s as node profiles.

The ranking method first produces a ranking using the

ranking method of SORTED RING as seen in the previous

sections. Let this ranking be x1, x2, Subsequently,

the ranking method finds a set of descriptors that repre-

sent the best approximation of the ideal finger set of the

base node, and orders this set according to increasing

distance from the base node in the ID space. Let this

ordered list be y1, y2, The final ranking is calculated

from the list x1, y1, x2, y2, In this list some descrip-

tors appear twice. To get the final ranking we remove

the second occurrence of each descriptor from this list.

When receiving a message, as before, the node sim-

ply merges it with its current view. At any time, the ac-

tual finger set is then constructed by each node locally

from nodes in its current view. We also note that we ob-

tained very good preliminary results simply relying on

the local views that result from pure ring construction.

However, if finger candidates are also included in the

messages, we achieve a noticeable improvement. This

approach can be generalized to other target graphs as

well, such as PASTRY [9], as shown in [10]. All the other

components, that is, the peer sampling service, the start-

ing service and the termination mechanism are applied

as before.

7.3. Experimental Results

First, we modify slightly the definition of some per-

formance measures for this application. While the con-

cept of termination time remains unchanged, conver-

gence is defined as the time needed to obtain routing ta-

bles, that are sufficiently correct to route messages with-

out errors (i.e., without messages failing to reach their

destination). In other words, in a converged network

we now allow for the possibility of having sub-optimal

routing tables (with missing leaves or fingers) provided

routing works without error. Note that if the ring is com-

plete, then all messages are guaranteed to be delivered,

so according to this new measure, convergence occurs

no later than the convergence of the ring.

The default parameters are the same as for SORTED

RING and TREE. Note however that the applied message

size of 20 now means that 10 entries are reserved for

the leaf set construction and 10 for the fingers. For this

reason, convergence is expected to take longer than with

20 entries assigned to a single target graph.

Figure 19(a) shows the convergence time for differ-

ent starting protocols and for a variable network size.

Convergence now takes longer than the values shown in

Figure 10 due to the decreased message size (10 instead

of 20) relative to each part of the routing table. Fig-

ure 19(b) compares the quality of the converged routing

tables obtained by T-CHORD with the ideal CHORD over-

lay described in [8], measured as the average number

of hops needed to deliver messages. The performance

of T-CHORD is slightly worse due to potentially missing

routing table entries, but approximates that of the per-

fect CHORD network closely.

Figure 19(c) presents termination times for differ-

ent values of parameter δidle. For small values of δidle

and for large networks, we found that the protocol

never reaches convergence. Nevertheless, Figure 19(d)

shows that even for small values of δidle, the number of

messages never delivered to the correct destination is

smaller than 1%, which means that the obtained over-

lay is a good approximation of CHORD. However, for

δidle = 8, all our test runs resulted in 100% successful

message delivery, so we adopt this value for the proto-

col. The slight disadvantage is a larger number of mes-

sages exchanged and a slower termination time.

Figure 19(e) shows the average number of messages

sent by a node in the network until termination. This

is significantly lower than the termination time, which

could be expected based on our findings discussed be-

fore (see Figure 13).

Finally, Figure 19(f) shows the behavior of T-CHORD

in a faulty environment. Similar to SORTED RING and

TREE, the variable failure rate, measured as the total

number of nodes leaving the network per second per

node, ranges from 0 to 10−2. An increasing number of

routed messages get lost, although, as mentioned pre-

viously, the upper end of the failure rate range can be

considered extreme. For normal failure rates, the per-

formance is only slightly degraded.

8. Conclusions

In this paper we have presented T-MAN, a lightweight

gossip-based protocol for constructing various overlay

networks. The target network is given by the ranking

method, which is a parameter of the protocol. T-MAN

is robust to the target network: it exhibits good perfor-

mance that is mostly invariant over a wide range of tar-

get networks such as rings and trees. The protocol is

simple and robust to failure scenarios which makes it

attractive for practical applications.

19

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
)

Network Size

Anti-Entropy (Push)
Anti-Entropy (Push-Pull)

Flooding
Synchronous start

(a)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

H
o

p
s

Network Size

T-Chord
Chord

(b)

 20

 25

 30

 35

 40

 45

 50

 55

 2 3 4 5 6 7 8

T
e

rm
in

a
ti
o

n
 T

im
e

 (
s
)

δidle (s)

size = 2
16

size = 2
13

size = 2
10

(c)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8

D
H

T
 D

e
liv

e
ry

 F
a

ilu
re

 R
a

te
 (

%
)

δidle (s)

size=2
16

size=2
13

size=2
10

(d)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 2 3 4 5 6 7 8

M
e

s
s
a

g
e

s

δidle (s)

size = 2
16

size = 2
13

size = 2
10

(e)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.002 0.004 0.006 0.008 0.01

D
H

T
 d

e
liv

e
ry

 f
a

ilu
re

 r
a

te
 (

%
)

Node failures per node per second

size=2
16

size=2
13

size=2
10

(f)

Figure 19: Experimental results with T-CHORD

20

In closing, we note that T-MAN has been success-

fully applied for constructing the PASTRY overlay net-

work [10]. We do not discuss this particular applica-

tion here due to space limitations. In this paper we

have chosen to focus on overlay construction as op-

posed to overlay maintenance, which we have explored

elsewhere [12]. Our overlay maintenance techniques in-

volve limited local view sizes and periodic removal of

old entries from the view. In addition, random samples

from the network are constantly injected into the local

view.

The most important future development involves

characterizing the performance of the protocol theoret-

ically, based on the target network. In this paper we

have presented numerous observations derived mostly

from heuristic and empirical considerations that outline

possible directions for such a theoretical framework.

Acknowledgements

Partial support for this work was provided by the

Future and Emerging Technologies unit of the Euro-

pean Commission through Projects BISON (IST-2001-

38923) and DELIS (IST-2002-001907). M. Jelasity was

supported by the Bolyai Scholarship of the Hungarian

Academy of Sciences.

References

[1] R. van Renesse, K. P. Birman, W. Vogels, Astrolabe: A ro-

bust and scalable technology for distributed system monitoring,

management, and data mining, ACM Transactions on Computer

Systems 21 (2) (2003) 164–206.

[2] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A.-M. Kermar-

rec, P. Kouznetsov, Lightweight probabilistic broadcast, ACM

Transactions on Computer Systems 21 (4) (2003) 341–374.

[3] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and repli-

cation in unstructured peer-to-peer networks, in: Proceedings

of the 16th ACM International Conference on Supercomputing

(ICS’02), 2002.

[4] L. A. Adamic, R. M. Lukose, A. R. Puniyani, B. A. Huberman,

Search in power-law networks, Physical Review E 64 (2001)

046135.

[5] A. Montresor, A robust protocol for building superpeer overlay

topologies, in: Proceedings of the 4th IEEE International Con-

ference on Peer-to-Peer Computing (P2P’04), IEEE Computer

Society, Zurich, Switzerland, 2004, pp. 202–209.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker,

Making gnutella-like p2p systems scalable, in: Proceedings of

ACM SIGCOMM 2003, 2003, pp. 407–418.

[7] S. Voulgaris, A.-M. Kermarrec, L. Massoulié, M. van Steen, Ex-

ploiting semantic proximity in peer-to-peer content searching,

in: Proceedings of 10th IEEE International Workshop on Fu-

ture Trends of Distributed Computing Systems (FTDCS 2004),

2004, pp. 238–243.

[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrish-

nan, Chord: A scalable peer-to-peer lookup service for internet

applications, in: Proceedings of the 2001 Conference on Ap-

plications, Technologies, Architectures, and Protocols for Com-

puter Communications (SIGCOMM), ACM, ACM Press, San

Diego, CA, 2001, pp. 149–160.

[9] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized ob-

ject location and routing for large-scale peer-to-peer systems,

in: R. Guerraoui (Ed.), Middleware 2001, Vol. 2218 of Lecture

Notes in Computer Science, Springer-Verlag, 2001, pp. 329–

350.

[10] M. Jelasity, A. Montresor, O. Babaoglu, The bootstrapping ser-

vice, in: Proceedings of the 26th International Conference on

Distributed Computing Systems Workshops (ICDCS WORK-

SHOPS), IEEE Computer Society, Lisboa, Portugal, 2006, inter-

national Workshop on Dynamic Distributed Systems (IWDDS).

[11] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec,

M. van Steen, Gossip-based peer sampling, ACM Transactions

on Computer Systems 25 (3) (2007) 8.

[12] M. Jelasity, O. Babaoglu, T-Man: Gossip-based overlay topol-

ogy management, in: S. A. Brueckner, G. Di Marzo Serugendo,

D. Hales, F. Zambonelli (Eds.), Engineering Self-Organising

Systems: Third International Workshop (ESOA 2005), Revised

Selected Papers, Vol. 3910 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, 2006, pp. 1–15.

[13] S. Voulgaris, M. van Steen, An epidemic protocol for manag-

ing routing tables in very large peer-to-peer networks, in: Pro-

ceedings of the 14th IFIP/IEEE International Workshop on Dis-

tributed Systems: Operations and Management, (DSOM 2003),

no. 2867 in Lecture Notes in Computer Science, Springer, 2003.

[14] K. Aberer, A. Datta, M. Hauswirth, R. Schmidt, Indexing data-

oriented overlay networks, in: Proceedings of 31st International

Conference on Very Large Databases (VLDB), ACM, Trond-

heim, Norway, 2005.

[15] A. Shaker, D. S. Reeves, Self-stabilizing structured ring topol-

ogy p2p systems, in: Proceedings of the Fifth IEEE International

Conference on Peer-to-Peer Computing (P2P 2005), IEEE Com-

puter Society, Konstanz, Germany, 2005, pp. 39–46.

[16] D. Angluin, J. Aspnes, J. Chen, Y. Wu, Y. Yin, Fast construction

of overlay networks, in: Seventeenth Annual ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA), 2005,

pp. 145–154.

[17] S. Voulgaris, M. van Steen, Epidemic-style management of se-

mantic overlays for content-based searching, in: J. C. Cunha,

P. D. Medeiros (Eds.), Proceedings of Euro-Par, no. 3648 in

Lecture Notes in Computer Science, Springer, 2005, pp. 1143–

1152.

[18] L. Massoulié, A.-M. Kermarrec, A. J. Ganesh, Network aware-

ness and failure resilience in self-organising overlays networks,

in: Proceedings of the 22nd Symposium on Reliable Distributed

Systems (SRDS 2003), Florence, Italy, 2003, pp. 47–55.

[19] F. Bonnet, A.-M. Kermarrec, M. Raynal, Small-world networks:

From theoretical bounds to practical systems, in: Principles of

Distributed Systems, Vol. 4878, Springer, 2007, pp. 372–385.

[20] J. A. Patel, I. Gupta, N. Contractor, JetStream: Achieving pre-

dictable gossip dissemination by leveraging social network prin-

ciples, in: Proceedings of the Fifth IEEE International Sym-

posium on Network Computing and Applications (NCA 2006),

Cambridge, MA, USA, 2006, pp. 32–39.

[21] B. Y. Zhao, L. Huang, A. D. J. Jeremy Stribling, J. D. Kubiatow-

icz, Exploiting routing redundancy via structured peer-to-peer

overlays, in: Proceedings of the 11th IEEE International Con-

ference on Network Protocols (ICNP 2003), 2003, pp. 246–257.

[22] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,

S. Shenker, I. Stoica, H. Yu, OpenDHT: A public DHT service

and its uses, in: Proceedings of ACM SIGCOMM 2005, ACM

Press, 2005, pp. 73–84.

21

[23] A. Montresor, M. Jelasity, O. Babaoglu, Chord on demand, in:

Proceedings of the Fifth IEEE International Conference on Peer-

to-Peer Computing (P2P 2005), IEEE Computer Society, Kon-

stanz, Germany, 2005, pp. 87–94.

[24] Y. Koren, Embedder, http://www.research.att.com/

˜yehuda/index_programs.html.

URL http://www.research.att.com/˜yehuda/

index_programs.html

[25] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,

S. Shenker, H. Sturgis, D. Swinehart, D. Terry, Epidemic al-

gorithms for replicated database maintenance, in: Proceed-

ings of the 6th Annual ACM Symposium on Principles of

Distributed Computing (PODC’87), ACM Press, Vancouver,

British Columbia, Canada, 1987, pp. 1–12.

[26] R. Albert, A.-L. Barabási, Statistical mechanics of complex net-

works, Reviews of Modern Physics 74 (1) (2002) 47–97.

[27] PeerSim, http://peersim.sourceforge.net/.

URL http://peersim.sourceforge.net/

[28] K. P. Gummadi, S. Saroiu, S. D. Gribble, King: Estimating la-

tency between arbitrary internet end hosts, in: Internet Measure-

ment Workshop (SIGCOMM IMW), 2002.

[29] A. Montresor, M. Jelasity, O. Babaoglu, Decentralized rank-

ing in large-scale overlay networks, in: Second IEEE Interna-

tional Conference on Self-Adaptive and Self-Organizing Sys-

tems Workshops (SASOW 2008), 2008.

[30] S. Kalidindi, M. J. Zekauskas, Surveyor: An infrastructure

for Internet performance measurements, in: Proceedings of

INET’99, San Jose, CA, USA, 1999.

[31] M. Castro, M. Costa, A. Rowstron, Performance and depend-

ability of structured peer-to-peer overlays, in: Proceedings of

the 2004 International Conference on Dependable Systems and

Networks (DSN’04), IEEE Computer Society, 2004.

22

