
Gossip Learning as a Decentralized Alternative to

Federated Learning⋆

István Hegedűs1[0000−0002−5356−2192], Gábor Danner1[0000−0002−9983−1060], and
Márk Jelasity1,2[0000−0001−9363−1482]

1 University of Szeged, Szeged, Hungary
2 MTA SZTE Research Group on Artificial Intelligence, Szeged, Hungary

Abstract. Federated learning is a distributed machine learning approach
for computing models over data collected by edge devices. Most impor-
tantly, the data itself is not collected centrally, but a master-worker ar-
chitecture is applied where a master node performs aggregation and the
edge devices are the workers, not unlike the parameter server approach.
Gossip learning also assumes that the data remains at the edge devices,
but it requires no aggregation server or any central component. In this
empirical study, we present a thorough comparison of the two approaches.
We examine the aggregated cost of machine learning in both cases, con-
sidering also a compression technique applicable in both approaches. We
apply a real churn trace as well collected over mobile phones, and we
also experiment with different distributions of the training data over
the devices. Surprisingly, gossip learning actually outperforms federated
learning in all the scenarios where the training data are distributed uni-
formly over the nodes, and it performs comparably to federated learning
overall.

1 Introduction

Performing data mining over data collected by edge devices, most importantly,
mobile phones, is of very high interest [17]. Collecting such data at a central
location has become more and more problematic in the past years due to novel
data protection rules [9] and in general due to the increasing public awareness to
issues related to data handling. For this reason, there is an increasing interest in
methods that leave the raw data on the device and process it using distributed
aggregation.

Google introduced federated learning to answer this challenge [12, 13]. This
approach is very similar to the well-known parameter server architecture for
distributed learning [7] where worker nodes store the raw data. The parameter

⋆ The original publication is available at link.springer.com. In Proc. DAIS 2019,
LNCS 11534, pp. 74–90, 2019. DOI: 10.1007/978-3-030-22496-7_5. This work was
supported by the Hungarian Government and the European Regional Develop-
ment Fund under the grant number GINOP-2.3.2-15-2016-00037 (“Internet of Liv-
ing Things”) and by the Hungarian Ministry of Human Capacities (grant 20391-
3/2018/FEKUSTRAT).

server maintains the current model and regularly distributes it to the workers
who in turn calculate a gradient update and send it back to the server. The
server then applies all the updates to the central model. This is repeated until
the model converges. In federated learning, this framework is optimized so as to
minimize communication between the server and the workers. For this reason,
the local update calculation is more thorough, and compression techniques can
be applied when uploading the updates to the server.

In addition to federated learning, gossip learning has also been proposed to
address the same challenge [10, 15]. This approach is fully decentralized, no pa-
rameter server is necessary. Nodes exchange and aggregate models directly. The
advantages of gossip learning are obvious: since no infrastructure is required, and
there is no single point of failure, gossip learning enjoys a significantly cheaper

scalability and better robustness. The key question, however, is how the two ap-
proaches compare in terms of performance. This is the question we address in
this work. To be more precise, we compare the two approaches in terms of con-
vergence time and model quality, assuming that both approaches utilize the same
amount of communication resources in the same scenarios.

To make the comparison as fair as possible, we make sure that the two ap-
proaches differ mainly in their communication patterns. However, the compu-
tation of the local update is identical in both approaches. Also, we apply sub-
sampling to reduce communication in both approaches, as introduced in [12] for
federated learning. Here, we adapt the same technique for gossip learning.

We learn linear models using stochastic gradient descent (SGD) based on the
logistic regression loss function. For realistic simulations, we apply smartphone
churn traces collected by the application Stunner [2]. We note that both ap-
proaches offer mechanisms for explicit privacy protection, apart from the basic
feature of not collecting data. In federated learning, Bonawitz et al. [3] describe
a secure aggregation protocol, whereas for gossip learning one can apply the
methods described in [4]. Here, we are concerned only with the efficiency of the
different communication patterns and do not compare security mechanisms.

The result of our comparison is that gossip learning is in general comparable
to the centrally coordinated federated learning approach, and in many scenarios
gossip learning actually outperforms federated learning. This result is rather
counter-intuitive and suggests that decentralized algorithms should be treated as
first class citizens in the area of distributed machine learning overall, considering
the additional advantages of decentralization.

The outline of the paper is as follows. Section 2 describes the basics of feder-
ated learning and gossip learning. Section 3 describes the specific algorithmic de-
tails that were applied in our comparative study, in particular, the management
of the learning rate parameter and the subsampling compression techniques.
Section 4 presents our results.

2 Background

Classification is a fundamental problem in machine learning. Here, a data set D =
{(x1, y1), . . . , (xn, yn)} of n examples is given, where an example is represented
by a feature vector x ∈ Rd and the corresponding class label y ∈ C, where d
is the dimension of the problem and C is the set of class labels. The problem
of classification is often expressed as finding the parameters w of a function
fw : Rd → C that can correctly classify as many examples as possible in D,
as well as outside D (this latter property is called generalization). Expressed
formally, the objective function J(w) captures the error of the model parameters
w, and we wish to minimize J(w) in w:

w∗ = argmin
w

J(w) = argmin
w

1

n

n∑

i=1

ℓ(fw(xi), yi) +
λ

2
‖w‖2, (1)

where ℓ() is the loss function (the error of the prediction), ‖w‖2 is the regu-
larization term, and λ is the regularization coefficient. By keeping the model
parameters small, regularization helps in avoiding overfitting to the training set.

Perhaps the simplest algorithm to approximate w∗ is the gradient descent
method. Here, we start with a random weight vector w0. In each iteration, we
compute wt+1 based on wt by finding the gradient of the objective function at
wt and making a step towards the direction opposite to the gradient. One such
iteration is called a gradient update. Formally,

wt+1 = wt − ηt(
∂J

∂w
(wt)) = wt − ηt(λwt +

1

n

n∑

i=1

∂ℓ(fw(xi), yi)

∂w
(wt)), (2)

where ηt is the learning rate at iteration t. Stochastic gradient descent (SGD)
is similar, only we use a single example (xi, yi) instead of the entire database to
perform an update:

wt+1 = wt − ηt(λwt +
∂ℓ(fw(xi), yi)

∂w
(wt)). (3)

It is also usual to apply a so called minibatch update, in which more than one
example is used, but not the entire database.

In this study we use logistic regression as our machine learning model, where
the specific form of the objective function is given by

J(w) = −
1

n

n∑

i=1

lnP (yi|xi, w) +
λ

2
‖w‖2, (4)

where yi ∈ {0, 1},P (0|xi, w) = (1+exp(wTx))−1 and P (1|xi, w) = 1−P (0|xi, w).

2.1 Federated Learning

The pseudocode of the federated learning algorithm [12, 13] is shown in Algo-
rithm 1 (master) and Algorithm 2 (worker). The master periodically sends

Algorithm 1 Federated Learning Master

1: (t,w) ← init()
2: loop

3: for every node i in parallel do ⊲ non-blocking (in separate thread(s))
4: send (t, w) to i

5: receive (ni, hi) from i ⊲ ni: example count at i; hi: model gradient
6: end for

7: wait(∆f) ⊲ the round length
8: n← 1

|I|

∑
i∈I ni ⊲ I: nodes that returned a model in this round

9: t← t+ n

10: h←aggregate({hi : i ∈ I})
11: w← w + h

12: end loop

Algorithm 2 Federated Learning Worker

1: procedure onReceiveModel(t, w)
2: (t′, w′)←update((t,w), Dk) ⊲ Dk: the local database of examples
3: (n, h)← (t′ − t, w′ − w) ⊲ n: the number of local examples
4: send (n, compress(h)) to master
5: end procedure

the current model w to all the workers asynchronously in parallel and collects
the answers from the workers. Any answers from workers arriving with a de-
lay larger than ∆f are simply discarded. After ∆f time units have elapsed, the
master aggregates the received gradients and updates the model. We also send
and maintain the model age t (based on the average number of examples used
for training) in a similar fashion, to enable the use of dynamic learning rates
in the local learning. These algorithms are very generic, the key characteristics
of federated learning lie in the details of the update method (line 2 of Algo-
rithm 2) and the compression mechanism (line 4 of Algorithm 2 and line 10 of
Algorithm 1). The update method is typically implemented through a minibatch
gradient descent algorithm that operates on the local data, initialized with the
received model w. The details of our implementation of the update method and
compression is presented in Section 3.

Algorithm 3 Gossip Learning Framework

1: (tk, wk)← init()
2: loop

3: wait(∆g)
4: p← select()
5: send (tk, compress(wk)) to p

6: end loop

7: procedure onReceiveModel(tr, wr)
8: (tk, wk)←merge((tk, wk), (tr, wr))
9: (tk, wk)←update((tk, wk), Dk)

10: end procedure

Algorithm 4 Model update rule

1: procedure update((t, w), D)
2: for all batch B ⊆ D do ⊲ D is split into batches
3: t← t+ |B|

4: w← w − ηt
∑

(x,y)∈B
(∂ℓ(fw(x),y)

∂w
(w) + λw)

5: end for

6: return (t, w)
7: end procedure

Algorithm 5 Model initialization

1: procedure init()
2: t← 0
3: w← 0 ⊲ 0 denotes the vector of all zeros
4: return (t, w)
5: end procedure

2.2 Gossip Learning

Gossip Learning is a method for learning models from fully distributed data
without central control. Each node k runs Algorithm 3. First, the node initializes
a local model wk (and its age tk). This is then periodically sent to another node
in the network. (Note that these cycles are not synchronized.) The node selection
is supported by a so-called sampling service [11,16]. Upon receiving a model wr,
the node merges it with the local model, and updates it using the local data
set Dk. Merging is typically achieved by averaging the model parameters; see
Section 3 for specific implementations. In the simplest case, the received model
merely overwrites the local model. This mechanism results in the models taking
random walks in the network and being updated when visiting a node. The
possible update methods are the same as in the case of federated learning, and
compression can be applied as well.

3 Algorithms

In this section we describe the details of the update, init, compress, aggregate,
and merge methods. Methods update, init and compress are shared among fed-
erated learning and gossip learning. In all the cases we used the implementations
in Algorithms 4 and 5. In the minibatch update we compute the sum instead of
the average to give an equal weight to all the examples irrespective of batch size.
(Note that even if the minibatch size is fixed, actual sizes will vary because the
number of examples at a given node is normally not divisible with the nominal
batch size.) We used the dynamic learning rate ηt = η/t, where t is the number
of instances the model was trained on.

Method aggregate is used in Algorithm 1. Its function is to decompress
and aggregate the received gradients encoded with compress. When there is
no actual compression (compressNone in Algorithm 7), simply the average of

Algorithm 6 Various versions of the aggregate function

1: procedure aggregateDefault(H) ⊲ Average of gradients
2: return 1

|H|

∑
h∈H

h

3: end procedure

4:
5: procedure aggregateSubsampled(H) ⊲ Restore expected value
6: return d

s|H|

∑
h∈H

h ⊲ s: number of model parameters kept by subsampling
7: end procedure

8:
9: procedure aggregateSubsampledImproved(H)

10: h′ ← 0

11: for i ∈ {1, ..., d} do

12: Hi ← {h : h ∈ H ∧ h[i] 6= 0} ⊲ h[i] refers to the ith element of the vector h

13: h′[i]← 1
|Hi|

∑
h∈H

h[i] ⊲ skipped if |Hi| = 0
14: end for

15: return h′

16: end procedure

Algorithm 7 Various versions of the compress function

1: procedure compressNone(h)
2: return h

3: end procedure

4:
5: procedure compressSubsampling(h)
6: h′ ← 0

7: X ← random subset of {1, ..., d} of size s

8: for i ∈ X do

9: h′[i]← h[i]
10: end for

11: return h′

12: end procedure

gradients is taken (aggregateDefault in Algorithm 6). The compression tech-
nique we employed is subsampling [13]. When using subsampling, workers do
not send all of the model parameters back to the master, but only random sub-
sets of a given size (see compressSubsampling). Note that the indices need not
be sent, instead, we can send the random seed used to select them. The miss-
ing values are treated as zero. Due to this, the gradient average needs to be
scaled as shown in aggregateSubsampled to create an unbiased estimator of
the original gradient. We introduce a slight improvement to this scaling method
in aggregateSubsampledImproved. Here, instead of scaling based on the theo-
retical probability of including a parameter, we calculate the actual average for
each parameter separately based on the number of the gradients that contain
the given parameter.

In gossip learning, merge is used to combine the local model with the in-
coming one. In the simplest variation, the local model is discarded in favor of

Algorithm 8 Various versions of the merge function

1: procedure mergeNone((t, w), (tr, wr))
2: return (tr, wr)
3: end procedure

4:
5: procedure mergeAverage((t, w), (tr, wr))
6: a← tr

t+tr
7: t← max(t, tr)
8: w← (1− a)w + awr

9: return (t, w)
10: end procedure

11:
12: procedure mergeSubsampled((t, w), (tr, wr)) ⊲ averages non-zero values only
13: a← tr

t+tr

14: t← max(t, tr)
15: for i ∈ {1, ..., d} do

16: if wr[i] 6= 0 then ⊲ w[i] refers to the ith element of the vector w

17: w[i]← (1− a)w[i] + awr[i]
18: end if

19: end for

20: return (t, w)
21: end procedure

the received model (see mergeNone in Algorithm 8). It is usually a better idea
to take the average of the parameter vectors [15]. We use average weighted by
model age (see mergeAverage). Subsampling can be used with gossip learning
as well, in which case mergeSubsampled must be used, which considers only the
received parameters.

4 Experiments

4.1 Datasets

We used three datasets from the UCI machine learning repository [8] to test
the performance of our algorithms. The first is the Spambase (SPAM E-mail
Database) dataset containing a collection of emails. Here, the task is to decide
whether an email is spam or not. The emails are represented by high level fea-
tures, mostly word or character frequencies. The second dataset is Pendigits
(Pen-Based Recognition of Handwritten Digits) that contains downsampled im-
ages of 4× 4 pixels of digits from 0 to 9. The third is the HAR (Human Activity
Recognition Using Smartphones) [1] dataset, where human activities (walking,
walking upstairs, walking downstairs, sitting, standing and laying) were mon-
itored by smartphone sensors (accelerometer, gyroscope and angular velocity).
High level features were extracted from these measurement series.

The main properties, such as size or number of features, are presented in
Table 1. In our experiments we standardized the feature values, that is, shifted

Table 1. Data set properties

Spambase Pendigits HAR

Training set size 4140 7494 7352

Test set size 461 3498 2947

Number of features 57 16 561

Number of classes 2 10 6

Class-label distribution ≈ 6:4 ≈ uniform ≈ uniform

Parameter η 1E+4 1E+4 1E+2

Parameter λ 1E-6 1E-4 1E-2

and scaled them to have a mean of 0 and a variance of 1. Note that the stan-
dardization can be approximated by the nodes in the network locally if the
approximation of the statistics of the features are fixed and known, which can
be ensured in a fixed application.

In our simulation experiments, each example in the training data was assigned
to one node when the number of nodes was 100. This means that, for example,
with the HAR dataset each node gets 73.5 examples on average. When the
network size is 1000, we replicate the examples, that is, each example is assigned
to 10 different nodes. As for the distribution of class labels on the nodes, we
applied two different setups. The first one is uniform assignment, which means
that we assigned the examples to nodes at random independently of class label.
The number of samples assigned to each node was the same (to be more precise,
it differed by at most one due to the number of samples not being divisible by
100).

The second one is single class assignment when every node has examples only
from a single class. Here, the different class labels are assigned uniformly to the
nodes, and then the examples with a given label are assigned to one of the nodes
with the same label, uniformly. These two assignment strategies represent the
two extremes in any real application. In a realistic setting the class labels will
likely be biased but much less so than in the case of the single class assignment
scenario.

4.2 System model

In our simulation experiments, we used a fixed random k-out overlay network,
with k = 20. That is, every node had k = 20 fixed random neighbors. Simulations
were performed with a network size of 100 and 1000 nodes. In the churn-free
scenario, every node stayed online for the whole experiment. The churn scenario
is based on a real trace gathered from smartphones (see Section 4.3 below). We
assumed that a message is successfully delivered if and only if both the sender
and the receiver remains online during the transfer. We also assume that the

nodes are able to detect which of their neighbors are online at any given time
with a delay that is negligible compared to the transfer time of a model.

We assumed uniform upload and download bandwidths for the nodes, and
infinite bandwidth on the side of the server. Note that the latter assumption
favors federated learning, as gossip learning does not use a server. The uniform
bandwidth assumption is motivated by the fact that it is likely that in a real
application there will be a configured (uniform) bandwidth cap that is signifi-
cantly lower than the average available bandwidth. The transfer time of a full
model was assumed to be 172 seconds (irrespective of the dataset used) in the
long transfer time scenario, and 17.2 seconds in the short transfer time scenario.
This allowed for around 1,000 and 10,000 iterations over the course of 48 hours,
respectively.

The cycle length parameters ∆g and ∆f were set based on the constraint
that in the two algorithms the nodes should be able to exploit all the available
bandwidth. In our setup this also means that the two algorithms transfer the
same number of bits overall in the network in the same time-window. This will
allow us to make fair comparisons regarding convergence dynamics. The gossip
cycle length ∆g is thus exactly the transfer time of a full model, that is, nodes
are assumed to send messages continuously. The cycle length ∆f of federated
learning is the round-trip time, that is, the sum of the upstream and downstream
transfer times. When compression is used, the transfer time is proportionally less
as defined by the compression rate. Note, however, that in federated learning the
master always sends the full model to the workers, only the upstream transfer
is compressed.

It has to be noted that we assume much longer transfer times than what
would be appropriate for the actual models in our simulation. To put it dif-
ferently, in our simulations we pretend that our models are very large. This is
because in the churn scenario if the transfer times are very short, the network
hardly changes during the learning process, so effectively we learn over a static
subset of the nodes. Long transfer times, however, make the problem more chal-
lenging because many transfers will fail, just like in the case of very large machine
learning models such as deep neural networks. In the case of the no-churn sce-
nario this issue is completely irrelevant, since the dynamics of convergence are
identical apart from scaling time.

4.3 Smartphone traces

The trace we used was collected by a locally developed openly available smart-
phone app called STUNner, as described previously [2]. In a nutshell, the app
monitors and collects information about charging status, battery level, band-
width, and NAT type.

We have traces of varying lengths taken from 1191 different users. We divided
these traces into 2-day segments (with a one-day overlap), resulting in 40,658
segments altogether. With the help of these segments, we were able to simulate a
virtual 48-hour period by assigning a different segment to each simulated node.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

48 0 5 10 15 20 25 30 35 40 45

fr
eq

u
en

cy

Hours

-20

 0

 20

 40

 60

 80

48 0 5 10 15 20 25 30 35 40 45

P
er

ce
n
ta

g
e

(%
)

Hours

ever been online
new up
new down
online rate

Fig. 1. Online session length distribution (left) and dynamic trace properties (right)

To ensure our algorithm is phone and user friendly, we defined a device to be
online (available) when it has been on a charger and connected to the internet
for at least a minute, hence we never use battery power at all. In addition, we
also treated those users as offline who had a bandwidth of less than 1 Mbit/s.

Figure 1 illustrates some of the properties of the trace. The plot on the right
illustrates churn via showing, for every hour, what percentage of the nodes left,
or joined the network (at least once), respectively. We can also see that at any
given moment about 20% of the nodes are online. The average session length is
81.368 minutes.

4.4 Hyperparameters and Algorithms

The learning rate η and regularization coefficient λ were optimized using grid
search assuming the no-failure scenario, no compression, and uniform assign-
ment. The resulting values are shown in Table 1. These hyperparameters depend
only on the database, they are robust to the selection of the algorithm. Mini-
batches of size 10 were used in each scenario. We used logistic regression as our
learning algorithm, embedded in a one-vs-all meta-classifier.

4.5 Results

We ran the simulations using PeerSim [14]. We measure learning performance
with the help of the 0-1 loss, which gives the proportion of the misclassified
examples in the test set. In the case of gossip learning the loss is defined as the
average loss over the online nodes.

First, we compare the two aggregation algorithms for subsampled models in
Algorithm 6 (Figure 2) in the no-failure scenario. The results indicate a slight ad-
vantage of aggregateSubsamplingImproved, although the performance depends
on the database. In the following we will apply aggregateSubsamplingImproved

as our implementation of method aggregate.
The comparison of the different algorithms and subsampling probabilities is

shown in Figure 3. The stochastic gradient descent (SGD) method is also shown,

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.1 1

0
-1

 E
rr

o
r

Hours

Spambase Dataset

aggregateSubsamplingImproved 25%
aggregateSubsamplingImproved 10%

aggregateSubsampling 25%
aggregateSubsampling 10%

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 1

0
-1

 E
rr

o
r

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 1

0
-1

 E
rr

o
r

Hours

HAR Dataset

Fig. 2. Federated learning, 100 nodes, long transfer time, no failures, different aggre-
gation algorithms and subsampling probabilities.

which was implemented by gossip learning with no merging (using mergeNone).
Clearly, the parallel methods are all better than SGD. Also, it is very clear that
subsampling helps both federated learning and gossip learning. However, gossip
learning benefits much more from it. The reason is that in the case of federated
learning subsampling is implemented only in the worker master direction, the
master sends the full model back to the workers [12]. However, in gossip learning,
subsampling can be applied to all the messages.

Most importantly, gossip learning clearly outperforms federated learning in
the case of high compression rates (low sampling probability) over two of the
three datasets, and it is competitive on the remaining dataset as well. This
was not expected, as gossip learning is fully decentralized, so the aggregation
is clearly delayed compared to federated learning. Indeed, with no compression,
federated learning performs better. However, with high compression rates, slower
aggregation is compensated by a higher communication efficiency. Figure 3 also
illustrates scaling. As we can see, the performance with 100 and 1000 nodes is
practically identical for both algorithms.

Figure 4 contains our results with the churn trace. In the first hour, the
two algorithms behave just like in the no-churn scenario. On the longer range,
clearly, federated learning tolerates the churn better. This is because in federated
learning nodes always work with the freshest possible models that they receive

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Spambase Dataset

Gossip Learning
Gossip Learning 50%
Gossip Learning 25%
Gossip Learning 10%

Federated Learning
Federated Learning 50%
Federated Learning 25%
Federated Learning 10%

SGD

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Spambase Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Pendigits Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

HAR Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

HAR Dataset

Fig. 3. Federated learning and gossip learning with 100 (left) and 1000 (right) clients,
long transfer time, no failures, with different subsampling probabilities. Minibatch
Stochastic Gradient Descent (SGD) is implemented by gossip learning with no merging
(using mergeNone).

from the master, even right after coming back online. In gossip learning, outdated
models could temporarily participate in the optimization, albeit with a smaller
weight. In this study we did not invest any effort into mitigating this effect, but
outdated models could potentially be removed with more aggressive methods as
well.

We also include an artificial trace scenario, where online session lengths are
exponentially distributed following the same expected length (81 minutes) as
in the smartphone trace. The offline session length is set so we have 10% of

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Spambase Dataset

Gossip Learning
Gossip Learning 50%
Gossip Learning 25%
Gossip Learning 10%

Federated Learning
Federated Learning 50%
Federated Learning 25%
Federated Learning 10%

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Spambase Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Pendigits Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

HAR Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

HAR Dataset

Fig. 4. Federated learning and gossip learning over the smartphone trace (left) and
an artificial exponential trace (right), long transfer time, with different subsampling
probabilities.

the nodes spending any given federated learning round online in expectation,
assuming no compression. This is to reproduce similar experiments in [13]. The
results are similar to those over the smartphone trace, only the noise is larger
for gossip learning, because the exponential model results in an unrealistically
large variance in session lengths.

Figure 5 shows the convergence dynamics when we assume short transfer
times (see Section 4.2). Clearly, the scenarios without churn result in the same
dynamics (apart from a scaling factor) as the scenarios with long transfer time.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Spambase Dataset

Gossip Learning
Gossip Learning 50%
Gossip Learning 25%
Gossip Learning 10%

Federated Learning
Federated Learning 50%
Federated Learning 25%
Federated Learning 10%

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Spambase Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Pendigits Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

HAR Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

HAR Dataset

Fig. 5. Federated learning and gossip learning with no churn (left) and over the smart-
phone trace (right), short transfer time, with different subsampling probabilities.

The algorithms are somewhat more robust to churn in this case, since the nodes
are more stable relative to message transfer time.

Figure 6 contains the results of our experiments with the single class assign-
ment scenario, as described in Section 4.1. In this extreme scenario, the learning
problem becomes much harder. Still, gossip learning remains competitive in the
case of high compression rates.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Spambase Dataset

Gossip Learning
Gossip Learning 50%
Gossip Learning 25%
Gossip Learning 10%

Federated Learning
Federated Learning 50%
Federated Learning 25%
Federated Learning 10%

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Spambase Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Pendigits Dataset

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

Pendigits Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

HAR Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

48 0.01 0.1 1 10

0
-1

 E
rr

o
r

Hours

HAR Dataset

Fig. 6. Federated learning and gossip learning with no churn (left) and over the smart-
phone trace (right), long transfer time, single class assignment, with different subsam-
pling probabilities.

5 Conclusions

Here, our goal was to compare federated learning and gossip learning in terms
of efficiency. We designed an experimental study to answer this question. We
compared the convergence speed of the two approaches under the assumption
that both methods use the available bandwidth, resulting in an identical overall
bandwidth consumption.

We found that in the case of uniform assignment, gossip learning is not
only comparable to the centralized federated learning, but it even outperforms
it under the highest compression rate settings. In every scenario we examined,

gossip learning is comparable to federated learning. We add that this result relies
on our experimental assumptions. For example, if one considers the download
traffic to be essentially free in terms of bandwidth and time then federated
learning is more favorable. This, however, is not a correct approach because it
hides the costs at the side of the master node. For this reason, we opted for
modeling the download bandwidth to be identical to the upload bandwidth, but
still assuming an infinite bandwidth at the master node.

As for future work, the most promising direction is the design and evaluation
of more sophisticated compression techniques [5] for both federated and gossip
learning. Also, in both cases, there is a lot of opportunity to optimize the com-
munication pattern by introducing asynchrony to federated learning, or adding
flow control to gossip learning [6].

References

1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain
dataset for human activity recognition using smartphones. In: 21th European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN) (2013)

2. Berta, Á., Bilicki, V., Jelasity, M.: Defining and understanding smartphone churn
over the internet: a measurement study. In: Proceedings of the 14th IEEE Inter-
national Conference on Peer-to-Peer Computing (P2P 2014). IEEE (2014)

3. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S.,
Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for federated learning
on user-held data. In: NIPS Workshop on Private Multi-Party Machine Learning
(2016)

4. Danner, G., Berta, Á., Hegedűs, I., Jelasity, M.: Robust fully distributed mini-
batch gradient descent with privacy preservation. Security and Communication
Networks 2018, 6728020 (2018)

5. Danner, G., Jelasity, M.: Robust decentralized mean estimation with limited com-
munication. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018.
Lecture Notes in Computer Science, vol. 11014, pp. 447–461. Springer International
Publishing (2018)

6. Danner, G., Jelasity, M.: Token account algorithms: The best of the proactive
and reactive worlds. In: Proceedings of The 38th International Conference on Dis-
tributed Computing Systems (ICDCS 2018). pp. 885–895. IEEE Computer Society
(2018)

7. Dean, J., Corrado, G.S., Monga, R., Chen, K., Devin, M., Le, Q.V., Mao, M.Z.,
Ranzato, M., Senior, A., Tucker, P., Yang, K., Ng, A.Y.: Large scale distributed
deep networks. In: Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1. pp. 1223–1231. NIPS’12, Curran As-
sociates Inc., USA (2012)

8. Dua, D., Graff, C.: UCI machine learning repository (2019),
http://archive.ics.uci.edu/ml

9. European Commission: General data protection regulation (GDPR) (2018),
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-
protection/2018-reform-eu-data-protection-rules

10. Hegedűs, I., Berta, Á., Kocsis, L., Benczúr, A.A., Jelasity, M.: Robust decentralized
low-rank matrix decomposition. ACM Transactions on Intelligent Systems and
Technology 7(4), 62:1–62:24 (May 2016)

11. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-
based peer sampling. ACM Transactions on Computer Systems 25(3), 8 (Aug
2007)

12. Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.:
Federated learning: Strategies for improving communication efficiency. In: Private
Multi-Party Machine Learning (NIPS 2016 Workshop) (2016)

13. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Arti-
ficial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54,
pp. 1273–1282. PMLR, Fort Lauderdale, FL, USA (20–22 Apr 2017)

14. Montresor, A., Jelasity, M.: Peersim: A scalable P2P simulator. In: Proceedings of
the 9th IEEE International Conference on Peer-to-Peer Computing (P2P 2009).
pp. 99–100. IEEE, Seattle, Washington, USA (Sep 2009), extended abstract

15. Ormándi, R., Hegedűs, I., Jelasity, M.: Gossip learning with linear models on fully
distributed data. Concurrency and Computation: Practice and Experience 25(4),
556–571 (2013)

16. Roverso, R., Dowling, J., Jelasity, M.: Through the wormhole: Low cost, fresh
peer sampling for the internet. In: Proceedings of the 13th IEEE International
Conference on Peer-to-Peer Computing (P2P 2013). IEEE (2013)

17. Wang, J., Cao, B., Yu, P.S., Sun, L., Bao, W., Zhu, X.: Deep learning towards
mobile applications. In: IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS). pp. 1385–1393 (Jul 2018)

