
Decentralized machine learning using compressed
push-pull averaging

Gábor Danner
danner@inf.u-szeged.hu

University of Szeged
Szeged, Hungary

István Hegedűs
ihegedus@inf.u-szeged.hu

University of Szeged
Szeged, Hungary

Márk Jelasity
jelasity@inf.u-szeged.hu

University of Szeged, and MTA-SZTE
Research Group on AI

Szeged, Hungary

Abstract

For decentralized learning algorithms communication effi-
ciency is a central issue. On the one hand, good machine
learning models require more and more parameters. On the
other hand, there is a relatively large cost for transferring
data via P2P channels due to bandwidth and unreliability
issues. Here, we propose a novel compression mechanism
for P2P machine learning that is based on the application
of stateful codecs over P2P links. In addition, we also rely
on transfer learning for extra compression. This means that
we train a relatively small model on top of a high quality
pre-trained feature set that is fixed. We demonstrate these
contributions through an experimental analysis over a real
smartphone trace.

CCS Concepts: • Computing methodologies → Ma-

chine learning; • Networks→ Peer-to-peer protocols;
• Computer systems organization → Peer-to-peer ar-

chitectures.

Keywords: decentralized averaging, compressed communi-
cation, machine learning

ACM Reference Format:

Gábor Danner, István Hegedűs, and Márk Jelasity. 2020. De-
centralized machine learning using compressed push-pull
averaging. In 1st International Workshop on Distributed In-

frastructure for Common Good (DICG ’20), December 7–11,

2020, Delft, Netherlands. ACM, New York, NY, USA, 6 pages.
h�ps://doi.org/10.1145/3428662.3428792

1 Introduction

We are witnessing an increased interest in machine learn-
ing solutions that do not require data collection at a central
location [21]. Federated learning, for example, has been de-
veloped and deployed by Google to be able to exploit user
data without violating data privacy [13, 16].

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of a national government. As such,
the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.

DICG 2020, December 07–11 , 2020, Delft, The Netherlands

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8197-0/20/12. . . $15.00
h�ps://doi.org/10.1145/3428662.3428792

Within this area, solutions that are even more radically
decentralized, such as gossip learning [18], are promising
candidates to support applications for the common good [5].
The reason is that these solutions can be deployed literally
without any investment at all, relying only on user devices
and no additional infrastructure, without any pressure to
make a profit.
In this paper, we propose a novel variant of gossip learn-

ing that uses codec-based compression to increase the com-
munication efficiency. Compression methods have been
studied in depth in the context of simpler computations such
as averaging [6, 9, 15, 23]. In the context ofmachine learning,
federated learning solutions also use compression [13, 20]
but the actual averaging is performed centrally. Koloskova
et al. have a similar focus to our paper but they apply only
simple stateless quantization [12].
Our contribution in this paper is twofold. First, we adapt

the compressed push-pull averaging algorithm from [7] for
gossip learning, and achieve a higher communication effi-
ciency than previous methods based on subsampling. Sec-
ond, we evaluate the solution over datasets including a
transfer learning dataset, thereby demonstrating that it is
feasible to adapt pre-existing deep neural network models
to another domain by training only their last layer, which
makes them accessible for gossip learning applications.

2 Background

We give a short overview of some of the concepts and ideas
used here taken frommachine learning and gossip learning.

2.1 Machine Learning: Classification

In the classification problem, a data set is given that con-
tains examples in the form (G8, ~8) ∈ D, where 8 ∈ {1, . . . , =}.
Here G ∈ R3 is a 3 dimensional real vector (the so-called fea-
ture vector) that represents the a sample from the data set
D, and ~8 ∈ C is the corresponding class label. The prob-
lem of supervised learning is to find the parameters (F) of
a function FF : R3 → C, that can correcly classify the sam-
ples of the dataset. In addition, we expect that this function
can classify any samples drawn from the same distribution
as the data set as well. This property is called generalization.

https://doi.org/10.1145/3428662.3428792
https://doi.org/10.1145/3428662.3428792

DICG 2020, December 07–11 , 2020, Del�, The Netherlands Gábor Danner, István Hegedűs, and Márk Jelasity

Oneway to find the parameters of the above defined func-
tion is to solve a minimization problem

F∗ = argmin
F

� (F) =
1

=

=∑

8=1

ℓ (FF (G8),~8) +
_

2
‖F ‖2,

where ℓ () is a loss function (e.g., squared error) and ‖F ‖2

is the regularization term with _ regularization coefficient.
Gradient descent is the most basic method that can be used
to find F∗. Here, the following iteration is expected to cov-
erge to F∗:

FC+1 = FC − [C∇F � (FC) =

FC − [C (_FC +
1

=

=∑

8=1

mℓ (�F (G8),~8)

mF
(FC)),

where ∇F is the gradient of the objective function in F ,
summed over the samples, and [is the learning rate. Sto-
chastic gradient descent (SGD) computes the approximation
of the gradient on only one sample at a time, taking different
samples for each step:

FC+1 = FC − [C (_FC +
mℓ (�F (G8), ~8)

mF
(FC)).

Logistic regression is a specific instantiation of the above
abstract framework with

� (F) = −
1

=

=∑

8=1

ln % (~8 |G8 ,F) +
_

2
‖F ‖2,

where ~8 ∈ {0, 1}, % (0|G8 ,F) = (1 + 4G? (F)G))−1 and
% (1|G8 ,F) = 1 − % (0|G8 ,F). Usually a bias term (1) is also
added to the parameters and we have % (0|G8 ,F) = (1 +
4G? (F)G + 1))−1.

In this paper, we use logistic regression as our learning
algorithm. However, as we desribe later, with transfer learn-
ing we can effectively learn arbitrarily complex deep neural
network models as well.

2.2 Gossip learning

Gossip Learning [18] is a decentralized learning algorithm,
where a network of nodes is given. Each node stores a part
of the data set (perhaps only one sample per node), and ma-
chine learning models take random walks in the network
while being updated on the nodes by the local training data.
The update step of the models can be done by the above de-
scribed gradient method. The models can also be averaged
in parallel to these update steps, which results in a signifi-
cant speedup. This averaging is normally implemented by
merging (weighted averaging) models locally.
We use partitioned token gossip learning as our base-

line [11]. In this algorithm, the token account algorithm [8]
is applied to gossip learning with sampling-based compres-
sion [10]. The model parameter vector is divided into pre-
defined partitions that travel independently in the network.
Each partition has its own age that is used as a weight dur-
ing merging.

In scenarios where the message transfer time is consid-
erably shorter than the gossip cycle length, token accounts
can improve the performance of gossip algorithms by form-
ing rapid message chains, where information is propagated
like a “hot-potato”, while still providing guarantees on amor-
tized communication costs. In a nutshell, during each cycle,
each node gets a token, while sending a message costs a to-
ken. The more tokens a node has, the more eager it is to
spend them, possibly sending freshly arrived information
to more than one node, or sending a message proactively
(to prevent the extinction of messages). In partitioned token
gossip learning, each partition has its own token account.

2.3 Codec Basics

A codec can be used to encode and decode a series of real
valued messages over a given directed link. It consists of an
encoder and a decoder at the origin and the target of the
link, respectively. We shall use the notations from [17]. En-
coding (quantization) maps real values to a discrete alpha-
bet (, and decoding maps an element of alphabet (back to a
real value. Codecs may have a state (e.g. the last transmitted
value). Every stateful codec implementation defines its own
state space Ξ (the same for the encoder and the decoder).
The encoder & : Ξ × R → (maps a given real value

to a quantized encoding based on the current local state of
the encoder. The decoding function : Ξ × (→ R maps
the encoded value back to a real value based on the current
local state of the decoder. The state transition function � :
Ξ × (→ Ξ determines the dynamics of the state of the
encoder and the decoder.
Although the encoder and the decoder are two remote

agents that communicate over a limited link, we can ensure
that both of them maintain an identical state, since the en-
coder’s side can simulate the decoder locally, thus they can
both perform identical state transitions, assuming the same
initial state. If communication is not reliable, the algorithms
using the codec must take additional measures to keep the
states consistent.

3 Compressed push-pull learning

Our compressed push-pull learning algorithm is based on a
compressed push-pull averaging protocol that compresses
communication using codecs [7]. The nodes perodically
train their model on the local data, as well as perform dis-
tributed averaging of the models.
When used without model training, the algorithm falls

back to computing the average of the initial F vectors
weighted by their respective initial C values. This is achieved
by simultaneously computing the average of CF and that of
C , since the quotient of these is the weighted average of F .

The pseudocode is shown in Algorithms 1 and 2. The al-
gorithm is local, hence the scope of the variables is limited
to the current node.

Decentralized machine learning using compressed push-pull averaging DICG 2020, December 07–11 , 2020, Del�, The Netherlands

Models are encoded before sending and decoded after be-
ing received. During a push-pull transaction, the nodes ex-
change their encoded models, then, based on the decoded
models, a difference vector X is computed on both sides that
represents for each parameter the amount of mass being
transferred in the push-pull exchange. Both nodes compute
the same X (with opposite signs), because they use only the
information that was exchanged, ignoring the current, un-
compressed local modelF . The difference is scaled by �/2,
where � ∈ (0, 1] is a “greediness” parameter. � = 1 results
in the two nodes having equal values after the exchange, as-
suming atomic (non-overlapping) push-pull exchanges and
no compression. When these assumptions do not hold, a
smaller� is useful for stabilizing convergence. After decod-
ing the models, the codec states are updated.
The techniques used for compression and ensuring sum

preservation are largly unchanged from [7] and we do not
go into great detail concerning these. One difference worth
mentioning, though, is that we omitted the flow compensa-
tion component, because it had a negative influence on the
machine learning performance. Each push-pull exchange
has an increasing unique ID, which is used to reject out-of-
order push messages. If a push message is lost or rejected,
neither side performs an update, so the network remains
consistent. (Note that update refers to an averaging step, not
to model training.) When node � accepts a push message
from node �, it performs an update, and sends back a pull
message. If this arrives in time, the counterpart update is
performed as well, the state of the network becoming con-
sistent again. If the pull message is dropped or delayed then
the update performed by � needs to be reversed. This hap-
pens when � receives the next push message from � and
learns (with the help of the update counter D) that� did not
perform the counterpart update. The update is reversed us-
ing the transfer saved in X . Codec states are backed up and
restored in a similar fashion.
Recall that we are averaging CF (and C as well) across the

network. During compression, however, we encode F in-
stead of CF . This is because CF will surely not converge, but
F might, which is beneficial for adaptive codecs. Since C is
transmitted, the remote node can still compute an estimate
for CF . In the messages, only the model F is compressed.
WhenF is a large vector, the amortized cost of transmitting
the other variables is negligible.
The algorithm works with any codec that is given by

the definition of the state space Ξ, the alphabet (, and the
functions & , � and , as described previously. We apply
these functions on the model parameter vector: the opera-
tion is performed elementwise, each parameter having its
own codec state. For each directed link (9 , 8) there is a vec-
tor of codecs for the direction 9 → 8 as well as 9 ← 8 . For
the 9 → 8 direction, node 9 stores the codec states (used
for encoding push messages) in b8,>DC,;>2 and for the 9 ← 8

direction the codecs (used for decoding pull messages) are

Algorithm 1 Compressed push-pull learning (Part 1)

1: F is the local model.
2: C is the age of the local model.
3: � is the local data set.
4: D8,8= and D8,>DC record the number of times the local

model was updated as a result of an incoming push or
pull message from 8 , respectively.

5: B8 and B̂8 are the encodedmodel and model age that were
sent in the last push message to 8 .

6: X8,>DC , X8,8= are the last push, or pull parameter transfers
to 8 , respectively.

7: X̂8,>DC , X̂8,8= are the last push, or pull age transfers to 8 ,
respectively.

8: 838 is the current unique ID created when sending the
latest push message to 8 , initially 0.

9: 83<0G,8 is the maximal unique ID received in any push
message from 8 , initially −∞.

10: b8,8=,;>2, b8,8=,A4<, b8,>DC,;>2 , b8,>DC,A4< ∈ Ξ are the states of
the codecs for the local node and remote node 8 , with
initial values of b0.

11: b8,8=′,;>2 and b8,8=′,A4< are the previous values of b8,8=,;>2
and b8,8=,A4<, with initial values of b0.

12:

13: procedure onNextCycle ⊲ Called every Δ time units
14: (F, C) ← train(F, C, �)
15: 8 ← randomOutNeighbor()
16: B8 ← & (b8,>DC,;>2 ,F) ⊲ Model encoded and saved
17: B̂8 ← C

18: 838 ← 838 + 1
19: send push message (D8,>DC , B8, B̂8, 838) to node 8

stored in b8,>DC,A4< at node 9 . (Here, the subscript “out” indi-
cates that the given codec is for the outgoing link.) Incoming
link states are handled similarly.

4 Experiments

Now, we shall describe our experimental setup and our re-
sults.

4.1 Datasets

We used two different datesets to evaluate our algorithm,
and a third dataset used for our transfer learning approach,
as we describe later. The main properties are shown in
Table 1. The HAR (Human Activity Recognition Using
Smartphones) database [1, 2] contains records that repre-
sent movements from 6 different classes (walking, walk-
ing_upstairs, walking_downstairs, sitting, standing, laying).
The data was collected from the smart phones of 30 differ-
ent people, using the accelerometer, gyroscope and angular
velocity sensors. High level features were extracted based
on the frequency domain.

DICG 2020, December 07–11 , 2020, Del�, The Netherlands Gábor Danner, István Hegedűs, and Márk Jelasity

Algorithm 2 Compressed push-pull learning (Part 2)

20: procedure onPushMessage(D, B, B̂, 83, 8) ⊲ Received
from node 8

21: if 83<0G,8 < 83 then ⊲ This is not an old,
out-of-order message

22: 83<0G,8 ← 83

23: if D < D8,8= then ⊲ Last pull has not arrived,
reverse corresponding update

24: F ← (C ·F + X8,8=)/(C + X̂8,8=)

25: C ← C + X̂8,8=
26: D8,8= ← D8,8= − 1
27: (b8,8=,;>2, b8,8=,A4<) ← (b8,8=′,;>2 , b8,8=′,A4<) ⊲

Previous codec states are restored
28: B?D;; ← & (b8,8=,;>2,F)

29: (b8,8=′,;>2 , b8,8=′,A4<) ← (b8,8=,;>2, b8,8=,A4<) ⊲ Codec
states are backed up before update

30: send pull message (B?D;; , C, 83) to node 8
31: update(8, 8=, B?D;; , C, B, B̂)

32:

33: procedure onPullMessage(B, B̂, 83, 8) ⊲ Received from
node 8

34: if 838 = 83 then ⊲ This is the answer for the last
push message, not an old one

35: update(8, >DC, B8, B̂8, B, B̂) ⊲ The node uses the
same data it sent, not the current local model

36:

37: procedure update(8,3, B;>2 , B̂;>2 , BA4<, B̂A4<)
38: D8,3 ← D8,3 + 1
39: X8,3 ← � · 1

2 (̂B;>2 · (b8,3,;>2 , B;>2) − B̂A4< ·

 (b8,3,A4<, BA4<)) ⊲ Models are decoded and weighted
by age

40: X̂8,3 ← � · 12 (̂B;>2 − B̂A4<)

41: (b8,3,;>2 , b8,3,A4<) ← (� (b8,3,;>2 , B;>2), � (b8,3,A4<, BA4<))

⊲ Codec states are updated

42: F ← (C ·F − X8,3)/(C − X̂8,3) ⊲ The updates operate
on CF , notF , hence the conversions

43: C ← C − X̂8,3 ⊲ Notice that this new C is used above

The other dataset we used for evaluation is MNIST [14].
It contains images of handwritten digits with dimension
28 × 28, each pixel from the range [0,255]. The Fashion-
MNIST [22] dataset was used for transfer learning. It has
the same parameters but it contains images of clothes and
accessories instead of numbers.

4.2 Transfer learning

In the case of our image recognition tasks, MNIST, we did
not learn over the raw data directly but instead performed
transfer learning [19], aswe explain here. The idea is thatwe
build a complex convolutional neural network (CNN)model
offline over Fashion-MNIST and, before learning begins in

Table 1. Data set properties

HAR MNIST FMNIST

Training size 7352 60000 60000
Test size 2947 10000 10000
#features 561 784 784
#classes 6 10 10
Label distrib. ≈ uniform ≈ uniform ≈ uniform

the P2P network, all the nodes receive this pre-trained net-
work. The nodes then use features extracted by this net-
work to build a simple linear model over a different problem,
namelyMNIST. This way, we can learn (or, rather, fine-tune)
a complex model with relatively little communication.
The CNN model for Fashion-MNIST had a LeNet-5-like

architecture [14]. The layers were the following: 2D convo-
lution (6 × 5 × 5), 2D max-pooling (2 × 2), 2D convolution
(16 × 5 × 5), 2D max-pooling (2 × 2), a dense layer with
120 units, a dense layer with 84 units, and a classification
layer with 10 units. All the units in the layers use the relu
activation function. After the training process, we removed
the dense layers from the network. The last layer of this
reduced model was used as the feature set for the MNIST
dataset [19]. Fashion-MNIST has a more complex structure
and represents images rich in detail, so the convolutional
layers have to extract features that are potentially useful for
other tasks as well. The extracted feature space has 400 di-
mensions as opposed to the original 784 features.
When training a linear model using these new 400 fea-

tures over MNIST, the accuracy (the probability of correct
classification over the test set) is 0.9785. When training the
full CNN model over the raw MNIST dataset, the model can
achieve an accuracy of 0.9890. At the same time, a linear
model on the raw MNIST dataset just gives an accuracy of
0.9261. This clearly shows that transfer learning offers a sig-
nificant advantage.
When reducing the number of features from 400 using

Gaussian Random Projection [4] to 128 features, the linear
model has an accuracy of 0.9579, andwith 78 features (about
the 10% of the feature size of the original space) gives us an
accuracy of 0.9330. In our evaluation, we used the smallest
feature space of 78 features.

4.3 Churn trace

In our experiments we modeled the churn of the nodes
based on real world measurements [3] performed by an An-
droid application called STUNner. The measurements con-
tain the network state, carrier, battery status, and the band-
with of the devices. We used this information to model the
churn in the network. We divided the collected data into 2-
day periods and assigned one such measurement trace to
each node to simulate their behavior. We considered a node
to be online if its network bandwith had been at least 1MB/s

Decentralized machine learning using compressed push-pull averaging DICG 2020, December 07–11 , 2020, Del�, The Netherlands

 0.05

 0.1

 0.15

 0.2

 0.25

 0

HAR Dataset

Time (hours)

0
-
1
 E

r
r
o
r

 24 0.1 1 10

HAR Dataset

Time (hours)

Token k=5, η=10
-3

Token k=20, η=10
-3

Token k=5
Token k=20
Push-Pull k=5
Push-Pull k=20

 0.05

 0.1

 0.15

 0.2

 0.25

 0

HAR Dataset, churn

Time (hours)
 24 0.1 1 10

HAR Dataset, churn

Time (hours)

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0

MNIST Dataset

Time (hours)
 24 0.1 1 10

MNIST Dataset

Time (hours)

Token k=5, η=10
-3

Token k=20, η=10
-3

Token k=5
Token k=20
Push-Pull k=5
Push-Pull k=20

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0

MNIST Dataset, churn

Time (hours)
 24 0.1 1 10

MNIST Dataset, churn

Time (hours)

Figure 1. Results over HAR and MNIST without and with churn.

for at least a minute and the charger was connected to the
phone. Using this definition, about 20% of the nodes are on-
line at any given time. For a successful message transfer,
both sides must stay online for the duration of the transfer.

4.4 Metaparameters

We used a fixed random :-out graph as the overlay network,
with : = 5 or : = 20. When choosing a random neigh-
bor, only online nodes were considered. The network size
was 100. The training dataset was standardized (shifted and
scaled so as to have a mean of 0 and variance of 1), and each
example was assigned to one of these nodes.
For learning, we used logistic regression embedded in

a one-vs-all meta-classifier, with a constant learning rate
[= 10−2 unless stated otherwise. We initialized both al-
gorithms so that (F, C) = train(0, 0, �); that is, there is an
initial training step.
We used the “randomized” token strategy [8] for the par-

titioned token gossip learning, with parameters � = 10,
� = 20. The models were divided into 10 partitions, that is,
a message contained (on average) 10% of the parameters. To
make the baseline stronger, we assume, for the purposes of
message size, that it encodes real numbers to a 16-bit float-
ing point format. However, in the case of the baseline we do
not actually perform the encoding; hence its performance
will be an upper bound on any possible 16-bit floating point
format, such as IEEE Half-precision Floating Point Format
or Brain Floating Point Format. This means the baseline en-
codes a parameter to 1.6 bits per message on average.
In the compressed push-pull learning experiments we

used the greediness parameter � = 0.5 and the Pivot
codec [7], an adaptive codec that encodes to a single bit.
(Note that this means 2 bits of communication per param-
eter per cycle, since there are two messages per cycle on av-
erage.) We initialized its stepsize 3 to 10[. Our preliminary
experiments suggested that this is a good setting in the case
of constant learning rate and standardized datasets.
The length of the experiments was two simulated days.

However, in the first 24 hours no training occurs, only
dummy messages are sent; this period is used to “warm up”

the token account algorithm to attain dynamics that reflect a
continued use of the protocol. For example, when it is used
as part of a decentralized machine learning platform that
runs different learning tasks continuously. Only the second
24 hours are shown in the plots.
The cycle length of the baseline was set so that it could

perform 10,000 cycles in 24 hours. We set the cycle length
of the push-pull algorithm so that on average, the two al-
gorithms transfer the same number of bits during the same
amount of time; this resulted in 8,000 cycles.
The message transfer time of the baseline was set to one-

hundredth of its cycle length, since such bursty communica-
tion benefits the token account algorithms.We set the trans-
fer time for the push-pull algorithm to reflect the same band-
width.

4.5 Results

The average 0-1 error over the online nodes on the test set
as a function of time (or, equivalently, communication cost)
is shown in Fig. 1. Note that the first part of the horizontal
axis is linear, and the second part is logarithmic. Each plot
is the average of 5 runs with different random seeds. The
plots are noisy in the churn scenario, due to offline nodes
with relatively poor models going online.

In the examined scenarios, compressed push-pull learn-
ing clearly outperformed token account learning, despite
the latter’s benefits of lossless 16-bit compression and mul-
tiple learning rates. This can be seen by comparing how
quickly the algorithms reach a certain level of error. In
the no-churn scenario, on the HAR dataset, a 10% error is
achieved by our novel algorithm in less than half, and a
6% error in less than one-ninth of the time needed by to-
ken account learning. On the MNIST dataset, a 10% error is
achieved in less than one-fourth, and a 8% error in less than
one-fifth of the time needed by token account learning.
Now, let us examine the effects of the out-degree : . Usu-

ally, a smaller : is worse, because it increases the mixing
time of the graph. However, a bigger : results in less fre-
quent communication over a given link; in the case of com-
pressed push-pull with an adaptive codec, this makes the

DICG 2020, December 07–11 , 2020, Del�, The Netherlands Gábor Danner, István Hegedűs, and Márk Jelasity

codec adapt slower, which can outweigh the mixing time.
(In other words, more codecs require more communication
to adapt.) Still, an even more significant factor arises in the
churn scenario: with : = 5, it is not uncommon that a node
is unable to find an online neighbor, making : = 20 the bet-
ter choice even for the adaptive codec.
It is interesting to note that in the very early part of the

simulation, the compressed push-pull with : = 20 performs
better in the presence of churn than in its absence. This is
because on this small timescale, node status is relatively sta-
ble, so the main effect of churn is the reduced set of online
neighbors, approximating the effects of a smaller : , which
helps the Pivot codec.

5 Conclusions

In this paper, we extended the compressed push-pull av-
eraging algorithm with weighted average calculation, and
made multiple adjustments to adapt and optimize it for ma-
chine learning. We evaluated the resulting codec-based gos-
sip learning algorithm, and found that the method is com-
petitive in the scenarios we studied. We also obtained con-
siderable extra compression with the help of transfer learn-
ing, where, instead of the 784 raw MNIST features, we used
only 78 features (got from a Fashion-MNIST model) and the
linear model over this compressed feature set still allowed
us to outperform the linear model over the original 784 raw
features.

Acknowledgments

This work was supported by the Hungarian Government
and the European Regional Development Fund under the
grant number GINOP-2.3.2-15-2016-00037 (“Internet of Liv-
ing Things”) and by grant TUDFO/47138-1/2019-ITMof the
Ministry for Innovation and Technology, Hungary.

References
[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and

Jorge Luis Reyes-Ortiz. 2013. A public domain dataset for human ac-
tivity recognition using smartphones.. In Esann, Vol. 3. 3.

[2] K. Bache and M. Lichman. 2013. UCI Machine Learning Repository.
[3] Árpád Berta, Vilmos Bilicki, and Márk Jelasity. 2014. Defining and

Understanding Smartphone Churn over the Internet: a Measurement
Study. In Proceedings of the 14th IEEE International Conference on Peer-

to-Peer Computing (P2P 2014) (London, UK). IEEE.
[4] Ella Bingham and HeikkiMannila. 2001. Random projection in dimen-

sionality reduction: applications to image and text data. In Proceedings
of the seventh ACM SIGKDD international conference on Knowledge dis-

covery and data mining. 245–250.
[5] S. Buckingham Shum, K. Aberer, A. Schmidt, S. Bishop, P. Lukowicz,

S. Anderson, Y. Charalabidis, J. Domingue, S. Freitas, I. Dunwell, B.
Edmonds, F. Grey, M. Haklay, M. Jelasity, A. Karpištšenko, J. Kohlham-
mer, J. Lewis, J. Pitt, R. Sumner, andD. Helbing. 2012. Towards a global
participatory platform. The European Physical Journal Special Topics

214, 1 (2012), 109–152.
[6] Ruggero Carli, Fabio Fagnani, Paolo Frasca, and Sandro Zampieri.

2010. Gossip consensus algorithms via quantized communication. Au-
tomatica 46, 1 (2010), 70–80.

[7] Gábor Danner and Márk Jelasity. 2018. Robust decentralized mean
estimation with limited communication. In European Conference on

Parallel Processing. Springer, 447–461.
[8] Gábor Danner and Márk Jelasity. 2018. Token account algorithms:

the best of the proactive and reactive worlds. In 2018 IEEE 38th Inter-

national Conference on Distributed Computing Systems (ICDCS). IEEE,
885–895.

[9] M. Fu and L. Xie. 2009. Finite-Level Quantized Feedback Control for
Linear Systems. IEEE Trans. Automat. Control 54, 5 (2009), 1165–1170.

[10] István Hegedűs, Gábor Danner, and Márk Jelasity. 2019. Gossip learn-
ing as a decentralized alternative to federated learning. In IFIP Inter-

national Conference on Distributed Applications and Interoperable Sys-

tems. Springer, 74–90.
[11] IstvánHegedűs, GáborDanner, andMárk Jelasity. 2021. Decentralized

Learning Works: An Empirical Comparison of Gossip Learning and
Federated Learning. manuscript under review.

[12] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. 2019. Decen-
tralized Stochastic Optimization and Gossip Algorithms with Com-
pressed Communication. In Proceedings of the 36th International Con-

ference on Machine Learning (Proceedings of Machine Learning Re-

search, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.).
PMLR, Long Beach, California, USA, 3478–3487.

[13] Jakub Konecný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning:
Strategies for Improving Communication Efficiency. In Private Multi-

Party Machine Learning (NIPS 2016 Workshop).
[14] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.

Gradient-Based Learning Applied to Document Recognition. Proc. of
the IEEE 86, 11 (Nov. 1998), 2278–2324.

[15] T. Li, M. Fu, L. Xie, and J. F. Zhang. 2011. Distributed Consensus With
Limited Communication Data Rate. IEEE Trans. Automat. Control 56,
2 (2011), 279–292.

[16] BrendanMcMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceedings of the 20th

International Conference on Artificial Intelligence and Statistics (Pro-

ceedings of Machine Learning Research, Vol. 54), Aarti Singh and Jerry
Zhu (Eds.). PMLR, Fort Lauderdale, FL, USA, 1273–1282.

[17] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans. 2007. Feedback
Control Under Data Rate Constraints: An Overview. Proc. IEEE 95, 1
(2007), 108–137.

[18] Róbert Ormándi, István Hegedűs, and Márk Jelasity. 2013. Gossip
learning with linear models on fully distributed data. Concurrency

and Computation: Practice and Experience 25, 4 (2013), 556–571.
[19] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura,

and R. M. Summers. 2016. Deep Convolutional Neural Networks for
Computer-Aided Detection: CNN Architectures, Dataset Characteris-
tics and Transfer Learning. IEEE Transactions on Medical Imaging 35,
5 (2016), 1285–1298.

[20] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan
McMahan. 2017. Distributed Mean Estimation with Limited Com-
munication. In Proc. 34th Intl. Conf. Machine Learning, (ICML). 3329–
3337.

[21] Ji Wang, Bokai Cao, Philip S. Yu, Lichao Sun, Weidong Bao, and Xi-
aomin Zhu. 2018. Deep Learning towards Mobile Applications. In
IEEE 38th International Conference on Distributed Computing Systems

(ICDCS). 1385–1393.
[22] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a

Novel Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv:cs.LG/1708.07747 [cs.LG]

[23] M. Zhu and S. Martinez. 2011. On the Convergence Time of Asyn-
chronous Distributed Quantized Averaging Algorithms. IEEE Trans.

Automat. Control 56, 2 (2011), 386–390.

	Abstract
	1 Introduction
	2 Background
	2.1 Machine Learning: Classification
	2.2 Gossip learning
	2.3 Codec Basics

	3 Compressed push-pull learning
	4 Experiments
	4.1 Datasets
	4.2 Transfer learning
	4.3 Churn trace
	4.4 Metaparameters
	4.5 Results

	5 Conclusions
	Acknowledgments
	References

