
Spanning Tree or Gossip for Aggregation:

A Comparative Study

Lehel Nyers1 and Márk Jelasity2⋆

1 University of Szeged, Hungary, and Subotica Tech, Subotica, Serbia
2 MTA-SZTE Research Group on Artificial Intelligence, and University of Szeged, Hungary

Abstract. Distributed aggregation queries like average and sum can be imple-

mented in several different paradigms including gossip and hierarchical approaches.

In the literature, these two paradigms are routinely associated with stereotypes

such as “trees are fragile and complicated” and “gossip is slow and expensive”.

However, a closer look reveals that these statements are not backed up by thor-

ough studies. A fair and informative comparison is clearly needed. However, it is
a very hard task, because the performance of protocols from the two paradigms

depends on different subtleties of the environment and the implementation of the

protocols. We tackle this problem by carefully designing the comparison study.

We use state-of-the-art algorithms and propose the problem of monitoring the

network size in the presence of churn as the ideal problem for comparing very

different paradigms for global aggregation. Our experiments help us identify the
most important factors that differentiate between gossip and spanning tree aggre-

gation: the time needed to compute a truly global output, the properties of the

underlying topology, and the sensitivity to dynamism. We demonstrate the effect

of these factors in different practically interesting topologies and scenarios. Our

results help us to choose the right protocol in the knowledge of the topology and

dynamism patterns.

1 Introduction

Fully distributed aggregation is an important problem where we wish to execute queries
such as sum, average, minimum, or maximum over unreliable networks (sensor net-
works, physical networks of routers, overlay networks, etc.), in which no central servers
are directly accessible.

At least two paradigms are known for solving this problem. On the one hand, gossip

algorithms were proposed to achieve large degrees of robustness. Gossip protocols do
not rely on fixed topologies: nodes exchange information with random neighbors to
implement a diffusion-like computation pattern, and as a result the system converges to
a state where all the nodes know the query result. From the vast literature, here we focus
on the adaptive approaches only. In [1], the authors propose the restarting technique
to convert any one-shot algorithm into an adaptive one. Apart from restarting, other
approaches have been proposed that focus on error correction through some form of
bookkeeping at the nodes [2–5].

⋆ The original publication is available at link.springer.com. In Proc. Euro-Par 2014, Springer

LNCS 8632 pp. 379–390, doi:10.1007/978-3-319-09873-9_32. M. Jelasity was supported by

the Bolyai Scholarship of the Hungarian Academy of Sciences. This work was supported by

the European Union and the European Social Fund through project FuturICT.hu (grant no .:

TAMOP-4.2.2.C-11/1/KONV-2012-0013).

The other paradigm is hierarchical aggregation, a popular method in sensor net-
works [6]. It was also proposed for general process groups [7]. Tree-based aggrega-
tion remained unpopular in some areas, for example, peer-to-peer networks due to
the widely held assumptions about its lack of robustness. There are a few notable ex-
ceptions: the Astrolabe framework [8], which is in fact only a virtual tree with com-
pletely unstructured gossip communication patterns behind it; the GAP protocol and
its variants [5, 9–11] that actually build a spanning tree over a distributed network; and
PRISM [12], a hierarchical approach that is built on top of a distributed hashtable, with
a focus on detecting and signaling imprecise output.

Unfortunately, the literature is strongly influenced by stereotypes about both ap-
proaches like “spanning tree protocols are fragile” and “gossip protocols are slow and
expensive”. It is tacitly assumed that these statements have been conclusively settled.
However, when surveying the literature, this does not turn out to be the case. In fact,
we are not aware of any studies with a focus on a principled comparison among very
different paradigms for aggregation. For example, Merrer et al [13] compare algorithms
for size estimation, but they do not include spanning tree methods that are in the focus
of our interest. Chitnis et al consider a very basic tree protocol that has no capabilities
for reconfiguration, and briefly compare it with gossip [14]. The environment they con-
sider is sensor networks. Due to the limited scope and suboptimal representatives of
gossip and tree protocols, this work does not settle the problems we raised. Wuhib et
al [5] propose an adaptive gossip protocol and compare it to GAP. Interestingly, GAP
outperformed the gossip protocol in all scenarios examined (which were inspired by
aggregation tasks in wired networks of routers). While this is a very nice result, it is far
from complete due to the particular selection of the communication topology and the
aggregation problem.

Our main contribution is that we propose a careful experimental design to shed
light on the strengths and the weaknesses of both approaches. We experiment with
competitive, state-of-the-art representatives of spanning tree and gossip protocols, and
model different network environments. We identify the key aspects that determine the
performance of the protocols in order to help application developers select the best
solution in a given practical setting.

2 System Model

We assume that the system consists of N nodes that form a network with the help of
reliable channels such as a TCP connections or physical links. Nodes communicate by
exchanging messages over these channels only. Messages can be delayed. In addition,
nodes can join and leave at any time. We assume the existence of a failure detector that
sends a message to the node when a neighbor node fails. Leaving nodes and crashed
nodes are treated identically. Leaving nodes can join again, and while offline, they retain
their state. When they join again, they reconnect to their previous neighbors.

3 The protocols in our comparison

The common problem these algorithms solve is the monitoring of aggregate values.
That is, at any point in time t we have a network of N(t) nodes all of which have
a value. Let the set of values at time t be A(t) = {a1(t), . . . , aN(t)(t)}. The task is

to continuously calculate (monitor) a global function f(A(t)). A given algorithm for
solving this problem typically supports a well-defined set of aggregate functions f .

Due to lack of space we cannot present a complete description of all the proto-
cols we examine in our experimental study. Instead, we describe the key ideas behind
them, along with comments about our own implementation, where applicable. Our full
implementation can also be downloaded.3

3.1 GAP (General Aggregation Protocol)

GAP is an adaptation of the classical self-stabilizing BFS construction algorithm of
Dolev et al [15] that is based on message passing instead of shared tables. We imple-
mented the version of GAP described in [9].

In GAP, there is a special node that acts as the root of the spanning tree. The root
is fixed and guaranteed to remain available. The tree grows from the root as all the
nodes discover their shortest path towards the root, starting with the neighbors of the
root, and so on. GAP implicitly assumes a relatively stable underlying network. Each
node in the network maintains a table that contains an entry for each neighbor and the
node itself. Each table entry contains the level in the tree, and classifies the neighbor as
parent, child, or peer. The parent of each node is always the neighbor with the minimal
level (say, ℓ), and the node’s own level is always ℓ + 1. A table entry also contains the
aggregate value in the subtree rooted in the neighbor. These values are used to calculate
the node’s own aggregate.

A node gets several types of messages related to changes in the topology (failed
or new neighbors) or changes in the aggregate value (locally or in a subtree of a child
node). When receiving a message, the node updates its own tables if necessary in such a
way that the invariants of the tree structure and aggregate calculation are restored. Our
implementation uses the “cache-like” policy [9] for maintaining the table, which means
that table entries change only due to explicit messages and never due to predictions.

GAP can be implemented in a reactive or a proactive manner. In the former case,
all changes are immediately reported to the neighbors. In the latter case, changes ac-
cumulate during a time period and are reported at once in a round-based fashion. We
implemented the proactive round-based version, as it has better load balancing and gen-
erates fewer messages on average in dynamic environments.

The original publication of GAP did not mention that it is also important that the
connections with neighbors need to preserve the order of the messages, otherwise in-
consistent states can occur. This can be achieved with an appropriate transport layer, or
at the application level as well.

3.2 Adaptive gossip protocols

We used the push-sum algorithm as a starting point [16]. In this algorithm (as in all gos-
sip variants) the basic idea is that the nodes engage in a diffusive computation, during
which nodes periodically send to each neighbor a proportion of the “mass” they store
and also receive mass from neighbors. This way the nodes can collectively compute the
average of all the values. Other aggregates, such as the network size can also be com-
puted: if a single node has a value of 1, and all the other nodes have a value of 0 then
the average is 1/N , which can be used to recover the network size N .

3
http://peersim.sourceforge.net/

The push-sum algorithm is by default a one-shot algorithm, unsuitable for mon-
itoring. There are two approaches to achieve adaptivity. The first is the restart-based
approach and the second is what we call the “bookkeeping” approach. We included in
our set of algorithms a representative of both classes. In both cases, in each round a
node with k neighbors sends one kth of its mass to each of the neighbors.

Restarted push-sum The key idea is that the algorithm is run in epochs of some fixed
length, after which the gossip protocol is restarted automatically in a distributed way [1].
In effect, the restart mechanism takes a snapshot of the system at the beginning of the
epoch that involves the nodes that were live at that time, and then the aggregate of
this snapshot is computed during the epoch. After the completion of the epoch, the
computed aggregate value is used as the output of the algorithm, hence the output is
delayed by roughly two epoch lengths at most. Depending on the topology of the net-
work, epochs can be rather short (as few as 20 rounds) due to the quick convergence of
gossip.

LiMoSense, a bookkeeping approach Instead of restarting, a gossip protocol might
attempt to repair the state of the nodes as a reaction to failure. This can be achieved
if some variant of bookkeeping for the underlying gossip algorithm (e.g. push-sum) is
implemented that makes it possible to “undo” those computations that had to do with a
failed node, or that makes it possible to repair message drop failure by comparing books
with neighbors. The main design goal of such protocols is the classical requirement of
self-stabilization, that is, to be able to eventually converge after failures and dynamism
stop. A state-of-the-art representative of such protocols is LiMoSense [2]. We use this
protocol in our comparison study.

3.3 Common properties

When comparing different paradigms, we should focus on application areas and systems
where the paradigms in question all are feasible and have a similar cost. In other words,
there are systems that are obviously suitable only for one or the other algorithm. Here,
we do not focus on these obvious cases.

First, the system is assumed to have a special stable node that is guaranteed to
remain available in the network. GAP crucially relies on such a node to act as the root
of the tree for tree building and maintenance. Such a node is not critical for gossip
but—given that due to GAP we need to assume a stable root—gossip protocols can and
will take advantage of it too. For example, when calculating the network size, the node
that has the initial value of 1 can be the root (see Section 4.1). Note that GAP does not
rely on the root for reading out the value: it can be modified to propagate the global
aggregate to all the nodes.

Second, all the protocols are round based with a period (round length) of ∆. They
generate a very similar amount of traffic in each round: each node sends one message
to each neighbor in each round. In the case of GAP this can be substantially reduced,
but only when the network becomes static and there is no failure either. This is because
no messages need to be sent if there is no change in the aggregated value or in the
underlying topology. In our implementation, GAP broadcasts in each round even if
there is seemingly no change. The reason is that—since we work with systems that
constantly change—this results in a negligible amount of extra traffic, and it solves a
subtle issue of the original algorithm related to churn.

4 Experimental Setup and Methodology

We used the PeerSim [17] simulator with the event-based engine in all our experiments.

4.1 Network Size as the Aggregation Problem of Choice

Calculating the average of distributed values is often the baseline problem used to eval-
uate generic distributed aggregation algorithms. This, however, is rather problematic
because the performance then depends crucially on the distribution of the values. If the
distribution is concentrated around the average, then one cannot differentiate between
the ability of an algorithm to provide real global results and between the local sampling
effect, that is, when the average of local samples is similar to the global average by pure
chance. This is true in the case of both gossip and spanning tree algorithms.

It is vital that here we wish to compare the global behavior of the algorithms, that
is, how they behave in scenarios where they need to consider the entire data set. The
performance of such global tasks can be considered a worst case, which can only im-
prove when local neighborhoods already offer a good approximation of a given query.
Of course it is of interest how certain algorithms react to specific distributions, and one
could even develop algorithms that explicitly exploit specific known distributions, if
such prior knowledge is available. However, without prior knowledge getting a quick
result due to local sampling is just a matter of chance, so when comparing very differ-
ent generic paradigms, we consider a robust worst case analysis more informative and
preferable.

Our choice is the network size estimation problem. For this problem, the spanning
tree approach counts each node according to the tree hierarchy: all nodes have a value of
1, and the tree calculates the sum. The gossip protocols here will calculate the average
in a network of N nodes were the initial value is 0 at all nodes except the root, where
it is 1, which gives 1/N as a result [1]. In both cases, the point is that the problem is
clearly global, where a useful answer is available only after the algorithm has globally
converged.

4.2 Network Topologies

Our protocols need undirected topologies, so where the original topology definition
is directed, it has to be understood with the directionality of the edges dropped. All
networks are of size N = 1000 unless otherwise stated.

NewsCast A dynamic topology defined in [18]. In a nutshell, without describing NEWS-

CAST in detail, each node will have a new set of random neighbors in each cycle us-
ing the same cycle period as the aggregation protocol. The number of neighbors is
k = 30. The motivation is that gossip protocols are often implemented over such dy-
namic topologies so that nodes can communicate with random samples from the net-
work in each cycle, as assumed in theoretical discussions of gossip protocols.

Random k-out A static topology in which every node connects to a set of k random
neighbors. After dropping directionality, the average degree is 2k. The motivation is that
randomly sampled, but static, topologies have been proposed recently as the optimal
choice in commercial P2P platforms over the Internet [19].

Binary Tree An undirected balanced binary tree is formed. In our experiments the root
node of the aggregation protocols is placed at different levels of the tree from 0 (the
root of the binary tree) to ⌈log2 N⌉, the leaf level of the tree. We include this artificial
topology to be able to illustrate a major difference between gossip and spanning tree
approaches.

Barabasi-Albert (BA) To test heavy tailed degree distributions, we include the BA net-
work that is constructed incrementally. New nodes connect to old nodes already in the
network according to the preferential attachment rule, that is, with a probability propor-
tional to the degree of the old node [20]. New nodes get k = 2 edges when they are
added to the topology. In our experiments the root node of the aggregation protocols is
placed at nodes with different degrees in this topology.

4.3 Failure and Churn Scenarios

We used the same model of message delay in all experiments: each message is delayed
by a uniform random time drawn from the interval [0, 0.2∆]. Our preliminary exper-
iments revealed very little sensitivity to message delay in all the protocols, so we do
not focus on this aspect. We consider no message drop failures. This is because in most
scenarios that are reasonable for a spanning tree the underlying topologies in question
are static, so it is feasible to apply a reliable transport layer such as TCP.

The protocols require a failure detector. We assume a timeout-based detector with
a timeout of 5∆ in all experiments. Our preliminary experiments suggested very little
sensitivity to this parameter as well, so we keep it fixed throughout the study.

Node churn was modeled based on statistics from a BitTorrent trace [21] as well
as known empirical findings [22]. We draw the online session length for each node
independently from a log-normal probability distribution with two different parameter
settings. The first setting that we call fast churn is µ = 3 and σ2 = 1, which results in
a mean of ∼ 33. The unit of the resulting online session lengths is the communication
period ∆. This—considering that ∆ can be expected to be in the range of seconds—is
a rather short session length so it represents a very dynamic scenario. The second set of
parameters that we call slow churn is µ = 6 and σ2 = 2, which results in a mean of
∼ 1096.

Offline session lengths are determined implicitly by fixing the number of nodes that
are online at the same time. The ratio of online nodes was set to a range of values from
α = 1 to α = 0.2. As stated previously, nodes that re-join the network retain the state
they had when leaving the network.

4.4 Evaluation methodology and Metrics

We are interested in static behavior. As mentioned above, we assume a constant churn
pattern with a static expected network size αN , where α is the ratio of online nodes
in the scenario in question. In this setting, we expect a good monitoring algorithm to

consistently signal N̂(t) = αN as the approximated network size in cycle t.
To measure how close a given algorithm is to this optimal behavior, we run each

scenario 10 times for 10,000 cycles, and collect statistics of the absolute error |αN −

N̂(t)|/(αN) over the last 9,000 cycles in each run. We ignore the first 1,000 cycles in
order to allow the system to reach an equilibrium state. We plot the average and the
standard deviation (with error bars).

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Er
ro

r (
%

)

level of aggregation root node

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Er
ro

r (
%

)

level of aggregation root node

GAP
restart-100
restart-20

LiMoSense

Fig. 1. Binary tree, no churn (left) and fast churn, 80% of the nodes online (right). The horizontal

axis shows the level of the aggregation root node in the physical topology (0: root, 10: leaves).

5 Results

First, we demonstrate some weaknesses of the gossip approaches and GAP that are
not so evident at first sight. This will shed light on which scenarios to avoid for these
paradigms. Subsequently, we look at the two realistic topologies: static random k-out
and the BA topology, and take a closer look at some interesting subtleties that are im-
portant in these cases, and that define which approaches are preferable.

5.1 The Achilles heel of gossip

Let us start with the Achilles heel of gossip protocols. In principle, gossip protocols for
aggregation have been shown to work on any connected topology, that is, they are guar-
anteed to converge. However, if the communication topology is not a fully connected
graph, but instead a static graph with relatively small average degree, then the conver-
gence speed is well-known to depend on the mixing time of a certain random walk on
this topology [23]. On the other hand, the convergence time of GAP depends on the
diameter (that is, the maximal minimal path length) that bounds the maximal number
of steps information needs to take to reach the root.

It is often the case that graphs with a low diameter also have a rapid mixing time,
but trees are exceptions. For example, the rooted balanced binary tree has a diameter of
O(logN) whereas it has a mixing time of O(N) (see, for example, [24], Example 7.7).

For this reason, at least in the failure-free scenario, we expect gossip protocols to
suffer, and this is indeed the case as Figure 1 (left) shows. GAP achieves full preci-
sion very quickly, whereas even LiMoSense does not reach convergence within 10,000
rounds when the node that is assigned the role of the root node is closer to the leaves
in the physical topology, let alone restart that is inherently limited in the number of
rounds until convergence. (We remind the reader not to confuse the root node of the ag-
gregation with the root of the physical topology.) However, when we introduce churn,
all algorithms suffer since the underlying topology is very fragile. Still, GAP performs
best (see Figure 1 (right)).

The results also reveal another important point, namely it does matter a lot where
the root node is placed within the underlying physical topology. It is much harder to
break out of a region closer to the leaves for the diffusion process as it is from the root
(recall that for gossip the aggregation root is initialized with a value of 1, while the
remaining nodes have a value of 0).

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25

Er
ro

r (
%

)

refresh period (∆)

GAP
restart-100
restart-20

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25

Er
ro

r (
%

)

refresh period (∆)

Fig. 2. NewsCast with k = 30, no churn (left) and fast churn, 80% of the nodes online (right).

The horizontal axis shows the neighborhood refresh period of NewsCast in rounds (∆).

5.2 The Achilles heel of spanning trees and bookkeeping gossip protocols

In many cases, gossip protocols assume a random set of neighbors in each round [1]
that is given by a dynamic protocol for peer sampling [18]. This radically dynamic
neighbor set is ideal for vanilla gossip, however, if bookkeeping is involved, it becomes
a serious problem, since the tables will grow indefinitely until they reach the size of
the whole network. This is not scalable, since all entries have an associated failure
detector as well, which need to maintain a communication link with each node. For this
reason, the members of the old neighbor set should be treated as failed nodes, to get
scalability. This, however, completely destroys the ability of the protocol to converge
if the aggregation task is global, like network size estimation. All in all, with dynamic
peer sampling bookkeeping gossip cannot be applied at all with any hope of success.

For GAP, the changing neighbor set raises similar issues: growing tables (and even-
tually a spanning tree with a star topology) or the option of treating old neighbors as
failed. In our implementation, we opt for the second approach, as the option of growing
tables is clearly not scalable.

Figure 2 shows simulation results with the NewsCast dynamic topology. Clearly, for
fast refreshing periods the only feasible protocol is restarted gossip. Yet in the case of
slower refreshing (when the topology becomes relatively stable on the short run) GAP
is competitive. LiMoSense is the least favorable option in this scenario.

5.3 The k-out topology

We examined the k-out topology for different values of k. Without churn, all the proto-
cols can achieve an error that is practically 0% for k ≥ 2, except restart-20 that achieves
25% error for k = 2. Clearly, an epoch length of 20 is not sufficient for such a low value
of k. Note that the lower the value of k is the greater the mixing time becomes.

Figure 3 contains our experiments involving churn. Our first observation is that
GAP and restart are rather insensitive to the speed of churn, whereas LiMoSense is
very sensitive. In the slow churn scenario its results are dramatically better. This is
because fast churn is highly disruptive for this algorithm due to the constant attempts to
repair the state of the system when a neighbor leaves.

At the same time, in slow churn all the algorithms become rather unstable when the
offline session lengths are long (that is, when α is small). This is because—although
the network is relatively stable—in such scenarios the aggregation root can become
disconnected and can remain so for a relatively long time, which temporarily causes
extremely large errors.

α = 0.8

α = 0.6

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

GAP
restart-100
restart-20

LiMoSense

α = 0.4

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

α = 0.2

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

Er
ro

r (
%

)

k

Fig. 3. Results with k-out topology, fast churn (left column) and slow churn (right column). The

horizontal axis shows values of k. The proportion of online nodes is given by α.

As for GAP, we can observe an interesting case that is consistent with our findings
over the binary tree topology: when k is very small, GAP has a slight advantage due
to not depending on the mixing time of the topology. Note that for a very small k the
random k-out topology behaves locally like a tree as there is a rather small probability
for finding short circles, which slows gossip protocols down.

For large values of k gossip protocols can take advantage of the very good mixing
properties and can beat GAP, esp. with an epoch length of 100. GAP also profits from
an increasing k (and therefore a decreasing diameter, and more options to repair the
tree) but not as much as gossip protocols.

5.4 The Barabasi-Albert topology

We generated one BA topology with k = 2 as previously described. In this fixed topol-
ogy we placed the aggregation root at nodes with different degrees. Our results involv-
ing churn are shown in Figure 4.

α = 0.8

α = 0.6

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

GAP
restart-100
restart-20

LiMoSense

α = 0.4

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

α = 0.2

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Er
ro

r (
%

)

degree of aggregation root node

Fig. 4. Results with the BA topology, fast churn (left column) and slow churn (right column). The
horizontal axis shows the degree of the node where the aggregation root is placed. The proportion

of online nodes is given by α.

We can observe a strong dependence of the precision of the aggregation result on
the position of the aggregation root in the underlying BA topology. Central nodes with a
large degree achieve a significantly better approximation. This is also true for the gossip
protocols, which here also rely on a fixed “root” node (see Section 3.3).

As in the k-out topology, without churn (not shown), all the protocols can achieve
an error that is practically 0%, except restart-20 that achieves an error of 35% to 5%
depending on the centrality of the root. Restart-20 performs poorly throughout the ex-
periments, clearly indicating that an epoch length of 20 is not sufficient. At the same
time, restart-100 is among the best options in most scenarios.

Clearly, in these scenarios GAP provides the most stable performance. As with the
k-out topology, gossip protocols continue to be sensitive to the speed of churn: with
LiMoSense it is more so, but the restart variants also show sensitivity, with restart-100
being the most robust.

Table 1. Summary of conclusions.

sensitivity to changing delay due to

membership topology convergence epoch length

spanning tree moderate high diameter none

bookkeeping gossip high high mixing time none

restarted gossip moderate none mixing time epoch length

As in the k-out topology, in slow churn we observe a very large variance for small
α and for a low degree aggregation root. The reason is the same: the aggregation root
can get disconnected

6 Discussion and Conclusions

In this paper, we compared three different paradigms for global distributed aggregation:
approaches based on a spanning tree, restarted gossip, and bookkeeping gossip. We
argued that network size estimation is an appropriate problem for the purposes of this
comparison. We stressed the role of different topologies, and shed light on the weak and
strong points of the approaches.

Table 1 summarizes some of the conclusions we arrived at in the evaluation section.
In our experiments the effective network size was constant, so the effect of the delay
due to the epoch length remained hidden. However, the epoch length must be chosen
such that it lies in the range of the mixing time so as to allow for proper convergence.
This means that restarted gossip will double the delay of bookkeeping gossip in the
worst case, while it is not sensitive to a dynamic topology (due to not relying on failure
detectors and neighborhood tables) and it is less sensitive to churn for the same reason.

As for the spanning tree, the convergence time of gossip (that depends on the mix-
ing time) is typically at least an order of magnitude larger than the diameter in most
topologies, even in the random k-out topology (which has a low mixing time), let alone
more practical topologies. Our experiments clearly support this insight. This means that
a spanning tree is much faster than the other methods, and its advantages mainly result
from this property, along with the ability to self-repair equally quickly, when the topol-
ogy is not too dynamic.

Overall, when selecting the right protocol, one needs to consider the structure of
the topology and the patterns of dynamism in the membership (churn) and the topol-
ogy itself. If the topology is relatively stable, a spanning tree approach is preferable
even in high churn, while for dynamic topologies a restarted gossip protocol with the
right epoch length is more suitable. We could identify no scenarios where bookkeeping
gossip is clearly preferable, when truly global aggregation is needed. If local sampling
approximates the global aggregate well, we face a very different problem that requires a
different approach for analysis. Nevertheless, results on global problems always repre-
sent a lower bound on performance. The ultimate solution is most likely a combination
of gossip and tree approaches in an adaptive way, based on the automated detection of
topology and dynamism properties; an interesting venue for future research.

References

1. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic net-

works. ACM Transactions on Computer Systems 23(3) (August 2005) 219–252

2. Eyal, I., Keidar, I., Rom, R.: Limosense – live monitoring in dynamic sensor networks. In:
Algorithms for Sensor Systems. Volume 7111 of LNCS. Springer (2012) 72–85

3. Jesus, P., Baquero, C., Almeida, P.: Fault-tolerant aggregation by flow updating. In: Distr.

Applications and Interoperable Syst. Volume 5523 of LNCS. Springer (2009) 73–86
4. Mehyar, M., Spanos, D., Pongsajapan, J., Low, S.H., Murray, R.M.: Asynchronous dis-

tributed averaging on communication networks. IEEE/ACM Trans. Netw. 15(3) (2007) 512–

520
5. Wuhib, F., Dam, M., Stadler, R., Clemm, A.: Robust monitoring of network-wide aggregates

through gossiping. In: Proc. 10th IFIP/IEEE Intl. Symp. on Integrated Management (IM

2007). (May 2007) 21–25
6. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a tiny aggregation service for

ad-hoc sensor networks. In: Proc. 5th Symp. on Operating Systems Design and Implemen-

tation (OSDI’02). (2002) 131–146
7. Gupta, I., van Renesse, R., Birman, K.P.: Scalable fault-tolerant aggregation in large pro-

cess groups. In: Proc. Intl. Conf. on Dependable Systems and Networks (DSN’01), IEEE

Computer Society Press (2001)
8. Birman, K.P., van Renesse, R., Vogels, W.: Scalable data fusion using astrolabe. In: Proc.

Fifth Intl. Conf. on Information Fusion (FUSION 2002). Volume 2. (2002) 1434–1441
9. Dam, M., Stadler, R.: A generic protocol for network state aggregation. In: Proc. Radioveten-

skap och Kommunikation (RVK’05). (2005)
10. Prieto, A.G., Stadler, R.: A-gap: An adaptive protocol for continuous network monitoring

with accuracy objectives. IEEE Trans. on Netw. and Serv. Manag. 4(1) (June 2007) 2–12
11. Krishnamurthy, S., Ardelius, J., Aurell, E., Dam, M., Stadler, R., Wuhib, F.Z.: Brief an-

nouncement: the accuracy of tree-based counting in dynamic networks. In: ACM Symp. on

Principles of Distr. Comp. (PODC), ACM (2010) 291–292
12. Jain, N., Mahajan, P., Kit, D., Yalagandula, P., Dahlin, M., Zhang, Y.: Network imprecision:

A new consistency metric for scalable monitoring. In: Proc. 8th USENIX Conf. on Operating
Systems Design and Implementation (OSDI’08), USENIX Association (2008) 87–102

13. Le Merrer, E., Kermarrec, A.M., Massoulie, L.: Peer to peer size estimation in large and dy-

namic networks: A comparative study. In: Proc. 15th IEEE Intl. Symp. on High Performance

Distr. Comp. (HPDC’06). (2006) 7–17
14. Chitnis, L., Dobra, A., Ranka, S.: Aggregation methods for large-scale sensor networks.

ACM Trans. Sen. Netw. 4(2) (April 2008) 9:1–9:36
15. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only

read/write atomicity. Distributed Computing 7(1) (1993) 3–16
16. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information.

In: Proc. 44th Annual IEEE Symp. on Foundations of Computer Science (FOCS’03), IEEE

Computer Society (2003) 482–491
17. Montresor, A., Jelasity, M.: Peersim: A scalable P2P simulator. In: Proc. 9th IEEE Intl.

Conf. on P2P Comp. (P2P 2009), IEEE (September 2009) 99–100 extended abstract.
18. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based

peer sampling. ACM Transactions on Computer Systems 25(3) (August 2007) 8
19. Roverso, R., Dowling, J., Jelasity, M.: Through the wormhole: Low cost, fresh peer sampling

for the internet. In: Proc. 13th IEEE Intl. Conf. on P2P Comp. (P2P 2013), IEEE (2013)
20. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern

Physics 74(1) (January 2002) 47–97
21. Roozenburg, J.: Secure decentralized swarm discovery in Tribler. Master’s thesis, Parallel

and Distributed Systems Group, Delft University of Technology (2006)
22. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Proc. 6th ACM

SIGCOMM Conf. on Internet measurement (IMC’06), ACM (2006) 189–202
23. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans-

actions on Information Theory 52(6) (2006) 2508–2530
24. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. AMS (2008)

