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Preface

This dissertation is based on my work related to gossip protocols that solve various prob-

lems in massively distributed large scale networks. Resisting the temptation to present

all my results in the area, my aim was to paint a coherent picture focusing on a subset of

my core results consisting of closely related algorithms and systems that strongly build

on each other. These results can be considered puzzle pieces that can be used to build a

class of self-organizing massively distributed and robust adaptive systems.

Complying with the requirement of the Hungarian Academy of Sciences, the results

included in the dissertation all originate from a period well after defending my PhD dis-

sertation in the year 2001. Besides, my PhD dissertation was in the area of heuristic

optimization and genetic algorithms, so there is no overlap with the presented work at all.

In the following I present the outline of the dissertation, referring to the publications that

form the basis of each chapter. I will describe my own contribution to these publications

and I will mention results that are not covered in the dissertation when appropriate.

Chapter 1 is based mainly on [1], a textbook chapter I wrote to introduce gossip pro-

tocols. It was extended with material from [2], a survey paper that was written under my

direction, based on my insight, namely that gossip protocols cannot be defined rigorously,

instead they represent a design philosophy that one can follow to varying degrees and that

is shared by many other approaches. The chapter was also revised, most importantly, the

message passing formulations of the algorithms were improved so that they can form the

basis of the common conventions that I adopted throughout the dissertation.

Chapter 2 is based on [3]. The origins of this work can be traced back to the NEWS-

CAST protocol that was published only as a technical report [4]. However, even as a tech-

nical report it achieved a rather high impact (138 citations as of now in Google Scholar)

and was recently reprinted as a book chapter [5]. After realizing that many similar pro-

tocols have been proposed independently of NEWSCAST, the original idea underlying the

unifying peer sampling framework was mine. This first resulted in a conference publi-

cation [6] followed by the journal article [3]. I am the main author of the paper and I

contributed most of the implementation and experimental work as well (except the trace-

driven simulations, and the cluster implementation and experiments). The presentation

of the algorithm itself in this dissertation was thoroughly revised and was aligned with

the common conventions that are based on an asynchronous event-based approach. I also

added a section about the related protocols, in particular, NEWSCAST that inspired the

unified framework. One notable publication not covered in the dissertation is [7] that

presents an improvement over NEWSCAST to make it adaptive to different non-uniform

localized patterns of failure and application load.

Chapter 3 is based on a journal article [8] that in turn is based on two conference pub-

lications: [9] and [10]. The idea of the algorithm, as well as the theoretical analysis is my

contribution. I also implemented the algorithm, and contributed some of the experimental

evaluation as well. In this chapter the theoretical analysis was completely rewritten from

1



2 PREFACE

scratch. This is due to the unfortunate fact that in the original publication the analysis

was not correct. The new theoretical discussion leaves the main conclusions unchanged

but provides rigorous formulations and proofs for the original results. This way I now

precisely characterize the convergence speed in many interesting cases.

Chapter 4 is based on [11]. As the main author, I contributed the implementation and

the experimental evaluation, as well as most details of the algorithm. This chapter illus-

trates how the peer sampling service from Chapter 2 and averaging from Chapter 3 can

be combined to solve a practically relevant non-trivial problem. As in the other chapters,

the algorithm presentation was thoroughly revised and aligned with the conventions.

Chapter 5 is based on [12]. The idea of the algorithm, its implementation, as well as

its theoretical and experimental evaluation is my contribution. The interesting aspect of

this work is that it implements a sorting algorithm in a distributed way that can be char-

acterized using the theoretical tools developed in Chapter 3. Since there the theoretical

results are new (as mentioned above), in this chapter the theoretical results are also thor-

oughly revised and extended, and a closer connection is made with averaging than what

was presented in the original publication. The workshop paper [13] should be mentioned

here as well (not covered in the dissertation) that implements an entirely different method

for distributed ranking, that is also based on gossip.

Chapter 6 is based on the journal article [14], which in turn roots back to [15]. The

original idea of the T-MAN algorithm and its first implementation is my contribution. My

co-authors contributed practical features such as starting and termination variants. The

approximative theoretical models and the related empirical analysis were also contributed

by me. A part of the experimental work was completed by me as well. In this chapter the

algorithm description was reworked to fit into the framework used by the other chapters,

and the theoretical discussion was slightly reformulated and clarified.

The remaining two chapters discuss applications of T-MAN. Chapter 7 is based on [16]

and partly also on [14]. Here I contributed to the design of the algorithm. The presen-

tation of the algorithm was thoroughly revised to match the structure of the dissertation,

and the experimental section was extended with results from [14]. Chapter 8 is based

on [17], where the algorithm is based on my initial idea, and its implementation, and the

experimental evaluation is my contribution. We note that this chapter also illustrates how

to build complex applications from the components presented in the dissertation.

Finally, it should be noted here that this dissertation was completed while visiting

Cornell University. This allowed me to fully focus on finalizing this work in an excep-

tional intellectual atmosphere, which clearly had a noticeable impact on the quality. I am

especially grateful to Prof. Kenneth Birman—my host during the visit—who was very

supportive of my efforts to finish the dissertation.

April 2013, Szeged, Hungary and Ithaca, NY, USA Márk Jelasity



Chapter 1

Gossip Protocol Basics

Gossip plays a very significant role in human society. Information spreads throughout the

human grapevine at an amazing speed, often reaching almost everyone in a community,

without any central coordinator. Moreover, rumor tends to be extremely stubborn: once

spread, it is nearly impossible to erase it. In many distributed computer systems—most

notably in cloud computing and peer-to-peer computing—this speed and robustness, com-

bined with algorithmic simplicity and the lack of central management, are very attractive

features.

Accordingly, over the past few decades several gossip-based algorithms have been

developed to solve various problems. The prototypical application of gossip is informa-

tion spreading (also known as multicast) where a piece of news is being spread over a

large network. It the dissertation, this application is not discussed. However, since in this

chapter our goal is to provide the necessary background, intuition and motivation for the

gossip approach, we provide a brief introduction to this area.

After discussing information spreading, we move on to generalize the family of gossip

protocols. To illustrate the generality of the gossip approach, we first discuss information

aggregation (an area of distributed data mining), where distributed information is being

summarized. We then present a completely generic gossip algorithm framework, that will

accommodate most of the work in the dissertation.

1.1 Gossip and Epidemics

Like it or not, gossip plays a key role in human society. In his controversial book, Dun-

bar (an anthropologist) goes as far as to claim that the primary reason for the emergence

of language was to permit gossip, which had to replace grooming—a common social

reinforcement activity in primates—due to the increased group size of early human pop-

ulations in which grooming was no longer feasible [18].

Whatever the case, it is beyond any doubt that gossip—apart from still being primarily

a social activity—is highly effective in spreading information. In particular, information

spreads very quickly, and the process is most resistant to attempts to stop it. In fact,

sometimes it is so much so that it can cause serious damage; especially to big corporations.

Rumors associating certain corporations to Satanism, or claiming that certain restaurant-

chains sell burgers containing rat meat or milk shakes containing cow eyeball fluid as

thickener, etc., are not uncommon. Accordingly, controlling gossip has long been an

important area of research. The book by Kimmel gives many examples and details on

human gossip [19].

3



4 CHAPTER 1. GOSSIP PROTOCOL BASICS

While gossip is normally considered to be a means for spreading information, in real-

ity information is not just transmitted mechanically but also processed. A person collects

information, processes it, and passes the processed information on. In the simplest case,

information is filtered at least for its degree of interest. This results in the most interest-

ing pieces of news reaching the entire group, whereas the less interesting ones will stop

spreading before getting to everyone. More complicated scenarios are not uncommon

either, where information is gradually altered. This increases the complexity of the pro-

cess and might result in emergent behavior where the community acts as a “collectively

intelligent” (or sometimes perhaps not so intelligent) information processing medium.

Gossip is analogous to an epidemic, where a virus plays the role of a piece of infor-

mation, and infection plays the role of learning about the information. In the past years

we even had to learn concepts such as “viral marketing”, made possible through Web 2.0

platforms such as video sharing sites, where advertisers consciously exploit the increas-

ingly efficient and extended social networks to spread ads via gossip. The key idea is that

shocking or very funny ads are especially designed so as to maximize the chances that

viewers inform their friends about it, and so on.

Not surprisingly, epidemic spreading has similar properties to gossip, and is equally

(if not more) important to understand and control. Due to this analogy and following com-

mon practice we will mix epidemiological and gossip terminology, and apply epidemic

spreading theory to gossip systems.

Gossip and epidemics are of interest for large scale distributed systems for at least

two reasons. The first reason is inspiration to design new protocols: gossip has several

attractive properties like simplicity, speed, robustness, and a lack of central control and

bottlenecks. These properties are very important for information dissemination and col-

lective information processing (aggregation) that are both key components of large scale

distributed systems.

The second reason is security research. With the steady growth of the Internet, viruses

and worms have become increasingly sophisticated in their spreading strategies. Infected

computers typically organize into networks (called botnets) and, being able to cooperate

and perform coordinated attacks, they represent a very significant threat to IT infrastruc-

ture. One approach to fighting these networks is to try and prevent them from spreading,

which requires a good understanding of epidemics over the Internet.

In this chapter we focus on the former aspect of gossip and epidemics: we treat them

as inspiration for the design of robust self-organizing systems and services.

1.2 Information dissemination

The most natural application of gossip (or epidemics) in computer systems is spreading

information. The basic idea of processes periodically communicating with peers and ex-

changing information is not uncommon in large scale distributed systems, and has been

applied from the early days of the Internet. For example, the Usenet newsgroup servers

spread posts using a similar method, and the IRC chat protocol applies a similar princi-

ple as well among IRC servers. In many routing protocols we can also observe routers

communicating with neighboring routers and exchanging traffic information, thereby im-

proving routing tables.

However, the first real application of gossip, that was based on theory and careful

analysis, and that boosted scientific research into the family of gossip protocols, was part

of a distributed database system of the Xerox Corporation, and was used to make sure each
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replica of the database on the Xerox internal network was up-to-date [20]. In this section

we will employ this application as a motivating example and illustration, and at the same

time introduce several variants of gossip-based information dissemination algorithms.

1.2.1 The Problem

Let us assume we have a set of database servers (in the case of Xerox, 300 of them, but

this number could be much larger as well). All of these servers accept updates; that is,

new records or modifications of existing records. We want to inform all the servers about

each update so that all the replicas of the database are identical and up-to-date.

Obviously, we need an algorithm to inform all the servers about a given update. We

shall call this task update spreading. In addition, we should take into account the fact that

whatever algorithm we use for spreading the update, it will not work perfectly, so we need

a mechanism for error correction.

At Xerox, update spreading was originally solved by sending the update via email to

all the servers, and error correction was done by hand. Sending emails is clearly not scal-

able: the sending node is a bottleneck. Moreover, multiple sources of error are possible:

the sender can have an incomplete list of servers in the network, some of the servers can

temporarily be unavailable, email queues can overflow, and so on.

Both tasks can be solved in a more scalable and reliable way using an appropriate

(separate) gossip algorithm. In the following we first introduce several gossip models and

algorithms, and then we explain how the various algorithms can be applied to solve the

above mentioned problems.

1.2.2 Algorithms and Theoretical Notions

We assume that we are given a set of nodes that are able to pass messages to each other.

In this section we will focus on the cost of spreading a single update among these nodes.

That is, we assume that at a certain point in time, one of the nodes gets a new update from

an external source, and from that point we are interested in the dynamics of the spreading

of that update when using the algorithms we describe.

When discussing algorithms and theoretical models, we will use the terminology of

epidemiology. According to this terminology, each node can be in one of three states,

namely

• susceptible (S): The node does not know about the update

• infected (I): The node knows the update and is actively spreading it

• removed (R): The node has seen the update, but is not participating in the spreading

process (in epidemiology, this corresponds to death or immunity)

These states are relative to one fixed update. If there are several concurrent updates,

one node can be infected with one update, while still being susceptible to another update,

and so on.

In realistic applications there are typically many updates being propagated concur-

rently, and new updates are inserted continuously. Accordingly, our algorithms will in

fact be formulated to deal with multiple updates that are coming continuously in an un-

predictable manner. However, we present the simplest possible forms of these algorithms.

It is important to note that additional techniques can be applied to optimize the amortized
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Algorithm 1 SI gossip

1: loop

2: wait(∆)
3: p← random peer

4: if push then

5: sendPush(p, known updates)

6: else if pull then

7: sendPullRequest(p)

8:

9: procedure ONPULLREQUEST(m)

10: sendPull(m.sender, known updates)

11: procedure ONPUSH(m)

12: if pull then

13: sendPull(m.sender, known updates)

14: store m.updates

15:

16: procedure ONPULL(m)

17: store m.updates

cost of propagating a single update, when there are multiple concurrent updates in the

system. In Section 1.2.3 we discuss some of these techniques. In addition, nodes might

know the global list or even the insertion time of the updates, as well as the list of updates

available at some other nodes. This information can also be applied to reduce propagation

cost even further.

The allowed state transitions depend on the model that we study. Next, we shall

consider the SI model and the SIR model. In the SI model, nodes are initially in state

S with respect to a fixed update, and can change to state I (when they learn about the

update). Once in state I, a node can no longer change its state (I is an absorbing state). In

the SIR model, we allow nodes in state I to switch to state R, where R is the absorbing

state. This means that in the SIR model nodes might stop spreading an update eventually,

but they never forget about the update.

The Algorithm in the SI Model

The algorithm that implements gossip in the SI model is shown in Algorithm 1. It is

formulated in an asynchronous message passing style, where each node executes one

process (that we call the active thread) and, furthermore, it has message handlers that

process incoming messages.

The active thread is executed once in each ∆ time units. We will call this waiting

period a gossip cycle (other terminology is also used such as gossip round or period).

In line 3 we assume that a node can select a random peer node from the set of all

nodes. This assumption is not trivial, especially in very large and dynamically changing

networks. In fact, peer sampling is a fundamental service that all gossip protocols rely on.

We will discuss random peer sampling briefly in Section 1.4. Chapter 2 discusses random

peer sampling in detail.

The algorithm makes use of two important Boolean parameters called push and pull.

At least one of them has to be true, otherwise no messages are sent. Depending on these

parameters, we can talk about push, pull, and push-pull gossip, each having significantly

different dynamics and cost. In push gossip, susceptible nodes are passive and infective

nodes actively infect the population. In pull and push-pull gossip each node is active.

Obviously, a node cannot stop pulling for updates unless it knows what updates can be

expected; and it cannot avoid getting known updates either unless it advertises which up-

dates it has already. As mentioned before, we present only a simple formulation: we pull

continuously and we keep pushing all known updates as well. Practical applications will

involve various techniques to minimize the redundant messages; although if the updates
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Algorithm 2 SI gossip, simpler, but inferior version

1: loop

2: wait(∆)
3: p← random peer

4: if push then

5: sendUpdate(p, known updates)

6: if pull then

7: sendUpdateRequest(p)

8: procedure ONUPDATE(m)

9: store m.updates

10:

11: procedure ONUPDATEREQUEST(m)

12: sendUpdate(m.sender, known updates)

themselves are small, then in the SI model there is not much room for optimization.

We did in fact apply a form of optimization though. To see how, let us consider

Algorithm 2. This algorithm is simpler and slightly more intuitive than Algorithm 1 but

it is not identical: the difference is that in Algorithm 1 in the message handler ONPUSH

we can explicitly control the order of processing the push message and sending the pull

message when the push-pull variant is being run. In this case, it makes more sense to

first send the pull message and then store the received updates, because this way some

redundancy can be avoided. In fact we can easily make sure we send only the non-

redundant updates back (we do not indicate this in the pseudocode to keep it simple).

Algorithm 2 does not offer this possibility of control (note that message delay is not

under our control). For this reason, in the remaining parts of the thesis we will always use

the style of formulation of Algorithm 1.

Basic Theoretical Properties of the SI Model

For theoretical purposes we will assume that messages are transmitted without delay,

and for now we will assume that no failures occur in the system. We will also assume

that messages are sent at the same time at each node, that is, messages from different

cycles do not mix and cycles are synchronized. None of these assumptions are critical for

practical usability, but they are needed for theoretical derivations that nevertheless give a

fair indication of the qualitative and also quantitative behavior of gossip protocols.

Let us start with the discussion of the push model. We will consider the propagation

speed of the update as a function of the number of nodes N . Let s0 denote the proportion

of susceptible nodes at the time of introducing the update at one node. Clearly, s0 =
(N − 1)/N . Let st denote the proportion of susceptible nodes at the end of the t-th cycle;

that is, at time t∆. We can calculate the expectation of st+1 as a function of st, provided

that the peer selected in line 3 is chosen independently at each node and independently of

past decisions as well. In this case, we have

E(st+1) = st

(

1− 1

N

)N(1−st)

≈ ste
−(1−st), (1.1)

where N(1− st) is the number of nodes that are infected at cycle t, and (1− 1/N) is the

probability that a fixed infected node will not infect some fixed susceptible node. Clearly,

a node is susceptible in cycle t + 1 if it was susceptible in cycle t and all the infected

nodes picked some other node. Actually, as it turns out, this approximative model is

rather accurate (the deviation from it is small), as shown by Pittel in [21]: we can take the

expected value E(st+1) as a good approximation of st+1.

It is easy to see that if we wait long enough, then eventually all the nodes will receive

the update. In other words, the probability that a particular node never receives the update
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is zero. But what about the number of cycles that are necessary to let every node know

about the update (become infected)? Pittel proves that in probability,

SN = log2N + logN +O(1) as N →∞, (1.2)

where SN = min{t : st = 0} is the number of cycles needed to spread the update.

The proof is rather long and technical, but the intuitive explanation is rather simple. In

the initial cycles, most nodes are susceptible. In this phase, the number of infected nodes

will double in each cycle to a good approximation. However, in the last cycles, where st
is small, we can see from (1.1) that E(st+1) ≈ ste

−1. This suggests that there is a first

phase, lasting for approximately log2N cycles, and there is a last phase lasting for logN
cycles. The “middle” phase, between these two phases, can be shown to be very fast,

lasting a constant number of cycles.

Equation (1.2) is often cited as the key reason why gossip is considered efficient: it

takes only O(logN) cycles to inform each node about an update, which suggests very

good scalability. For example, with the original approach at Xerox, based on sending

emails to every node, the time required is O(N), assuming that the emails are sent se-

quentially.

However, let us consider the total number of messages that are being sent in the net-

work until every node gets infected. For push gossip it can be shown that it isO(N logN).
Intuitively, the last phase that lasts O(logN) cycles with st being very small already in-

volves sending too many messages by the infected nodes. Most of these messages are in

vain, since they target nodes that are already infected. The optimal number of messages

is clearly O(N), which is attained by the email approach.

Fortunately, the speed and message complexity of the push approach can be improved

significantly using the pull technique. Let us consider st in the case of pull gossip. Here,

we get the simple formula of

E(st+1) = st · st = s2t , (1.3)

which intuitively indicates a quadratic convergence if we assume the variance of st is

small. When st is large, it decreases slowly. In this phase the push approach clearly

performs better. However, when st is small, the pull approach results in a significantly

faster convergence than push. In fact, the quadratic convergence phase, roughly after

st < 0.5, lasts only for O(log logN) cycles, as can be easily verified.

One can, of course, combine push and pull. This can be expected to work faster than

either push or pull separately, since in the initial phase push messages will guarantee

fast spreading, while in the end phase pull messages will guarantee the infecting of the

remaining nodes in a short time. Although faster in practice, the speed of push-pull is still

O(logN), due to the initial exponential phase.

What about message complexity? Since in each cycle each node will send at least

one request, and O(logN) cycles are necessary for the update to reach all the nodes, the

message complexity is O(N logN). However, if we count only the updates, and ignore

request messages, we get a different picture. Just counting the updates is not meaningless,

because an update message is normally orders of magnitude larger than a request message.

It has been shown that in fact the push-pull gossip protocol sends only O(N log logN)
updates in total [22].

The basic idea behind the proof is again based on dividing the spreading process into

phases and calculating the message complexity and duration of each phase. In essence,



1.2. INFORMATION DISSEMINATION 9

the initial exponential phase—that we have seen with push as well—requires only O(N)
update transmissions, since the number of infected nodes (that send the messages) grows

exponentially. But the last phase, the quadratic shrinking phase as seen with pull, lasts

only O(log logN) cycles. Needless to say, as with the other theoretical results, the math-

ematical proof is quite long and technical.

The SIR Model

In the previous section we outlined some important theoretical results regarding conver-

gence speed and message complexity. However, we ignored one problem that can turn

out to be important in practical scenarios: termination.

Push protocols never terminate in the SI model, constantly sending useless updates

even after each node has received every update. Pull protocols could stop sending mes-

sages if the complete list of updates was known in advance: after receiving all the updates,

no more requests need to be sent. However, in practice not even pull protocols can termi-

nate in the SI model, because the list of updates is rarely known.

Here we will discuss solutions to the termination problem in the SIR model. These

solutions are invariably based on some form of detecting and acting upon the “age” of the

update.

We can design our algorithm with two different goals in mind. First, we might wish

to ensure that the termination is optimal; that is, we want to inform all the nodes about

the update, and we might want to minimize redundant update transmissions at the same

time. Second, we might wish to opt for a less intelligent, simple protocol and analyze

the size of the proportion of the nodes that will not get the update as a function of certain

parameters.

One simple way of achieving the first design goal of optimality is by keeping track

of the age of the update explicitly, and stop transmission (i.e., switching to the removed

state, hence implementing the SIR model) when a pre-specified age is reached. This age

threshold must be calculated to be optimal for a given network sizeN using the theoretical

results sketched above. This, of course, assumes that each node knows N . In addition, a

practically error- and delay-free transmission is also assumed, or at least a good model of

the actual transmission errors is needed.

Apart from this problem, keeping track of the age of the update explicitly represents

another, non-trivial practical problem. We assumed in our theoretical discussions that

messages have no delay and that cycles are synchronized. When these assumptions are

violated, it becomes rather difficult to determine the age of an update with an acceptable

precision.

From this point on, we shall discard this approach, and focus on simple asynchronous

methods that are much more robust and general, but are not optimal. To achieve the

second design goal of simplicity combined with reasonable performance, we can try to

guess when to stop based on local information and perhaps information collected from a

handful of peers. These algorithms have the advantage of simplicity and locality. Besides,

in many applications of the SIR model, strong guarantees on complete dissemination are

not necessary, as we will see later on.

Perhaps the simplest possible implementation is when a node moves to the removed

state with a fixed probability whenever it encounters a peer that has already received the

update. Let this probability be 1/k, where the natural interpretation of parameter k is the

average number of times a node sends the update to a peer that turns out to already have
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Algorithm 3 an SIR gossip variant

1: loop

2: wait(∆)
3: p← random peer

4: if push then

5: sendPush(p, infective updates)

6: else if pull then

7: sendPullRequest(p)

8:

9: procedure ONFEEDBACK(m)

10: for all u ∈ m.updates do

11: switch u to state R with pr. 1/k

12: procedure ONPUSH(m)

13: if pull then

14: sendPull(m.sender, infective updates)

15: onPull(m)

16:

17: procedure ONPULL(m)

18: buffer← m.updates ∩ {known updates}

19: sendFeedback(m.sender, buffer)

20: store m.updates

21:

22: procedure ONPULLREQUEST(m)

23: sendPull(m.sender, infective updates)

the update before stopping its transmission. Obviously, this implicitly assumes a feedback

mechanism because nodes need to check whether the peer they sent the update to already

knew the update or not.

As shown in Algorithm 3, this feedback mechanism is the only difference between SIR

and SI gossip, apart from the fact that in the SI model all known updates are infective,

whereas in the SIR model they are either infective or removed. The active thread and

procedure ONPULLREQUEST are identical to Algorithm 1. However, procedures ONPUSH

and ONPULL send a feedback containing the received updates that were known already.

This message is processed by procedure ONFEEDBACK, eventually switching all updates

to the removed state. Removed updates are stored but are not included in the push and

pull messages anymore.

A typical approach to model the SIR algorithm is to work with differential equations,

as opposed to the discrete stochastic approach we applied previously. Let us illustrate this

approach via an analysis of Algorithm 3, assuming a push variant. Following [20,23], we

can write

ds

dt
= −si (1.4)

di

dt
= si− 1

k
(1− s)i (1.5)

where s(t) and i(t) are the proportions of susceptible and infected nodes, respectively.

The nodes in the removed state are given by r(t) = 1− s(t)− i(t). We can take the ratio,

eliminating t:
di

ds
= −k + 1

k
+

1

ks
, (1.6)

which yields

i(s) = −k + 1

k
s+

1

k
log s+ c, (1.7)

where c is the constant of integration, which can be determined using the initial condition

that i(1 − 1/N) = 1/N (where N is the number of nodes). For a large N , we have

c ≈ (k + 1)/k.

Now we are interested in the value s∗ where i(s∗) = 0: at that time sending the update

is terminated, because all nodes are susceptible or removed. In other words, s∗ is the
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proportion of nodes that do not know the update when gossip stops. Ideally, s∗ should be

zero. Using the results, we can write an implicit equation for s∗ as follows:

s∗ = exp[−(k + 1)(1− s∗)]. (1.8)

This tells us that the spreading is very effective. For k = 1, 20% of the nodes are predicted

to miss the update, but with k = 5, 0.24% will miss it, while with k = 10 it will be as few

as 0.00017%.

Let us now proceed to discussing message complexity. Since full dissemination is not

achieved in general, our goal is now to approximate the number of messages needed to

decrease the proportion of susceptible nodes to a specified level.

Let us first consider the push variant. In this case, we make the rather striking obser-

vation that the value of s depends only on the number of messages m that have been sent

by the nodes. Indeed, each infected node picks peers independently at random to send the

update to. That is, every single update message is sent to a node selected independently

at random from the set of all the nodes. This means that the probability that a fixed node

is in state S after a total of m update messages has been sent can be approximated by

s(m) = (1− 1

N
)m ≈ exp[−m

N
] (1.9)

Substituting the desired value of s, we can easily calculate the total number of messages

that need to be sent in the system: it is

m ≈ −N log s (1.10)

If we demand that s = 1/N , that is, we allow only for a single node not to see

the update, then we need m ≈ N logN . This reminds us of the SI model, that had an

O(N logN) message complexity to achieve full dissemination. If, on the other hand, we

allow for a constant proportion of the nodes not to see the update (s = 1/c) then we have

m ≈ N log c; that is, a linear number of messages suffice. Note that s or m cannot be set

directly, but only through other parameters such as k.

Another notable point is that (1.9) holds irrespective of whether we apply a feedback

mechanism or not, and irrespective of the exact algorithm applied to switch to state R.

In fact, it applies even for the pure SI model, since all we assumed was that it is a push-

only gossip with random peer selection. Hence it is a strikingly simple, alternative way

to illustrate the O(N logN) message complexity result shown for the SI model: roughly

speaking, we need approximately N logN messages to make s go below 1/N .

Since m determines s irrespective of the details of the applied push gossip algorithm,

the speed at which an algorithm can have the infected nodes send m messages determines

the speed of convergence of s. With this observation in mind, let us compare a number of

variants of SIR gossip.

Apart from Algorithm 3, one can implement termination (switching to state S) in

several different ways. For example, instead of a probabilistic decision in procedure ON-

FEEDBACK, it is also possible to use a counter, and switch to state S after receiving the

k-th feedback message. Feedback could be eliminated altogether, and moving to state R
could depend only on the number of times a node has sent the update.

It is not hard to see that the the counter variants improve load balancing. This in

turn improves speed because we can always send more messages in a fixed amount of

time if the message sending load is well balanced. In fact, among the variants described
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above, applying a counter without feedback results in the fastest convergence. However,

parameter k has to be set appropriately to achieve a desired level of s. To set k and s
appropriately, one needs to know the network size. Variants using a feedback mechanism

achieve a somewhat less efficient load balancing but they are more robust to the value of k
and to network size: they can “self-tune” the number of messages based on the feedback.

For example, if the network is large, more update messages will be successful before the

first feedback is received.

Lastly, as in the SI model, it is apparent that in the end phase the pull variant is much

faster and uses fewer update messages. It does this at the cost of constantly sending update

requests.

We think in general that, especially when updates are constantly being injected, the

push-pull algorithm with counter and feedback is probably the most desirable alternative.

1.2.3 Applications

We first explain how the various protocols we discussed were applied at Xerox for main-

taining a consistent set of replicas of a database. Although we cannot provide a complete

picture here (see [20]), we elucidate the most important ideas.

In Section 1.2.1 we identified two sub-problems, namely update spreading and error

correction. The former is implemented by an SIR gossip protocol, and the latter by an

SI protocol. The SIR gossip is called rumor mongering and is run when a new update

enters the system. Note that in practice, many fresh updates can piggyback a single gos-

sip message, but the above-mentioned convergence properties hold for any single fixed

update.

The SI algorithm for error correction works for every update ever entered, irrespec-

tive of age, simultaneously for all updates. In a naive implementation, the entire database

would be transmitted in each cycle by each node. Evidently, this is not a good idea, since

databases can be very large, and are mostly rather similar. Instead, the nodes first try to

discover what the difference is between their local replicas by exchanging compressed de-

scriptions such as checksums (or lists of checksums taken at different times) and transmit

only the missing updates. However, one cycle of error correction is typically much more

expensive than rumor mongering.

The SI algorithm for error correction is called anti-entropy. This is not a very fortunate

name: we should remark here that it has no deeper meaning than to express the fact that

“anti-entropy” will increase the similarity among the replicas thereby increasing “order”

(decreasing randomness). So, since entropy is usually considered to be a measure of

“disorder”, the name “anti-entropy” simply means “anti-disorder” in this context.

In the complete system, the new updates are spread through rumor mongering, and

anti-entropy is run occasionally to take care of any undelivered updates. When such an

undelivered update is found, the given update is redistributed by re-inserting it as a new

update into the database where it was not present. This is a very simple and efficient

method, because update spreading via rumor mongering has a cost that depends on the

number of other nodes that already have the update: if most of the nodes already have it,

then the redistribution will die out very quickly.

Let us quickly compare this solution to the earlier, email based approach. Emailing

updates and rumor mongering are similar in that both focus on spreading a single update

and have a certain small probability of error. Unlike email, gossip has no bottleneck nodes

and hence is less sensitive to local failure and assumes less about local resources such as
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bandwidth. This makes gossip a significantly more scalable solution. Gossip uses slightly

more messages in total for the distribution of a single update. But with frequent updates

in a large set of replicas, the amortized cost of gossip (number of messages per update) is

more favorable (remember that one message may contain many updates).

In practical implementations, additional significant optimizations were performed.

Perhaps the most interesting one is spatial gossip where, instead of picking a peer at

random, nodes select peers based on a distance metric. This is important because if the

underlying physical network topology is such that there are bottleneck links connecting

dense clusters, then random communication places a heavy load on such links that grows

linearly with system size. In spatial gossip, nodes favor peers that are closer in the topol-

ogy, thereby relieving the load from long distance links, but at the same time sacrificing

some of the spreading speed. This topic is discussed at great length in [24].

We should also mention the removal of database entries. This is solved through “death

certificates” that are updates stating that a given entry should be removed. Needless to say,

death certificates cannot be stored indefinitely because eventually the databases would be

overloaded by them. This problem requires additional tricks such as removing most but

not all of them, so that the death certificate can be reactivated if the removed update pops

up again.

Apart from the application discussed above, the gossip paradigm has recently received

yet another boost. After getting used to Grid and P2P applications, and witnessing the

emergence of the huge, and often geographically distributed data centers that increase in

size and capacity at an incredible rate, in the past years we had to learn another term:

cloud computing [25–27].

Cloud computing involves a huge amount of distributed resources (a cloud), typically

owned by a single organization, and organized in such a way that for the user it appears to

be a coherent and reliable storage or computing service. The exact details of commercially

deployed technology are not always clear, but from several sources it seems rather evident

that gossip protocols are involved. For example, after a recent crash of Amazon’s S3

storage service, the message explaining the failure included some details:

(...) Amazon S3 uses a gossip protocol to quickly spread server state informa-

tion throughout the system. This allows Amazon S3 to quickly route around

failed or unreachable servers, among other things.1 (...)

In addition, a recent academic publication on the technology underlying Amazon’s com-

puting architecture provides further details on gossip protocols [28], revealing that an

anti-entropy gossip protocol is responsible for maintaining a full membership table at

each server (that is, a fully connected overlay network with server state information).

1.3 Aggregation

The gossip communication paradigm can be generalized to applications other than infor-

mation dissemination. In these applications some implicit notion of spreading informa-

tion will still be present, but the emphasis is not only on spreading but also on processing

information on the fly.

This processing can be for creating summaries of distributed data; that is, computing

a global function over the set of nodes based only on gossip-style communication. For

1http://status.aws.amazon.com/s3-20080720.html
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Algorithm 4 push-pull averaging

1: loop

2: wait(∆)
3: p← random peer

4: sendPush(p,x)

5: procedure ONPUSH(m)

6: sendPull(m.sender,x)

7: x← (m.x+ x)/2

8:

9: procedure ONPULL(m)

10: x← (m.x+ x)/2

example, we might be interested in the average, or maximum of some attribute of the

nodes. The problem of calculating such global functions is called data aggregation or

simply aggregation. We might want to compute more complex functions as well, such

as fitting models on fully distributed data, in which case we talk about the problem of

distributed data mining.

In the past few years, a lot of effort has been directed at a specific problem: calcu-

lating averages. Averaging can be considered the archetypical example of aggregation.

Chapter 3 will discuss this problem in detail, here we describe the basic notions to help

illustrate the generality of the gossip approach.

Averaging is a very simple problem, and yet very useful: based on the average of a

suitably defined local attribute, we can calculate a wide range of values. To elaborate on

this notion, let us introduce some formalism. Let xi be an attribute value at node i for all

0 < i ≤ N . We are interested in the average
∑N

i=1 xi/N . Clearly, if we can calculate the

average then we can calculate any mean of the form

g(x1, . . . , xN ) = f−1

(

∑N

i=1 f(xi)

N

)

(1.11)

as well, where we simply apply f() on the local attributes before averaging. For example,

f(x) = log x generates the geometric mean, while f(x) = 1/x generates the harmonic

mean. In addition, if we calculate the mean of several powers of xi, then we can calculate

the moments of the distribution of the values. For example, the variance can be expressed

as a function over averages of x2i and xi:

σ2 =
1

N

N
∑

i=1

x2i − (
1

N

N
∑

i=1

xi)
2 (1.12)

Finally, other interesting quantities can be calculated using averaging as a primitive. For

example, if every attribute value is zero, except at one node, where the value is 1, then the

average is 1/N . This allows us to compute the network size N .

In the remaining parts of this section we focus on several gossip protocols for calcu-

lating the average of node attributes.

1.3.1 Algorithms and Theoretical Notions

The first, perhaps simplest, algorithm we discuss is push-pull averaging, presented in

Algorithm 4. Each node periodically selects a random peer to communicate with, and

then sends the local estimate of the average x. The recipient node then replies with its

own current estimate. Both participating nodes (the sender and the one that sends the

reply) will store the average of the two previous estimates as a new estimate.
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initial state cycle 1 cycle 2

cycle 3 cycle 4 cycle 5

Figure 1.1: Illustration of the averaging protocol. Pixels correspond to nodes (100x100

pixels=10,000 nodes) and pixel color to the local approximation of the average.

Similarly to our treatment of information spreading, Algorithm 4 is formulated for an

asynchronous message passing model, but we will assume several synchronicity proper-

ties when discussing the theoretical behavior of the algorithm. We will return to the issue

of asynchrony in Section 1.3.1.

For now, we also treat the algorithm as a one-shot algorithm; that is, we assume that

first the local estimate xi of node i is initialized as xi = xi(0) for all the nodes i = 1 . . . N ,

and subsequently the gossip algorithm is executed. This assumption will also be relaxed

later in this section, where we briefly discuss the case, where the local attributes xi(0) can

change over time and the task is to continuously update the approximation of the average.

Let us first have a brief look at the convergence of the algorithm. It is clear that the

state when all the xi values are identical is a fixed point, assuming there are no node

failures and message failures, and that the messages are delivered without delay. In addi-

tion, observe that the sum of the approximations remains constant throughout. This very

important property is called mass conservation. We can then look at the difference be-

tween the minimal and maximal approximations and show that this difference can only

decrease and, furthermore, it converges to zero in probability, using the fact that peers are

selected at random. But if all the approximations are the same, they can only be equal to

the average
∑N

i=1 xi(0)/N due to mass conservation.

The really interesting question, however, is the speed of convergence. The fact of con-

vergence is easy to prove in a probabilistic sense, but such a proof is useless from a prac-

tical point of view without characterizing speed. The speed of the protocol is illustrated

in Figure 1.1. The process shows a diffusion-like behavior. The averaging algorithm is of

course executed using random peer sampling (the pixel pairs are picked at random). The

arrangement of the pixels is for illustration purposes only.
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Algorithm 5 push averaging

1: loop

2: wait(∆)
3: p← random peer

4: sendPush(p,(x/2, w/2))
5: x← x/2
6: w ← w/2

7: procedure ONPUSH(m)

8: x← m.x+ x
9: w ← m.w + w

In Chapter 3 we characterize the speed of convergence and show that the variance of

the approximations decreases by a constant factor in each cycle. In practice, 10-20 cycles

of the protocol already provide an extremely accurate estimation: the protocol not only

converges, but it converges very quickly as well.

Asynchrony

In the case of information dissemination, allowing for unpredictable and unbounded mes-

sage delays (a key component of the asynchronous model) has no effect on the correctness

of the protocol, it only has an (in practice, marginal) effect on spreading speed. For Algo-

rithm 4 however, correctness is no longer guaranteed in the presence of message delays.

To see why, imagine that node j receives a PUSHUPDATE message from node i and as

a result it modifies its own estimate and sends its own previous estimate back to i. But

after that point, the mass conservation property of the network will be violated: the sum

of all approximations will no longer be correct. This is not a problem if neither node j nor

node i receives or sends another message during the time node i is waiting for the reply.

However, if they do, then the state of the network may become corrupted. In other words,

if the pair of push and pull messages are not atomic, asynchrony is not tolerated well.

Algorithm 5 is a clever modification of Algorithm 4 and is much more robust to mes-

sage delay. The algorithm is very similar, but here we introduce another attribute called

w. For each node i, we initially set wi = 1 (so the sum of these values is N). We also

modify the interpretation of the current estimate: on node i it will be xi/wi instead of xi,
as in the push-pull variant.

To understand why this algorithm is more robust to message delay, consider that we

now have mass conservation in a different sense: the sum of the attribute values at the

nodes plus the sum of the attribute values in the undelivered messages remains constant,

for both attributes x and w. This is easy to see if one considers the active thread which

keeps half of the values locally and sends the other half in a message. In addition, it can

still be proven that the variance of the approximations xi/wi can only decrease.

As a consequence, messages can now be delayed, but if message delay is bounded,

then the variance of the set of approximations at the nodes and in the messages waiting

for delivery will tend to zero. Due to mass conservation, these approximations will con-

verge to the true average, irrespective of how much of the total “mass” is in undelivered

messages. (Note that the variance of xi or wi alone is not guaranteed to converge zero.)

Robustness to failure and dynamism

We will now consider message and node failures. Both kinds of failures are unfortunately

more problematic than asynchrony. In the case of information dissemination, failure had
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no effect on correctness: message failure only slows down the spreading process, and

node failure is problematic only if every node fails that stores the new update.

In the case of push averaging, losing a message typically corrupts mass conservation.

In the case of push-pull averaging, losing a push message will have no effect, but losing

the reply (pull message) may corrupt mass conservation. The solutions to this problem

are either based on failure detection (that is, they assume a node is able to detect whether

a message was delivered or not) and correcting actions based on the detected failure, or

they are based on a form of rejuvenation (restarting), where the protocol periodically

re-initializes the estimates, thereby restoring the total mass. The restarting solution is

feasible due to the quick convergence of the protocol. Both solutions are somewhat inel-

egant; but gossip is attractive mostly because of the lack of reliance on failure detection,

which makes restarting more compatible with the overall gossip design philosophy. Un-

fortunately restarting still allows for a bounded inaccuracy due to message failures, while

failure detection offers accurate mass conservation.

Node failures are a source of problems as well. By node failure we mean the situation

when a node leaves the network without informing the other nodes about it. Since the

current approximation xi (or xi/wi) of a failed node i is typically different from xi(0),
the set of remaining nodes will end up with an incorrect approximation of the average of

the remaining attribute values. Handling node failures is problematic even if we assume

perfect failure detectors. Solutions typically involve nodes storing the contributions of

each node separately. For example, in the push-pull averaging protocol, node i would

store δji: the sum of the incremental contributions of node j to xi. More precisely, when

receiving an update from j (push or pull), node i calculates δji = δji+(xj−xi)/2. When

node i detects that node j failed, it performs the correction xi = xi − δji.
We should mention that this is feasible only if the selected peers are from a small fixed

set of neighboring nodes (and not randomly picked from the network), otherwise all the

nodes would need to monitor an excessive number of other nodes for failure. Besides,

message failure can interfere with this process too. The situation is further complicated

by nodes failing temporarily, perhaps not even being aware of the fact that they have been

unreachable for a long time by some nodes. Also note that the restart approach solves

the node failure issue as well, without any extra effort or failure detectors, although, as

previously, allowing for some inaccuracy.

Finally, let us consider a dynamic scenario where mass conservation is violated due to

changing xi(0) values (so the approximations evolved at the nodes will no longer reflect

the correct average). In such cases one can simply set xi = xi +xnewi (0)− xoldi (0), which

corrects the sum of the approximations, although the protocol will need some time to

converge again. As in the previous cases, restarting solves this problem too without any

extra measures.

1.3.2 Applications

The diffusion-based averaging protocols we focused on will most often be applied as a

primitive to help other protocols and applications such as load balancing, task allocation,

or the calculation of relatively complex models of distributed data such as spectral prop-

erties of the underlying graph [11, 29]. An example of this application will be described

in Chapter 4.

Sensor networks are especially interesting targets for applications, due to the fact that

their very purpose is data aggregation, and they are inherently local: nodes can typically
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Algorithm 6 The gossip algorithm skeleton.

1: loop

2: wait(∆)
3: p← selectPeer()

4: if push then

5: sendPush(p,state)

6: else if pull then

7: sendPullRequest(p)

8:

9: procedure ONPULLREQUEST(m)

10: sendPull(m.sender,state)

11: procedure ONPUSH(m)

12: if pull then

13: sendPull(m.sender,state)

14: state← update(state,m.state)

15:

16: procedure ONPULL(m)

17: state← update(state,m.state)

communicate with their neighbors only [30]. However, sensor networks do not support

point-to-point communication between arbitrary pairs of nodes as we assumed previously,

which makes the speed of averaging slower, depending on the communication range of

the devices.

1.4 What is Gossip after all?

So far we have discussed two applications of the gossip idea: information dissemination

and aggregation. By now it should be rather evident that these applications, although

different in detail, have a common algorithmic structure. In both cases an active thread

selects a peer node to communicate with, followed by a message exchange and the update

of the internal states of both nodes (for push-pull) or one node (for push or pull). We

propose the template (or design pattern [31]) shown in Algorithm 6 to capture this struc-

ture. The three components that need to be defined to instantiate this pattern are methods

UPDATE and SELECTPEER, and the state of a node. This template covers our two examples

presented earlier. In the case of information dissemination the state of a node is defined by

the stored updates, while in the case of averaging the state is the current approximation of

the average at the node. In addition, the template covers a large number of other protocols

as well.

1.4.1 Overlay Networks

To illustrate the power of this abstraction, we briefly mention one notable application we

have not covered in this chapter: the construction and management of overlay networks.

The larger part of this dissertation, in particular, Chapters 2 and 6 will discuss such appli-

cations. In this case the state of a node is a set of node addresses that define an overlay

network. (A node is able to send messages to an address relying on lower layers of the

networking stack; hence the name “overlay”.)

In a nutshell, the state (the set of overlay links) is then communicated via gossip, and

method UPDATE selects the new set of links from the set of all links the node has seen.

Through this mechanism one can create and manage a number of different overlay net-

works such as random networks, structured networks (like a ring) or proximity networks

based on some distance metric, for example semantic or latency-based distance. Method

SELECTPEER can also be implemented in a clever way, based on the actual neighbors, to

speed up convergence.
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These networks can be applied by higher level applications, or by other gossip pro-

tocols. For example, random networks are excellent for implementing random peer sam-

pling, a service all the algorithms rely on in this chapter when selecting a random peer to

communicate with.

1.4.2 Prototype-based Gossip Definition

The gossip abstraction is powerful, perhaps too much so. It is rather hard to capture

what this “gossipness” concept means exactly. Attempts have been made to define gossip

formally, with mixed success [32]. For example, periodic and local communication to

random peers appears to be a core feature. However, in the SIR model, nodes can stop

communicating. Besides, in some gossip protocols neighboring nodes need not be random

in every cycle but instead they can be fixed and static. For example, many secure gossip

protocols in fact use deterministic peer selection on controlled networks [33]. Also, quite

clearly, a protocol remains gossip if message sending is slightly irregular—for example,

due to an optimization that makes a protocol adaptive to system load or the progress

of information spreading. In general, the template allows us to model practically any

message passing protocol, since the definition of state is unrestricted, in any cycle a peer

can choose to send a zero length message (that is, no message), and the gossip period ∆
can be arbitrarily small.

For this reason it appears to be more productive to also have a feature list that defines

an idealized prototypical gossip protocol application (i.e., information spreading), and to

compare the features of a given protocol with this set. In this way, instead of giving a

formal, exact definition of gossip protocols, we make it possible to compare any given

protocol to the prototypical gossip protocol and assess the similarities and differences,

avoiding a rigid binary (gossip/non-gossip) decision over protocols. We propose the fol-

lowing features: (1) randomized peer selection, (2) only local information is available at

all nodes, (3) cycle-based (periodic), (4) limited transmission and processing capacity per

cycle, (5) all peers run the same algorithm.

The inherent and intentional fuzziness in this prototype-based approach turns the

yes/no distinction of a formal definition into a measure of distance from prototypical

gossip: a certain algorithm might have some of the properties, and might not have some

others. Even in the case of matching properties, we can talk about the degree of matching.

For example, we can ask how random peer selection is, or how local the decisions are.

Figure 1.2 is a simple illustration of this idea. The figure also illustrates the possibility

that some algorithms from other fields might actually be closer to prototypical gossip

than some protocols currently called gossip. The examples mentioned in the diagram are

explained in detail in [2].

1.5 Conclusions

In this chapter we introduced the gossip design pattern through the examples of infor-

mation dissemination (the prototypical application) and aggregation. We showed that

both applications use a very similar communication model, and both applications provide

probabilistic guarantees for an efficient and effective execution. We also discussed the

gossip model in general, and briefly mentioned overlay network management as a further

application.
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Figure 1.2: Prototypical gossip in a multidisciplinary context.

We should emphasize that gossip protocols represent a departure from “classical” ap-

proaches in distributed computing where correctness and reliability were the top priorities

and performance (especially speed and responsiveness) was secondary. To put it simply:

gossip protocols—if done well—are simple, fast, cheap, and extremely scalable, but they

do not always provide a perfect or correct result under all circumstances and in all sys-

tem models. But in many scenarios a “good enough” result is acceptable, and in realistic

systems gossip components can always be backed up by more heavy-weight, but more

reliable methods that provide eventual consistency or correctness.

A related problem is malicious behavior. Unfortunately, gossip protocols in open

systems with multiple administrative domains are rather vulnerable to malicious behav-

ior. Current applications of gossip are centered on single administrative domain systems,

where all the nodes are controlled by the same entity and therefore the only sources of

problems are hardware, software or network failures. In an open system nodes can be

selfish, or even worse, they can be malicious. Current secure gossip algorithms are or-

ders of magnitude more complicated than basic versions, thus losing many of the original

advantages of gossiping.

All in all, gossip algorithms are a great tool for solving certain kinds of very important

problems under certain assumptions. In particular, they can help in the building of enor-

mous cloud computing systems that are considered the computing platform of the future

by many, and provide tools for programming sensor networks as well.

1.6 Further Reading

Here we provide a number of references that might help the reader probe deeper into the

topics that we discussed in this chapter. Our discussion on information dissemination was

based mostly on the seminal paper of Demers et al. [20], and partly on [21] and [22] to

elaborate on some of the details. In general [20] is highly recommended for further study,

since the paper contains a lot more material than what was covered here, and it touches

on almost all research issues associated with this field. One further important aspect—

gossiping taking physical distance into account—is elaborated on in a paper by Kempe,
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Kleinberg and Demers [24].

In the case of aggregation, we based our discussion on [8] (as discussed in Chapter 3)

and [34], borrowing some ideas from [35] and [36] during the discussion of asynchrony,

presented in a simplified form. Certain aspects of gossip aggregation have been covered

in recent work such as increased fault tolerance [37, 38] or privacy preservation [39].

An alternative theoretical approach can be followed as well if gossip-based average

calculation is viewed mathematically as a random walk on a suitably defined graph (or,

equivalently, a Markovian process with a time-reversible Markovian transition matrix),

which has a uniform stationary distribution. This however assumes that computation is

performed synchronously, in lock step, so that averaging can be described as a matrix it-

eration converging to the uniform distribution. These approaches have been omitted here,

but the interested reader can find them in a number of seminal papers such as [40–42]. In

general, [43] gives an excellent and comprehensive tutorial on the relevant mathematical

theory.

There are yet other alternative ways of calculating averages that have not been covered

but that are based on gossip in one way or another. One approach is based on maintain-

ing a hierarchical overlay (often involving gossip in the construction and maintenance

of the hierarchy) and using it to calculate various aggregates [44–46]. This approach is

rather typical in wireless sensor networks [47]. One can also use additional tricks such as

random walk-based statistical approximations [48] or cleverly constructed attributes such

that the averaging problem is reduced to finding the minima of these attributes, and then

using these minima to infer the true average with a controlled accuracy [49]. A method

inspired by belief propagation was also proposed, that has favorable properties in certain

communication topologies [50].

Let us now suggest some further reading on applications of gossip that have not been

covered in this chapter. In Section 1.4 we mentioned peer sampling, mentioning gossip-

based implementations. An extensive discussion of peer sampling and its variations is

provided in [3] and discussed in Chapter 2. A similar application (discussed in Chap-

ter 6), is overlay construction and maintenance. We show that a wide range of network

topologies can be evolved with a slight modification of the peer sampling algorithm.

Gossip has also been applied in fault tolerant, practical distributed hash table im-

plementations [51] to increase the robustness of the overlay maintenance algorithm for

dynamic conditions.
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Chapter 2

Peer Sampling Service

As we have seen, Algorithm 6 in Chapter 1 crucially relies on a method called SELECT-

PEER. The peer sampling service implements this function. In short, this service provides

every node with peers to gossip with. We promote this service to the level of a first-class

abstraction of a large-scale distributed system, similar to a name service being a first-class

abstraction of a local-area system.

One important problem when implementing a peer sampling service in large dynamic

networks is making sure that it is as scalable and robust as possible. We present a generic

framework to implement a peer sampling service in a decentralized manner by construct-

ing and maintaining dynamic unstructured overlays through gossiping membership in-

formation itself. Our framework generalizes existing approaches and makes it easy to

discover new ones. We use this framework to empirically explore and compare several

implementations of the peer sampling service. Through extensive simulation experiments

we show that—although all protocols provide a good quality uniform random stream of

peers to each node locally—traditional theoretical assumptions about the randomness of

the unstructured overlays as a whole do not hold in any of the instances. We also show that

different design decisions result in severe differences from the point of view of two cru-

cial aspects: load balancing and fault tolerance. Our simulations are validated by means

of a wide-area implementation.

2.1 Introduction

The popularity of gossip protocols stems from their ability to reliably pass information

among a large set of interconnected nodes, even if the nodes regularly join and leave the

system (either purposefully or on account of failures), and the underlying network suffers

from broken or slow links.

In a gossip-based protocol, each node in the system periodically exchanges informa-

tion with a subset of its peers. The choice of this subset is crucial to the wide dissem-

ination of the gossip. Ideally, any given node should exchange information with peers

that are selected following a uniform random sample of all nodes currently in the sys-

tem [20, 22, 52–54]. This assumption made it possible to rigorously establish many de-

sirable features of gossip-based protocols like scalability, reliability, and efficiency (see

Chapter 1).

In practice, enforcing this assumption would require to develop applications where

each node may be assumed to know every other node in the system [53,55,56]. However,

providing each node with a complete membership table from which a random sample can

23
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be drawn, is unrealistic in a large-scale dynamic system, for maintaining such tables in

the presence of joining and leaving nodes (referred to as churn) incurs considerable syn-

chronization costs. In particular, measurement studies on various peer-to-peer networks

indicate that an individual node may often be connected in the order of only a few minutes

to an hour (see, e.g. [57, 58]).

Clearly, decentralized schemes to maintain membership information are crucial to the

deployment of gossip-based protocols. This chapter factors out the very abstraction of

a peer sampling service and presents a generic, yet simple, gossip-based framework to

implement it.

The peer sampling service is singled-out from the application using it and, abstractly

speaking, the same service can be used in different settings: information dissemina-

tion [20,59], aggregation [8,10,34,60], load balancing [61], and network management [36].

The service is promoted as a first class abstraction of a large-scale distributed system. In

a sense, it plays the role of a naming service in a traditional LAN-oriented distributed

system as it provides each node with other nodes to interact with.

The basic general principle underlying the framework we propose to implement the

peer sampling service, is itself based on a gossip paradigm. In short, every node (1) main-

tains a relatively small local membership table that provides a partial view on the com-

plete set of nodes and (2) periodically refreshes the table using a gossiping procedure.

The framework is generic and can be used to instantiate known [5, 62, 63] and novel

gossip-based membership implementations. In fact, our framework captures many possi-

ble variants of gossip-based membership dissemination. These variants mainly differ in

the way the membership table is updated at a given node after the exchange of tables in a

gossip cycle. We use this framework to experimentally evaluate various implementations

and identify key design parameters in practical settings. Our experimentation covers both

extensive simulations and emulations on a wide-area cluster.

We consider many dimensions when identifying qualitative differences between the

variants we examine. These dimensions include the randomness of selecting a peer as

perceived by a single node, the accuracy of the current membership view, the distribution

of the load incurred on each node, as well as the robustness in the presence of failures and

churn.

Maybe not surprisingly, we show that communication should rather be bidirectional:

it should follow the push-pull model. Adhering to a push-only or pull-only approach

can easily lead to (irrecoverable) partitioning of the set of nodes. Another finding is that

robustness against failing nodes or churn can be enhanced if old table entries are dropped

when exchanging membership information.

However, as we shall also see, no single implementation outperforms the others along

all dimensions. In this study we identify these tradeoffs when selecting an implementa-

tion of the peer sampling service for a given application. For example, to achieve good

load balancing, table entries should rather be swapped between two peers. However, this

strategy is less robust against failures and churn than non-swapping ones.

The chapter is organized as follows. Section 2.2 presents the interface and generic

implementation of our peer sampling service. Section 2.3 characterizes local randomness:

that is, the randomness of the samples as seen by a fixed participating node. In Section 2.4

we analyze global randomness in a graph-theoretic framework. Robustness to failures

and churn is discussed in Section 2.5. The simulations are validated through a wide-area

experimentation described in Section 2.6. Sections 2.7, 2.8 and 2.9 present the discussion,

related work and conclusions, respectively.
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2.2 Peer-Sampling Service

The peer sampling service is implemented over a set of nodes (a group) wishing to execute

one or more protocols that require random samples from the group. The task of the service

is to provide a participating node with a random subset of peers from the group.

2.2.1 API

The API of the peer sampling service simply consists of two methods: INIT and SELECT-

PEER. It would be technically straightforward to provide a framework for a multiple-

application interface and architecture. For a better focus and simplicity of notations we

assume, however, that there is only one application. The specification of these methods is

as follows.

INIT() Initializes the service on a given node if this has not been done before. The actual

initialization procedure is implementation dependent.

SELECTPEER() Returns a peer address if the group contains more than one node. The

returned address is a sample drawn from the group. Ideally, this sample should be

an independent unbiased random sample. The exact characteristics of this sample

(e.g., its randomness or correlation in time and with other peers) is affected by the

implementation.

Our focus is to give accurate information about the behavior of the SELECTPEER()

method in the case of a class of gossip-based implementations. Applications requiring

more than one peer simply invoke this method repeatedly.

Note that we do not define a STOP method. In other words, graceful leaves are handled

as crashes. The reason is to ease the burden on applications by delegating the responsibil-

ity of removing inactive nodes to the service layer.

2.2.2 Generic Protocol Description

We consider a set of nodes connected in a network. A node has an address that is needed

for sending a message to that node. Each node maintains a membership table represent-

ing its (partial) knowledge of the global membership. Traditionally, if this knowledge is

complete, the table is called the global view or simply the view. However, in our case

each node knows only a limited subset of the system, so the table is consequently called

a partial view. The partial view is a list of c node descriptors. Parameter c represents the

size of the list and is the same for all nodes.

A node descriptor contains a network address (such as an IP address) and an age that

represents the freshness of the given node descriptor. The partial view is a list data struc-

ture, and accordingly, the usual list operations are defined on it. Most importantly, this

means that the order of elements in the view is not changed unless some specific method

(for example, SHUFFLE, which randomly reorders the list elements) explicitly changes it.

The protocol also ensures that there is at most one descriptor for the same address in every

view.

The purpose of the gossiping algorithm, executed periodically on each node and re-

sulting in two peers exchanging their membership information, is to make sure that the

partial views contain descriptors of a continuously changing random subset of the nodes
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Algorithm 7 The skeleton of a gossip-based peer sampling service.

1: loop

2: wait(∆)
3: p← selectGPSPeer()

4: sendPush( p, toSend() )

5: view.increaseAge()

6:

7: procedure ONPUSH(m)

8: if pull then

9: sendPull( m.sender, toSend() )

10: onPull(m)

11:

12: procedure ONPULL(m)

13: update(m.buffer,c,H,S)

14: view.increaseAge()

15: procedure UPDATE(buffer,c,H,S)

16: view.append(buffer)

17: view.removeDuplicates()

18: view.removeOldItems(min(H ,view.size-c))
19: view.removeHead(min(S,view.size-c))
20: view.removeAtRandom(view.size-c)

21:

22: procedure TOSEND

23: buffer← ((MyAddress,0))

24: view.shuffle()

25: move oldest H items to end of view

26: buffer.append(view.head(c/2− 1))

27: return buffer

and (in the presence of failure and joining and leaving nodes) to make sure the partial

views reflect the dynamics of the system. We assume that each node executes the same

protocol of which the skeleton is shown in Algorithm 7.

Note that the algorithm is an instantiation of the generic scheme in Algorithm 6, only

it is slightly simpler because we do not support the pure pull variant, as explained in

Section 2.2.3. As in Chapter 1, we define a cycle to be a time interval of ∆ time units

where ∆ is the parameter of the protocol. During a cycle, each node initiates one view

exchange.

Three globally known system-wide parameters are used in this algorithm: parameters

c (the size of the partial view of each node), H and S. For the sake of clarity, we leave the

details of the meaning and impact of H and S until the end of this section.

In the active thread, first a peer node is selected to exchange membership informa-

tion with. This selection is implemented by the method SELECTGPSPEER that returns the

address of a live node. This method should not be confused with the API method SELECT-

PEER. Although it serves a similar purpose, method SELECTGPSPEER is internal to the

peer sampling implementation, and it itself is a parameter of the generic protocol. We

discuss the possible implementations of SELECTGPSPEER in Section 2.2.3.

Subsequently, a push message is sent. The list of descriptors to be sent is prepared by

method TOSEND. There, a buffer is initialized with a fresh descriptor of the node running

the thread. Then, c/2−1 elements are appended to the buffer. The implementation ensures

that these elements are selected randomly from the view without replacement, giving the

oldest H elements (as defined by the age stored in the descriptors) a lower priority to be

included (they are sampled only if there are not enough younger elements). As a side-

effect of shuffling the view to select the c/2 − 1 random elements without replacement,

the view itself will also have exactly those elements as first items (i.e., in the list head)

that are being sent in the buffer. This fact will play a key role in the interpretation of

parameter S as we explain later. Parameter H is guaranteed to be less than or equal to

c/2. The buffer created this way is sent to the selected peer.

When a push message arrives from a peer node (in method ONPUSH) then if the

boolean parameter PULL is true then a pull message is sent also prepared by TOSEND.

When any message arrives from a peer node (in method ONPUSH or ONPULL) the received
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buffer is passed to method UPDATE, which creates the new view based on the listed param-

eters, and the current view, making sure the size of the new view does not decrease and is

at most c. After appending the received buffer to the view, method UPDATE keeps only the

freshest entry for each address, eliminating duplicate entries. After this operation, there

is at most one descriptor for each address. At this point, the size of the view is guaranteed

to be at least the original size, since in the original view each address was included also

at most once. Subsequently, the method performs a number of removal steps to decrease

the size of the view to c. The parameters of the removal methods are calculated in such

a way that the view size never drops below c. First, the oldest items are removed, as

defined by their age, and parameter H . The name H comes from healing, that is, this

parameter defines how aggressive the protocol should be when it comes to removing links

that potentially point to faulty nodes (dead links). Note that in this way self-healing is

implemented without actually checking if a node is alive or not. If a node is not alive,

then its descriptors will never get refreshed (and thus become old), and therefore sooner

or later they will get removed. The larger H is, the sooner older items will be removed

from views.

After removing the oldest items, the S first items are removed from the view. Recall

that it is exactly these items that were sent to the peer previously. As a result, parameter S
controls the priority that is given to the addresses received from the peer. If S is high, then

the received items will have a higher probability to be included in the new view. Since the

same algorithm is run on the receiver side, this mechanism in fact controls the number of

items that are swapped between the two peers, hence the name S for the parameter. This

parameter controls the diversity of the union of the two new views (on the passive and

active side). If S is low then both parties will keep many of their exchanged elements,

effectively increasing the similarity between the two respective views. As a result, more

unique addresses will be removed from the system. In contrast, if S is high, then the

number of unique addresses that are lost from both views is lower. The last step removes

random items to reduce the size of the view back to c.
This framework captures the essential behavior of many existing gossip membership

protocols (although exact matches often require small changes). As such, the framework

serves two purposes: (1) we can use it to compare and evaluate a wide range of different

gossip membership protocols by changing parameter values, and (2) it can serve as a

unifying implementation for a large class of protocols. As a next step, we will explore the

design space of our framework, forming the basis for an extensive protocol comparison.

2.2.3 Design Space

In this section we describe a set of specific instances of our generic protocol by specifying

the values of the key parameters. These instances will be analyzed in the rest of the

chapter.

Peer Selection

As described before, peer selection is implemented by SELECTGPSPEER that returns the

address of a live node as found in the caller’s current view. In this study, we consider the

following peer selection policies:

rand Uniform randomly select an available node from the view

tail Select the node with the highest age
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Note that the third logical possibility of selecting the node with the lowest age is not in-

cluded since this choice is not relevant. It is immediately clear from simply considering

the protocol scheme that node descriptors with a low age refer to neighbors that have a

view that is strongly correlated with the node’s own view. More specifically, the node

descriptor with the lowest age always refers exactly to the last neighbor the node commu-

nicated with. As a result, contacting this node offers little possibility to update the view

with unknown entries, so the resulting overlay will be very static. Our preliminary exper-

iments fully confirm this simple reasoning. Since the goal of peer sampling is to provide

uncorrelated random peers continuously, it makes no sense to consider any policies with

a bias towards low age, and thus protocols that follow such a policy.

View propagation

Once a peer has been chosen, the peers may exchange information in various ways. We

consider the following two view propagation policies:

push The node sends descriptors to the selected peer

pushpull The node and selected peer exchange descriptors

Like in the case of the view selection policies, one logical possibility: the pull strategy, is

omitted. It is easy to see that the pull strategy cannot possibly provide satisfactory service.

The most important flaw of the pull strategy is that a node cannot inject information about

itself, except only when explicitly asked by another node. This means that if a node

loses all its incoming connections (which might happen spontaneously even without any

failures, and which is rather common as we shall see) there is no possibility to reconnect

to the network.

View selection

The parameters that determine how view selection is performed are H , the self-healing

parameter, and S, the swap parameter. Let us first note some properties of these param-

eters. First, assuming that c is even, all values of H for which H > c/2 are equivalent

to H = c/2, because the protocol never decreases the view size to under c. For the same

reason, all values of S for which S > c/2 −H are equivalent to S = c/2 −H . Further-

more, the last, random removal step of the view selection algorithm is executed only if

S < c/2 −H . Keeping these in mind, we have a “triangle” of protocols with H ranging

from 0 to c/2, and with S ranging from 0 to c/2−H . In our analysis we will look at this

triangle at different resolutions, depending on the scenarios in question. As a minimum,

we will consider the three vertices of the triangle defined as follows.

blind H = 0, S = 0 Keep blindly a random subset

healer H = c/2 Keep the freshest entries

swapper H = 0, S = c/2 Minimize loss of information

We must note here that even in the case of SWAPPER, only at most c/2− 1 descriptors

can be swapped, because the first element of the received buffer of length c/2 is always a

fresh descriptor of the sender node. This fresh descriptor is always added to the view of

the recipient node if H + S = c/2, that is, when no random elements are removed. This

detail is very important as it is the only way fresh information can enter the system.
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Algorithm 8 Newscast

1: loop

2: wait(∆)
3: p← selectGPSPeer()

4: sendPush( p, toSend() )

5: view.increaseAge()

6:

7: procedure ONPUSH(m)

8: sendPull( m.sender, toSend() )

9: onPull(m)

10:

11: procedure ONPULL(m)

12: update(m.buffer,c)

13: view.increaseAge()

14: procedure UPDATE(buffer,c)

15: view.append(buffer)

16: view.removeDuplicates()

17: view.removeOldItems(view.size-c)

18:

19: procedure TOSEND

20: buffer← ((MyAddress,0))

21: buffer.append(view)

22: return buffer

2.2.4 Known Protocols as Instantiations of the Model

The framework captures a number of protocols that were published previously. Here

we briefly describe each in turn. The first is LPBCAST (lightweight probabilistic broad-

cast) [62]. The original publication describes a complete system for implementing a

publish-subscribe service. A part of that system is a membership management layer,

that is implemented essentially as the push variant of protocol BLIND with peer selection

RAND. The second protocol we cover is called CYCLON [63]. Apart from minor differ-

ences, Cyclon is equivalent to push-pull SWAPPER with RAND as peer selection.

Finally, we discuss NEWSCAST in more detail. The NEWSCAST protocol was published

originally as a technical report [4] that was later reprinted as a book chapter [5]. The first

version of the NEWSCAST protocol also included an aggregation protocol, and later on the

membership service was factored out in several subsequent publications when it became

clear that it is useful for a wide range of other applications as well. The pseudocode of

NEWSCAST is shown in Algorithm 8. The difference from Algorithm 7 is that NEWSCAST

is always push-pull, the entire view is transferred (that is, c elements and not c/2 ele-

ments), and the freshest c elements are kept from the union of the views by both nodes

that participate in an exchange. This results in an increased aggressiveness in removing

old values even w.r.t. HEALER. Method SELECTGPSPEER simply returns a random element

from the current view (that is, we use the RAND peer selection variant).

2.2.5 Implementation

We now describe a possible implementation of the peer sampling service API based on the

framework presented in Section 2.2.2. We assume that the service forms a layer between

the application and the unstructured overlay network.

Initialization

Method INIT() will cause the service to register itself with the gossiping protocol instance

that maintains the overlay network. From that point, the service will be notified by this

instance whenever the actual view is updated.
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Sampling

As an answer to the SELECTPEER call, the service returns an element from the current

view. To increase the randomness of the returned peers, the service makes a best effort

not to return the same element twice during the period while the given element is in the

view: this would introduce an obvious bias that would damage the quality of the service.

To achieve this, the service maintains a queue of elements that are currently in the view but

have not been returned yet. Method SELECTPEER returns the first element from the queue

and subsequently it removes this element from the queue. When the service receives a

notification on a view update, it removes those elements from the queue that are no longer

in the current view, and appends the new elements that were not included in the previous

view. If the queue becomes empty, the service falls back on returning random samples

from the current view. In this case the service can set a warning flag that can be read by

applications to indicate that the quality of the returned samples is no longer reliable.

In the following sections, we analyze the behavior of our framework in order to grad-

ually come to various optimal settings of the parameters. Anticipating our discussion in

Section 2.7, we will show that there are some parameter values that never lead to good re-

sults (such as selecting a peer from a fresh node descriptor). However, we will also show

that no single combination of parameter values is always best and that, instead, tradeoffs

need to be made.

2.3 Local Randomness

Ideally, a peer-sampling service should return a series of unbiased independent random

samples from the current group of peers. The assumption of such randomness has in-

deed led to rigorously establish many desirable features of gossip-based protocols like

scalability, reliability, and efficiency [21].

When evaluating the quality of a particular implementation of the service, one faces

the methodological problem of characterizing randomness. In this section we consider a

fixed node and analyze the series of samples generated at that particular node.

There are essentially two ways of capturing randomness. The first approach is based

on the notion of Kolmogorov complexity [64]. Roughly speaking, this approach considers

as random any series that cannot be compressed. Pseudo random number generators are

automatically excluded by this definition, since any generator, along with a random seed,

is a compressed representation of a series of any length. Sometimes it can be proven that

a series can be compressed, but in the general case, the approach is not practical to test

randomness due to the difficulty of proving that a series cannot be compressed.

The second, more practical approach assumes that a series is random if any statis-

tic computed over the series matches the theoretical value of the same statistic under

the assumption of randomness. The theoretical value is computed in the framework of

probability theory. This approach is essentially empirical, because it can never be math-

ematically proven that a given series is random. In fact, good pseudo random number

generators pass most of the randomness tests that belong to this category.

Following the statistical approach, we view the peer-sampling service (as seen by a

fixed node) as a random number generator, and we apply the same traditional methodol-

ogy that is used for testing random number generators. We test our implementations with

the “diehard battery of randomness tests” [65], the de facto standard in the field.
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2.3.1 Experimental Settings

We have experimented our protocols using the PEERSIM simulator [66]. All the simulation

results in this chapter were obtained using this implementation.

The DIEHARD test suite requires as input a considerable number of 32-bit integers: the

most expensive test needs 6 ·107 of them. To be able to generate this input, we assume that

all nodes in the network are numbered from 0 to N . Node N executes the peer-sampling

service, obtaining one number between 0 and N −1 each time it calls the service, thereby

generating a sequence of integers. If N is of the form N = 2n + 1, then the bits of

the generated numbers form an unbiased random bit stream, provided the peer-sampling

service returns random samples.

Due to the enormous cost of producing a large number of samples, we restricted the set

of implementations of the view construction procedure to the three extreme points: BLIND,

HEALER and SHUFFLER. Peer selection was fixed to be TAIL and PUSHPULL was fixed as

the communication model. Furthermore, the network size was fixed to be 210+1 = 1025,

and the view size was c = 20. These settings allowed us to complete 2 · 107 cycles for

all the three protocol implementations. In each case, node N generated four samples in

each cycle, thereby generating four 10-bit numbers. Ignoring two bits out of these ten, we

generated one 32-bit integer for each cycle.

Experiments convey the following facts. No matter which two bits are ignored, it does

not affect the results, so we consider this as a noncritical decision. Note that we could

have generated 40 bits per cycle as well. However, since many tests in the DIEHARD suit

do respect the 32-bit boundaries of the integers, we did not want to artificially diminish

any potential periodic behavior in terms of the cycles.

2.3.2 Test Results

For a complete description of the tests in the DIEHARD benchmark we refer to [65]. In

Table 2.1 we summarize the basic ideas behind each class of tests. In general, the three

random number sequences pass all the tests, including the most difficult ones [67], with

one exception. Before discussing the one exception in more detail, note that for two tests

we did not have enough 32-bit integers, yet we could still apply them. The first case

is the permutation test, which is concerned with the frequencies of the possible order-

ings of 5-tuples of subsequent random numbers. The test requires 5 · 107 32-bit integers.

However, we applied the test using the original 10-bit integers returned by the sampling

service, and the random sequences passed. The reason is that ordering is not sensitive to

the actual range of the values, as long as the range is not extremely small. The second

case is the so called “gorilla” test, which is a strong instance of the class of the monkey

tests [67]. It requires 6.7 · 107 32-bit integers. In this case we concatenated the output of

the three protocols and executed the test on this sequence, with a positive result. The intu-

itive reasoning behind this approach is that if any of the protocols produces a nonrandom

pattern, then the entire sequence is supposed to fail the test, especially given that this test

is claimed to be extremely difficult to pass.

Consider now the test that proved to be difficult to pass. This test was an instance

of the class of binary matrix rank tests. In this instance, we take 6 consecutive 32-bit

integers, and select the same (consecutive) 8 bits from each of the 6 integers forming a

6 × 8 binary matrix whose rank is determined. That rank can be from 0 to 6. Ranks

are found for 100,000 random matrices, and a chi-square test is performed on counts for

ranks smaller or equal to 4, and for ranks 5 and 6.
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Birthday Spacings The k-bit random numbers are interpreted as “birthdays”

in a “year” of 2k days. We take m birthdays and list the

spacings between the consecutive birthdays. The statistic

is the number of values that occur more than once in that

list.

Greatest Comm. Divisor We run Euclid’s algorithm on consecutive pairs of ran-

dom integers. The number of steps Euclid’s algorithm

needs to find the greatest common divisor (GCD) of

these consecutive integers in the random series, and the

GCD itself are the statistics used to test randomness.

Permutation Tests the frequencies of the 5! = 120 possible orderings

of consecutive integers in the random stream.

Binary Matrix Rank Tests the rank of binary matrices built from consecutive

integers, interpreted as bit vectors.

Monkey A set of tests for verifying the frequency of the occur-

rences of “words” interpreting the random series as the

output of a monkey typing on a typewriter. The random

number series is interpreted as a bit stream. The “letters”

that form the words are given by consecutive groups of

bits (e.g., for 2 bits there are 4 letters, etc).

Count the 1-s A set of tests for verifying the number of 1-s in the bit

stream.

Parking Lot Numbers define locations for “cars.” We continuously

“park cars” and test the number of successful and unsuc-

cessful attempts to place a car at the next location defined

by the random stream. An attempt is unsuccessful if the

location is already occupied (the two cars would over-

lap).

Minimum Distance Integers are mapped to two or three dimensional coordi-

nates and the minimal distance among thousands of con-

secutive points is used as a statistic.

Squeeze After mapping the random integers to the interval [0, 1),
we test how many consecutive values have to be multi-

plied to get a value smaller than a given threshold. This

number is used as a statistic.

Overlapping Sums The sum of 100 consecutive values is used as a statistic.

Runs Up and Down The frequencies of the lengths of monotonously decreas-

ing or increasing sequences are tested.

Craps 200,000 games of craps are played and the number of

throws and wins are counted. The random integers are

mapped to the integers 1, . . . , 6 to model the dice.

Table 2.1: Summary of the basic idea behind the classes of tests in the DIEHARD test suite

for random number generators. In all cases tests are run with several parameter settings.

For a complete description we refer to [65].
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When the selected byte coincides with the byte contributed by one call to the peer-

sampling service (bits 0-7, 8-15, etc), protocols BLIND and SWAPPER fail the test. To

better see why, consider the basic functioning of the rank test. In most of the cases, the

rank of the matrix is 5 or 6. If it is 5, it typically means that the same 8-bit entry is

copied twice into the matrix. Our implementation of the peer-sampling service explicitly

ensures that the diversity of the returned elements is maximized in the short run (see

Section 2.2.5). As a consequence, rank 6 occurs relatively more often than in the case

of a true random sequence. Note that for many applications this property is actually an

advantage. However, HEALER passes the test. The reason of this will become clearer later.

As we will see, in the case of HEALER the view of a node changes faster and therefore

the queue of the samples to be returned is frequently flushed, so the diversity-maximizing

effect is less significant.

The picture changes if we consider only every 4th sample in the random sequence

generated by the protocols. In that case, BLIND and SWAPPER pass the test, but HEALER

fails. In this case, the reason of the failure of HEALER is exactly the opposite: there

are relatively too many repetitions in the sequence. Taking only every 8th sample, all

protocols pass the test.

Finally, note that even in the case of “failures,” the numeric deviation from random

behavior is rather small. The expected occurrences of ranks of ≤4, 5, and 6 are 0.94%,

21.74%, and 77.31%, respectively. In the first type of failure, when there are too many

occurrences of rank 6, a typical failed test gives percentages 0.88%, 21.36%, and 77.68%.

When ranks are too small, a typical failure is, for example, 1.05%, 21.89%, and 77.06%.

2.3.3 Conclusions

The results of the randomness tests suggest that the stream of nodes returned by the peer-

sampling service is close to uniform random for all the protocol instances examined.

Given that some widely used pseudo-random number generators fail at least some of

these tests, this is a highly encouraging result regarding the quality of the randomness

provided by this class of sampling protocols.

Based on these experiments we cannot, however, conclude on global randomness of

the resulting graphs. Local randomness, evaluated from a peer’s point of view is impor-

tant, however, in a complex large-scale distributed system, where the stream of random

nodes returned by the nodes might have complicated correlations, merely looking at lo-

cal behavior does not reveal some key characteristics such as load balancing (existence

of bottlenecks) and fault tolerance. In Section 2.4 we present a detailed analysis of the

global properties of our protocols.

2.4 Global Randomness

In Section 2.3 we have seen that from a local point of view all implementations produce

good quality random samples. However, statistical tests for randomness and indepen-

dence tend to hide important structural properties of the system as a whole. To capture

these global correlations, in this section we switch to a graph theoretical framework. To

translate the problem into a graph theoretical language, we consider the communication

topology or overlay topology defined by the set of nodes and their views (recall that SE-

LECTPEER() returns samples from the view). In this framework the directed edges of the

communication graph are defined as follows. If node a stores the descriptor of node b
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in its view then there is a directed edge (a, b) from a to b. In the language of graphs,

the question is how similar this overlay topology is to a random graph in which the de-

scriptors in each view represent a uniform independent random sample of the whole node

set?

In this section we consider graph-theoretic properties of the overlay graphs. An im-

portant example of such properties is the degree distribution. The indegree of node i is

defined as the number of nodes that have i in their views. The outdegree is constant and

equal to the view size c for all nodes. Degree distribution has many significant effects.

Most importantly, degree distribution determines whether there are hot spots and bottle-

necks from the point of view of communication costs. In other words, load balancing is

determined by the degree distribution. It also has a direct relationship with reliability to

different patterns of node failures [68], and has an effect on the exact way epidemics are

spread [69]. Apart from the degree distribution we also analyze the clustering coefficient

and average path length, as described and motivated in Section 2.4.2.

Our main goal is to explore the different design choices in the protocol space de-

scribed in Section 2.2.2. More specifically, we want to assess the impact of the peer

selection, view selection, and view propagation parameters. Accordingly, we chose to fix

the network size to N = 104 and the maximal view size to c = 30. The results presented

in this section were obtained using the PEERSIM simulation environment [66].

2.4.1 Properties of Degree Distribution

The first and most fundamental question is whether, for a particular protocol implemen-

tation, the communication graph has some stable properties, which it maintains during

the execution of the protocol. In other words, we are interested in the convergence be-

havior of the protocols. We can expect several sorts of dynamics which include chaotic

behavior, oscillations, and convergence. In case of convergence the resulting state may or

may not depend on the initial configuration of the system. In the case of overlay networks

we obviously prefer to have convergence towards a state that is independent of the initial

configuration. This property is called self-organization. In our case it is essential that in

a wide range of scenarios the protocol instances should automatically produce consistent

and predictable behavior. Section 2.4.1 examines this question.

A related question is whether there is convergence and what kind of communication

graph a protocol instance converges to. In particular, as mentioned earlier, we are inter-

ested in what sense overlay topologies deviate from certain random graph models. We

discuss this issue in Section 2.4.1.

Finally, we are interested in looking at local dynamic properties along with globally

stable degree distributions. That is, it is possible that while the overall degree distribution

and its global properties such as maximum, variance, average, etc., do not change, the

degree of the individual nodes does. This is preferable because in this case even if there

are always bottlenecks in the network, the bottleneck will not be the same node all the

time which greatly increases robustness and improves load balancing. Section 2.4.1 is

concerned with these questions.

Convergence

We now present experimental results that illustrate the convergence properties of the pro-

tocols in three different bootstrapping scenarios:
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protocol partitioned average number average largest

runs of clusters cluster

(rand,healer,push) 100% 22.28 9124.48

(rand,swapper,push) 0% n.a. n.a.

(rand,blind,push) 18% 2.06 9851.11

(tail,healer,push) 29% 2.17 9945.21

(tail,swapper,push) 97% 4.07 9808.04

(tail,blind,push) 10% 2.00 9936.20

Table 2.2: Partitioning of the push protocols in the growing overlay scenario. Data corre-

sponds to cycle 300. Cluster statistics are over the partitioned runs only.

Growing In this scenario, the overlay network initially contains only one node. At the

beginning of each cycle, 500 new nodes are added to the network until the maximal

size is reached in cycle 20. The view of these nodes is initialized with only a single

node descriptor, which belongs to the oldest, initial node. This scenario is the most

pessimistic one for bootstrapping the overlays. It would be straightforward to im-

prove it by using more contact nodes, which can come from a fixed list or which can

be obtained using inexpensive local random walks on the existing overlay. How-

ever, in our discussion we intentionally avoid such optimizations to allow a better

focus on the core protocols and their differences.

Lattice In this scenario, the initial topology of the overlay is a ring lattice, a structured

topology. We build the ring lattice as follows. The nodes are first connected into a

ring in which each node has a descriptor in its view that belongs to its two neighbors

in the ring. Subsequently, for each node, additional descriptors of the nearest nodes

are added in the ring until the view is filled.

Random In this scenario the initial topology is defined as a random graph, in which the

views of the nodes were initialized by a uniform random sample of the peer nodes.

As we focus on the dynamic properties of the protocols, we did not wish to average

out interesting patterns, so in all cases the result of a single run is shown in the plots. Nev-

ertheless, we ran all the scenarios 100 times to gain data on the stability of the protocols

with respect to the connectivity of the overlay. Connectivity is a crucial feature, a minimal

requirement for all applications. The results of these runs show that in all scenarios, every

protocol under examination creates a connected overlay network in 100% of the runs (as

observed in cycle 300). The only exceptions were detected during the growing overlay

scenario. Table 2.2 shows the push protocols. With the pushpull scheme we have not

observed any partitioning.

The push versions of the protocols perform very poorly in the growing scenario in

general. Figure 2.1 illustrates the evolution of the maximal indegree. The maximal in-

degree belongs to the central contact node that is used to bootstrap the network. After

growing is finished in cycle 20, the pushpull protocols almost instantly balance the degree

distribution thereby removing the bottleneck. The push versions, however, get stuck in

this unbalanced state.

This is not surprising, because when a new node joins the network and gets an initial

contact node to start with, the only way it can get an updated view is if some other node
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Figure 2.1: Evolution of maximal indegree in the growing scenario (recall that growing

stops in cycle 20). The runs of the following protocols are shown: peer selection is either

rand or tail, view selection is blind, healer or swapper, and view propagation is push or

pushpull.

contacts it actively. This, however, is very unlikely. Because all new nodes have the same

contact, the view at the contact node gets updated extremely frequently causing all the

joining nodes to be quickly forgotten. A node has to push its own descriptor many times

until some other node actually contacts it. This also means that if the network topology

moves towards the shape of a star, then the push protocols have extreme difficulty bal-

ancing this degree-distribution state again towards a random one. We conclude that this

lack of adaptivity and robustness effectively renders push-only protocols useless. In the

following we therefore consider only the pushpull model.

Figure 2.2 illustrates the convergence of the pushpull protocols. Note that the average

indegree is always the view size c. We can observe that in all scenarios the protocols

quickly converge to the same value, even in the case of the growing scenario, in which the

initial degree distribution is rather skewed. Other properties not directly related to degree

distribution also show convergence, as discussed in Section 2.4.2.

Static Properties

In this section we examine the converged degree distributions generated by the differ-

ent protocols. Figure 2.3 shows the converged standard deviation of the degree distribu-

tion. We observe that increasing both H and S results in a lower—and therefore more

desirable—standard deviation. The reason is different for these two cases. With a large

S, links to a node come to existence only in a very controlled way. Essentially, new in-

coming links to a node are created only when the node itself injects its own fresh node

descriptor during communication. On the other hand, with a large H , the situation is the

opposite. When a node injects a new descriptor about itself, this descriptor is (exponen-

tially often) copied to other nodes for a few cycles. However, one or two cycles later all

copies are removed because they are pushed out by new links (i.e., descriptors) injected

in the meantime. So the effect that reduces variance is the short lifetime of the copies of
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Figure 2.2: Evolution of standard deviation of indegree in all scenarios of pushpull proto-

cols.
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Figure 2.4: Converged indegree distributions on linear and logarithmic scales.

a given link.

Figure 2.4 shows the entire degree distribution for the three vertices of the design

space triangle. We observe that the distribution of SWAPPER is narrower than that of the

random graph, while BLIND has a rather heavy tail and also a large number of nodes with

zero or very few nodes pointing to them, which is not desirable from the point of view of

load balancing.

Dynamic Properties

Although the distribution itself does not change over time during the continuous execu-

tion of the protocols, the behavior of a single node still needs to be determined. More

specifically, we are interested in whether a given fixed node has a variable indegree or

whether the degree changes very slowly. The latter case would be undesirable because

an unlucky node having above-average degree would continuously receive above-average

traffic while others would receive less, which results in inefficient load balancing.

Figure 2.5 compares the degree distribution of a node over time, and the entire network

at a fixed time point. The figure shows only the distribution for one node and only the

random peer-selection protocols, but the same result holds for tail peer selection and for

all the 100 other nodes we have observed. From the fact that these two distributions are

very similar, we can conclude that all nodes take all possible values at some point in time,

which indicates that the degree of a node is not static.

However, it is still interesting to characterize how quickly the degree changes, and

whether this change is predictable or random. To this end, we present autocorrelation

data of the degree time-series of fixed nodes in Figure 2.6. The band indicates a 99%

confidence interval assuming the data is random. Only one node is shown, but all the 100

nodes we traced show very similar behavior. Let the series d1, . . . dK denote the indegree

of a fixed node in consecutive cycles, and d the average of this series. The autocorrelation

of the series d1, . . . dK for a given time lag k is defined as

rk =

∑K−k
j=1 (dj − d)(dj+k − d)
∑K

j=1(dj − d)2
,

which expresses the correlation of pairs of degree values separated by k cycles.

We observe that in the case of HEALER it is impossible to make any prediction for a

degree of a node 20 cycles later, knowing the current degree. However, for the rest of
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the protocols, the degree changes much slower, resulting in correlation in the distance of

80-100 cycles, which is not optimal from the point of view of load balancing.

2.4.2 Clustering and Path Lengths

Degree distribution is an important property of random graphs. However, there are other

equally important characteristics of networks that are independent of degree distribution.

In this section we consider the average path length and the clustering coefficient as two

such characteristics. The clustering coefficient is defined over undirected graphs (see

below). Therefore, we consider the undirected version of the overlay after removing the

orientation of the edges.

Average path length

The shortest path length between node a and b is the minimal number of edges required

to traverse in the graph in order to reach b from a. The average path length is the average

of the shortest path lengths over all pairs of nodes in the graph. The motivation of looking

at this property is that, in any information dissemination scenario, the shortest path length

defines a lower bound on the time and costs of reaching a peer. For the sake of scalability

a small average path length is essential. In Figure 2.7, especially in the growing and

lattice scenarios, we verify that the path length converges rapidly. Figure 2.8 shows the

converged values of the average path length for the design space triangle defined by H
and S. We observe that all protocols result in a very low path length. Large S values are

the closest to the random graph.

Clustering coefficient

The clustering coefficient of a node a is defined as the number of edges between the neigh-

bors of a divided by the number of all possible edges between those neighbors. Intuitively,

this coefficient indicates the extent to which the neighbors of a are also neighbors of each

other. The clustering coefficient of a graph is the average of the clustering coefficients of

its nodes, and always lies between 0 and 1. For a complete graph, it is 1, for a tree it is 0.

The motivation for analyzing this property is that a high clustering coefficient has poten-

tially damaging effects on both information dissemination (by increasing the number of

redundant messages) and also on the self-healing capacity by weakening the connection

of a cluster to the rest of the graph thereby increasing the probability of partitioning. Fur-

thermore, it provides an interesting possibility to draw parallels with research on complex

networks where clustering is an important research topic (e.g., in social networks) [70].

Like average path length, the clustering coefficient also converges (see Figure 2.7);

Figure 2.8 shows the converged values. It is clear that clustering is controlled mainly by

H . The largest values ofH result in rather significant clustering, where the deviation from

the random graph is large. The reason is that if H is large, then a large part of the views

of any two communicating nodes will overlap right after communication, since both keep

the same freshest entries. For the largest values of S, clustering is close to random. This

is not surprising either because S controls exactly the diversity of views.
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Figure 2.7: Evolution of the average path length and the clustering coefficient in all sce-

narios.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  2  4  6  8  10  12  14

c
lu

s
te

ri
n
g
 c

o
e
ff
ic

ie
n
t

H

rand, S=0
tail, S=0

rand, S=3
tail, S=3

rand, S=8
tail, S=8

rand, S=14
tail, S=14

random graph

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 0  2  4  6  8  10  12  14

a
v
e
ra

g
e
 p

a
th

 l
e
n
g
th

H

Figure 2.8: Converged values of clustering coefficient and average path length.



42 CHAPTER 2. PEER SAMPLING SERVICE

 0.01

 0.1

 1

 10

 100

 65  70  75  80  85  90  95a
v
e
ra

g
e
 #

 o
f 
n
o
d
e
s
 o

u
ts

id
e
 t
h
e
 l
a
rg

e
s
t 
c
lu

s
te

r

removed nodes (%)

rand, blind
tail, blind
rand, healer
tail, healer
rand, swapper
tail, swapper
random graph
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average of 100 experiments is shown. The random graph almost completely overlaps with

the swapper protocols.

2.5 Fault Tolerance

In large-scale, dynamic, wide-area distributed systems it is essential that a protocol is

capable of maintaining an acceptable quality of service under a wide range of severe

failure scenarios. In this section we present simulation results on two classes of such

scenarios: catastrophic failure, where a significant portion of the system fails at the same

time, and heavy churn, where nodes join and leave the system continuously.

2.5.1 Catastrophic Failure

As in the case of the degree distribution, the response of the protocols to a massive failure

has a static and a dynamic aspect. In the static setting we are interested in the self-healing

capacity of the converged overlays to a (potentially massive) node failure, as a function

of the number of failing nodes. Removing a large number of nodes will inevitably cause

some serious structural changes in the overlay even if it otherwise remains connected.

In the dynamic case we would like to learn to what extent the protocols can repair the

overlay after a severe damage.

The effect of a massive node failure on connectivity is shown in Figure 2.9. In this set-

ting the overlay in cycle 300 of the random initialization scenario was used as converged

topology. From this topology, random nodes were removed and the connectivity of the

remaining nodes was analyzed. In all of the 100×6 = 600 experiments performed we did

not observe partitioning until removing 67% of the nodes. The figure depicts the number

of the nodes outside the largest connected cluster. We observe consistent partitioning be-

havior over all protocol instances (with SWAPPER being particularly close to the random

graph): even when partitioning occurs, most of the nodes form a single large connected

cluster. Note that this phenomenon is well known for traditional random graphs [71].

In the dynamic scenario we made 50% of the nodes fail in cycle 300 of the random

initialization scenario and we then continued running the protocols on the damaged over-
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Figure 2.10: Removing dead links following the failure of 50% of the nodes in cycle 300.

lay. The damage is expressed by the fact that, on average, half of the view of each node

consists of descriptors that belong to nodes that are no longer in the network. We call

these descriptors dead links. Figure 2.10 shows how fast the protocols repair the overlay,

that is, remove dead links from the views. Based on the static node failure experiment it

was expected that the remaining 50% of the overlay is not partitioned and indeed, we did

not observe partitioning with any of the protocols. Self-healing performance is fully con-

trolled by the healing parameter H , with H = 15 resulting in fully repairing the network

in as little as 5 cycles (not shown).

2.5.2 Churn

To examine the effect of churn, we define an artificial scenario in which a given propor-

tion of the nodes crash and are subsequently replaced by new nodes in each cycle. This

scenario is a worst case scenario because the new nodes are assumed to join the system

for the first time, therefore they have no information whatsoever about the system (their

view is initially empty) and the crashed nodes are assumed never to join the system again,

so the links pointing to them will never become valid again. A more realistic trace-based

scenario is also examined in Section 2.5.3 using the Gnutella trace described in [58].

We focus on two aspects: the churn rate, and the bootstrapping method. Churn rate

defines the number of nodes that are replaced by new nodes in each cycle. We consider

realistic churn rates (0.1% and 1%) and a catastrophic churn rate (30%). Since churn is

defined in terms of cycles, in order to validate how realistic these settings are, we need to

define the cycle length. With the very conservative setting of 10 seconds, which results

in a very low load at each node, the trace described in [58] corresponds to 0.2% churn in

each cycle. In this light, we consider 1% a comfortable upper bound of realistic churn,

given also that the cycle length can easily be decreased as well to deal with even higher

levels of churn.

We examine two bootstrapping methods. Both are rather unrealistic, but our goal here

is not to suggest an optimal bootstrapping implementation, but to analyze our protocols

under churn. The following two methods are suitable for this purpose because they repre-

sent two opposite ends of the design space:

Central We assume that there exists a server that is known by every joining node, and that

is stable: it is never removed due to churn or other failures. This server participates

in the gossip membership protocol as an ordinary node. The new nodes use the
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Figure 2.11: Standard deviation of node degree with churn rate 1%. Node degree is

defined over the undirected version of the subgraph of live nodes. The H = 0 case is not

comparable to the shown cases; due to reduced self-healing, nodes have much fewer live

neighbors (see Figure 2.12) which causes relatively low variance.

server as their first contact. In other words, their view is initialized to contain the

server.

Random An oracle gives each new node a random live peer from the network as its first

contact.

Realistic implementations could use a combination of these two approaches, where one

or more servers serve random contact peers, using the peer-sampling service itself. Any

such implementation can reasonably be expected to result in a behavior in between the

two extremes described above.

Simulation experiments were run initializing the network with random links and sub-

sequently running the protocols under the given amount of churn until the observed prop-

erties reached a stable level (300 cycles). The experimental results reveal that for realistic

churn rates (0.1% and 1%) all the protocols are robust to the bootstrapping method and

the properties of the overlay are very close to those without churn. Figure 2.11 illus-

trates this by showing the standard deviation of the node degrees in both scenarios, for the

higher churn rate 1%. Observe the close correspondence with Figure 2.3. The clustering

coefficient and average path length show the same robustness to bootstrapping, and the

observed values are almost identical to the case without churn (not shown).

Let us now consider the damage churn causes in the networks. First of all, for all

protocols and scenarios the networks remain connected, even for H = 0. Still, a (low)

number of dead links remain in the overlay. Figure 2.12 shows the average number of

dead links in the views, again, only for the higher churn rate (1%). It is clear that the

extent of the damage is fully controlled by the healing parameter H . Furthermore, it is

clear that the protocols are robust to the bootstrapping scenario also in this case. If H ≥ 1
then the maximal (not average) number of dead links in any view for the different protocol

instances ranges from 5 − 13 in the case of churn rate 1% and from 2 − 5 for churn rate

0.1%, where the lowest value belongs to the highestH . If H = 0 then the number of dead

links radically increases: it is at least 11 on average, and the maximal number of dead

links ranges from 20-25 for the different settings. That is, in the presence of churn, it is

essential for any implementation to set at least H = 1. We have already seen this effect

in Section 2.5.1 concerning self-healing performance.
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Figure 2.12: Average number of dead links in a view with churn rate 1%. TheH = 0 case

is not shown; it results in more than 11 dead links per view on average, for all settings.

Although the server participates in the overlay, the plots showing results under the

central bootstrapping scenario were calculated ignoring the server, because its properties

sharply differ from the rest of the network. In particular, it has a high indegree, because all

new nodes will have a fresh link to the server, and that link will stay in the view of joining

nodes for a few more cycles, possibly replicated in the meantime. Indeed, we observe that

for 1% churn, 12% − 28% of the nodes have a link to the server at any time, depending

on H and S. However, if we assume that the server can handle the traffic generated by

joining nodes, a high indegree is noncritical. The expected number of incoming messages

due to indegree d is d/c (where c is the view size), with a very low variance. This means

that the generated traffic is of the same order of magnitude as the traffic generated by the

joining nodes. We note again, however, that we do not consider this simplistic server-

based solution a practical approach; we treat it only as a worst-case scenario to help us

evaluate the protocols.

So far we have been discussing realistic churn rates. However, it is of academic inter-

est to examine the behavior under extremely difficult scenarios, where the network suffers

a catastrophic damage in each cycle. The catastrophic churn rate of 30% combines the

effects of catastrophic failure (see Section 2.5.1) and churn.

Unlike with realistic churn rates, in this case the bootstrapping method has a strong ef-

fect on the performance of the protocols and therefore becomes the major design decision,

although the parameters H and S still have a very strong effect as well. Consequently,

we need to analyze the interaction of the gossip membership protocol and the bootstrap-

ping method. In the case of the server-based solution, the overlay evolves into a ring-like

structure, with a few shortcut links. The reason is that the view of the server is predomi-

nantly filled with entries of the newly joined nodes, since each time a new node contacts

the server it also places a fresh entry about itself in the view of the server. These entries

are served to the subsequently joining nodes, thus forming a linear structure. This ring-

like structure is rather robust: it remains connected (even after removing the server) for

all protocols with H >= 8. However, it has a slightly higher diameter than that of the

random graph (approximately 20-30 hops). For HEALER the average number of dead links

per view is still as low as 10 and 9 for random and tail peer selection, respectively.

The random scenario is rather different. In particular, we lose connectivity for all the

protocols, however, for large values of H the largest connected cluster almost reaches

the size of the network (see Figure 2.13). Besides, the structure of the overlay is also

different. As Figure 2.13 shows, tail peer selection results in a slightly more unbalanced
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Figure 2.13: Size of largest connected cluster and degree standard deviation under catas-

trophic churn rate (30%), with the random bootstrapping method. Individual curves be-

long to different values of S but the measures depend only on H , so we do not need to

differentiate between them. Connectivity and node degree are defined over the undirected

version of the subgraph of live nodes.

degree distribution (note that the low deviation for low values of H is due to the low

number of live nodes). The reason is that—also considering that tail peer selection picks

the oldest live node—the nodes that stay in the overlay for somewhat longer will receive

more incoming traffic because (due to the very high number of dead links in each view)

they tend to be the oldest live node in most views they are in. For HEALER the average

number of dead links per view is 11 and 9 for random and tail peer selection, respectively.

To summarize our findings: under realistic churn rates all the protocols perform very

similarly to the case when there is no churn at all, independently of the bootstrapping

method. Besides, some of the protocol instances, in particular, HEALER, can tolerate even

catastrophic churn rates with a reasonable performance with both bootstrapping methods.

2.5.3 Trace-driven Churn Simulations

In Section 2.5.2 we analyzed our protocols under artificial churn scenarios. Here, we

consider a realistic churn scenario using the, so called, lifetime measurements on Gnutella,

carried out by Saroiu et al. [58]. These traces contain—among other information—the

connection and disconnection times for a total of 17,125 nodes over a period of 60 hours.

Throughout the trace, the number of connected nodes remains practically unchanged, in

the order of 104 nodes.

We noticed a periodic pattern occurring every 404 seconds in the traces. In each

404-second interval, all connections and disconnections take place during the first 344

seconds, rendering the network static during the last 60 seconds. These recurring gaps

would represent a positive bias for our churn simulations, as they periodically provide

the overlay with some “breathing space” to process recent changes. However, these gaps

are not realistic and are most probably an artifact of the logging mechanism. Therefore,

we decided to eliminate them by linearly expanding each 344 second interval to cover

the whole 404 seconds. Note that this transformation leaves the node uptimes practically

unaltered.

We have taken the following two decisions with respect to the parameters in the ex-

periments presented. First, peer selection is fixed to random. Section 2.5.2 showed that

random is outperformed by tail peer selection in all cases. Therefore, random is a suitable



2.5. FAULT TOLERANCE 47

-6

-4

-2

 0

 2

 4

 6

 500  1000  1500  2000  2500  3000  3500

R
E

M
O

V
A

L
S

  
  
  
  
  
  
  
  
 J

O
IN

S

cycles

-6

-4

-2

 0

 2

 4

 6

 2300  2400  2500  2600  2700

R
E

M
O

V
A

L
S

  
  
  
  
  
  
  
  
 J

O
IN

S

cycles

Figure 2.14: Churn in the Saroiu traces. Full time span of 3600 one minute cycles and

zoomed in to cycles 2250 to 2750.

choice for this section as the worst case peer selection policy. Second, the swap param-

eter, S, is fixed to 0. Section 2.5.2 showed that S = 0 results in the highest (therefore

worst) degree deviation, while it does not affect the number of dead links.

We apply two join methods: central and random, as defined in Section 2.5.2. The only

difference is that a reconnecting node still remembers the links it previously had, some

of which may be dead at reconnection time. This facilitates reconnection, but generally

increases the total number of dead links.

The cycle length was chosen to be 1 minute. We anticipate that in reality the cycle

length will be shorter, resulting in lower churn per cycle. The choice of a cycle length

close to the upper end of realistic values is intentional, and is aimed at testing this specific

gossip membership protocol under increased stress.

Figure 2.14 shows the node connections and disconnections as a percentage of the

current network size. Connections are shown as positive points, whereas disconnections

as negative. Although we ran the experiments for the whole trace, we focus on its most

interesting part, namely cycles 2250 to 2750. Notice that at cycle 2367, around 450

nodes get disconnected at once and reconnect altogether 27 minutes later, at cycle 2394,

probably due to a router failure. Similar temporary—but shorter—group disconnections

are observed later on, around cycles 2450, 2550, and 2650, respectively.

Let us now examine the way the overlay is affected by those network changes. Fig-

ure 2.15 shows that the number of dead links is always kept at fairly small levels, es-

pecially when H is at least 1. As expected, the number of dead links peaks when there

are massive node disconnections and gets back to normal quickly. However, it is not af-

fected by the observed massive node reconnections, because these happen shortly after

the respective disconnections, and the neighbors of the reconnected nodes are still alive.

Two observations regarding the effect of H can be made. First, higher values of H
result in fewer dead links per view, validating the analysis in Section 2.5.2. Second, higher

values of H trigger the faster elimination of dead links. The peaks caused by massive

node disconnections are wider for low H values, and become sharper as H grows. In

fact, these two observations are related to each other: in a persistently dynamic network,

the converged average number of dead links depends on the rate at which the protocol

disposes of them.

Figure 2.16 shows the evolution of the node degree deviation. It can be observed that

for H ≥ 1 the degree deviation under churn is very close to the corresponding converged

values in a static network (see Figure 2.3). For H = 0 though, the higher number of
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Figure 2.15: Average number of dead links per view, based on the Saroiu Gnutella traces.

All experiments use random peer selection and S = 0.
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Figure 2.16: Evolution of standard deviation of node degree based on the Saroiu Gnutella

traces. All experiments use random peer selection and S = 0.

pending dead links affects the degree distribution more. Note that both massive node dis-

connections and connections disturb the degree deviation, but in both cases a few cycles

are sufficient to recover the original overlay properties.

To recap our analysis, we have shown that even with a pessimistic cycle length of 1

minute, all protocols for H ≥ 1 perform very similarly to the case of a stable network,

independently of the join method. Anomalies caused by massive node connections or

disconnections are repaired quickly.

2.6 Wide-Area-Network Emulation

Distributed protocols often exhibit unexpected behavior when deployed in the real world

that cannot always be captured by simulation. Typically, this is due to unexpected mes-

sage loss, network and scheduling delays, as well as events taking place in unpredictable,

arbitrary order. In order to validate the correctness of our simulation results, we imple-

mented our gossip membership protocols and deployed them on a wide-area network.

We utilized the DAS-2 wide-area cluster as our testbed [72]. The DAS-2 cluster con-

sists of 200 dual-processor nodes spread across 5 sites in the Netherlands. A total of 50

nodes were used for our emulations, 10 from each site. Each node was running a Java

Virtual Machine emulating 200 peers, giving a total of 10,000 peers. Peers were running
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Figure 2.17: Evolution of indegree standard deviation, clustering coefficient, and average

path length in all scenarios for real-world experiments.

in separate threads.

Although 200 peers were running on each physical machine, communication within

a machine accounted for only 2% of the total communication. Local-area and wide-area

traffic accounted for 18% and 80% of the total, respectively. Clearly, most messages are

transferred through wide area connections. Note that the intra-cluster and inter-cluster

round-trip delays on the DAS-2 are in the orders of 0.15 and 2.5 milliseconds, respec-

tively. In all emulations, the cycle length was set to 5 seconds.

In order to validate our simulation results, we repeated the experiments presented in

Figures 2.2 and 2.7 of Section 2.4, using our real implementation. A centralized coor-

dinator was used to initialize the node views according to the bootstrapping scenarios

presented in Section 2.4.1, namely growing, lattice, and random.

The first run of the emulations produced graphs practically indistinguishable from the

corresponding simulation graphs. Acknowledging the low round-trip delay on the DAS-2,

we ran the experiments again, this time inducing a 50 ms delay in each message delivery,

accounting for a round-trip delay of 100 ms on top of the actual one. The results presented

in this section are all based on these experiments.

Figure 2.17 shows the evolution of the indegree standard deviation, clustering coeffi-

cient, and average path length for all experiments, using the same scales as Figures 2.2

and 2.7 to facilitate comparison. The very close match between simulation-based and

real-world experiments for all three nodes of the design space triangle allows us to claim
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that our simulations represent a valid approximation of real-world behavior.

The small differences of the converged values with respect to the simulations are due

to the induced round-trip delay. In a realistic environment, view exchanges are not atomic:

they can be intercepted by other view exchanges. For instance, a node having initiated a

view exchange and waiting for the corresponding reply, may in the meantime receive a

view exchange request by a third node. However, the view updates performed by the ac-

tive and passive thread of a node are not commutative. The results presented correspond

to an implementation where we simply ignored this problem: all requests are served im-

mediately regardless of the state of the serving node. This solution is extremely simple

from a design point of view but may lead to corrupted views.

As an alternative, we devised and implemented three approaches to avoid corrupted

views. In the first approach, a node’s passive thread drops incoming requests while its

active thread is waiting for a reply. In the second one, the node queues—instead of

dropping—incoming requests until the awaited reply comes. As a third approach, a node’s

passive thread serves all incoming requests, but its active thread drops a reply if an incom-

ing request intervened.

Apart from the added complexity that these solutions impose on our design, their

benefit turned out to be difficult or impossible to notice. Moreover, undesirable situations

may arise in the case of the first two: dropping or delaying a request from a third node may

cause that node to drop or delay, in turn, requests it receives itself. Chains of dependencies

are formed this way, which can render parts of the network inactive for some periods.

Given the questionable advantage these approaches can offer, and considering the design

overhead they impose, we will not consider them further. Based on our experiments, the

best strategy is simply ignoring the problem, which further underlines the exceptional

robustness and simplicity of gossip-based design.

2.7 Discussion

In this section we summarize and interpret the results presented so far. As stated in the

introductory section, we were interested in determining the properties of various gossip

membership protocols, in particular their randomness, load balancing and fault tolerance.

In a sense, after we discussed in the last section why certain results were observed, we

discuss here what the results imply.

2.7.1 Randomness

We have studied randomness from two points of view: local and global. Local random-

ness is based on the analogy between a pseudo random-number generator and the peer-

sampling service as seen by a fixed node. We have seen that all protocols return a random

sequence of peers at all nodes with a good approximation.

We have shown, however, that there are important correlations between the samples

returned at different nodes, that is, the overlay graphs that the implementations are based

upon are not random. Adopting a graph-theoretic approach, we have been able to identify

important deviations from randomness that are different for the several instances of our

framework.

In short, randomness is approached best by the view selection method SWAPPER (H =
0, S = c/2 = 15), irrespective of the peer selection method. In general, increasing H in-

creases the clustering coefficient. The average path length is close to the one of a random
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graph for all protocols we examined. Finally, with SWAPPER the degree distribution has

a smaller variance than that of the random graph. This property can often be considered

“better than random” (e.g., from the point of view of load balancing).

Clearly, the randomness required by a given application depends on the very nature

of that application. For example, the upper bound of the speed of reaching all nodes

via flooding a network depends exclusively on the diameter of the network, while other

aspects such as degree distribution or clustering coefficient are irrelevant for this specific

question. Likewise, if the sampling service is used by a node to draw samples to calculate

a local statistical estimate of some global property, such as network size or the availability

of some resources, what is needed is that the local samples are uniformly distributed.

However, it is not required that the samples are independent at different nodes, that is,

we do not need global randomness at all; the unstructured overlay can have any degree

distribution, diameter, clustering, etc.

Load Balancing

We consider the service to provide good load balancing if the nodes evenly share the cost

of maintaining the service and the cost induced by the application of the service. Both

are related to the degree distribution: if many nodes point to a certain node, this node will

receive more sampling-service related gossip messages and most applications will induce

more overhead on this node, resulting in poor load balancing. Since the unstructured

overlays that implement the sampling service are dynamic, it is also important to note

that nodes with a high indegree become a bottleneck only if they keep having a high

indegree for a long time. In other words, a node is in fact allowed to have a high indegree

temporarily, for a short time period.

We have seen that the BLIND view selection is inferior to the other alternatives. The

degree distribution has a high variance (that is, there are nodes that have a large indegree)

and on top of that, the degree distribution is relatively static, compared to the alternatives.

Clearly, the best choice to achieve good load balancing is the SWAPPER view selection,

which results in an even lower variance of indegree than in the uniform random graph. In

general, the parameter S is strongly correlated with the variance of indegree: increasing

S for a fixed H decreases the variance. The degree distribution is almost as static as in

the case of HEALER, if H = 0. However, this is not a problem because the distribution has

low variance.

Finally, HEALER also performs reasonably. Although the variance is somewhat higher

than that of SWAPPER, it is still much lower than BLIND. Besides, the degree distribution

is highly dynamic, which means that the somewhat higher variance of the degree distri-

bution does not result in bottlenecks because the indegree of the nodes change quickly. In

general, increasing H for a fixed value of S also decreases the variance.

Fault Tolerance

We have studied both catastrophic and realistic scenarios. In the first category, catas-

trophic failure and catastrophic churn were analyzed. In these scenarios, the most impor-

tant parameter turned out to be H: it is always best to set H as high as possible. One

exception is the experiment with the removal of 50% of the nodes, where SWAPPER per-

forms slightly better. However, SWAPPER is slow in removing dead links, so if failure can

be expected, it is highly advisable to set H ≥ 1.
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In the case of realistic scenarios, such as the realistic (artificial) churn rates, and the

trace-based simulations, we have seen that the damaging effect is minimal, and (as long

as H ≥ 1) the performance of the protocols is very similar to the case when there is no

failure.

2.8 Related Work

2.8.1 Gossip Membership Protocols

Most gossip protocols for implementing peer sampling are covered by our framework: we

mentioned these in Section 2.2.4. One notable exception is [73] that we address here in

some more detail. The protocol is as follows. In each cycle, all nodes pull the full partial

views from F randomly selected peers. In addition, they record the addresses of the peers

initiating incoming pull requests during the given cycle. The old view is then discarded

and a new view is generated from scratch. In the most practical version, the new view is

generated by first adding the addresses of the incoming requests and subsequently filling

the rest of the view with random samples from the union of the previously pulled F views

without replacement.

Notice that there are two features that are incompatible with our framework: the appli-

cation of F ≥ 1 (in our case F = 1) and the asymmetry between push and pull, with pull

having a bigger emphasis. Only one entry—the initiator peer’s own entry—is pushed. It

is common to allow for F ≥ 1 also in other proposals (e.g., [62]). In our framework, in-

formation exchange is symmetric, or fully asymmetric, without a finer tuning possibility.

To compare this protocol with our framework, we implemented it and ran simulations

using our experimental scenarios. The view size and network size were the same as in

all simulations, and F was 1, 2, or 3. The main conclusions are summarized below. The

protocol class presented in [73] has some difficulty dealing with the scenarios when the

initial network is not random (the growing and lattice initializations, see Section 2.4.1).

For F = 1 we consistently observed partitioning in the lattice scenario (which was oth-

erwise never observed in our framework). In the growing scenario—mostly for F = 1
but also for F = 2 and F = 3—the protocols occasionally get stuck in a local attractor

where there is a star subgraph: a node with a very high indegree, and a large number

of nodes with zero indegree and 1 as outdegree. Apart from these issues, if we consider

self-healing, load balancing and convergence properties, the protocols roughly behave as

if they were instances in our framework using pushpull, with 0 ≤ H ≤ 1 and S = 0, with

increasing F tending towards H = 1. Since we have concluded that the “interesting”

protocols in our space have either a high H or a high S value, based on the empirical

evidence accumulated so far there is no urgent need to extend our framework to allow for

F > 1 or asymmetric information exchange. However, studying these design choices in

more detail is an interesting topic for future research.

In the following we summarize a number of other fields that are relevant.

2.8.2 Complex Networks

The assumption of uniform randomness has only fairly recently become subject to dis-

cussion when considering large complex networks such as the hyperlinked structure of

the WWW, or the complex topology of the Internet. Like social and biological networks,
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the structures of the WWW and the Internet both follow the quite unbalanced power-

law degree distribution, which deviates strongly from that of traditional random graphs.

These new insights pose several interesting theoretical and practical problems [74]. Sev-

eral dynamic complex networks have also been studied and models have been suggested

for explaining phenomena related to what we have described here [75].

2.8.3 Unstructured Overlays

There are a number of protocols that are not gossip-based but that are potentially useful

for implementing peer sampling. An example is the Scamp protocol [76]. While this pro-

tocol is reactive and so less dynamic, an explicit attempt is made towards the construction

of a (static) random graph topology. Randomness has been evaluated in the context of in-

formation dissemination, and it appears that reliability properties come close to what one

would see in random graphs. Some other protocols have also been proposed to achieve

randomness [77, 78], although not having the specific requirements of the peer-sampling

service in mind. Finally, random walks on arbitrary (hence, also unstructured) networks

offer a powerful tool to obtain random samples, where even the sampling distribution

can be adjusted [79]. These protocols, however, have a significantly higher overhead if

many samples are required. This overhead and the convergence time also depend on the

structure of the overlay network the random walk operates on.

2.8.4 Structured Overlays

In a sense, structured overlays have also been considered as a basic middleware service

to applications [80]. However, a structured overlay [81–83] is by definition not dynamic.

Hence utilizing it for implementing the peer-sampling service requires additional tech-

niques such as random walks [79, 84]. Another example of this approach is a method

assuming a tree overlay [85]. It is unclear whether a competitive implementation can be

given considering also the cost of maintaining the respective overlay structure.

Another issue in common with our own work is that graph-theoretic approaches have

been developed for further analysis [86]. Astrolabe [87] also needs to be mentioned as

a hierarchical (and therefore structured) overlay, which, although applying (nonuniform)

gossip to increase robustness and to achieve self-healing properties, does not even at-

tempt to implement or apply a uniform peer-sampling service. It was designed to support

hierarchical information aggregation and dissemination.

2.9 Concluding Remarks

Gossip protocols have recently generated a lot of interest in the research community. The

overlays that result from these protocols are highly resilient to failures and high churn

rates. The underlying paradigm is clearly appealing to build large-scale distributed appli-

cations

Our contribution is to factor out the abstraction implemented by the membership

mechanism underlying gossip protocols: the peer-sampling service. The service provides

every peer with (local) knowledge of the rest of system, which is key to have the system

converge as a whole towards global properties using only local information.

We described a framework to implement a reliable and efficient peer-sampling ser-

vice. The framework itself is based on gossiping. This framework is generic enough to be
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instantiated with most current gossip membership protocols [5, 62, 63, 88]. We used this

framework to empirically compare the range of protocols through simulations based on

synthetic and realistic traces as well as implementations. We point out the very fact that

these protocols ensure local randomness from each peer’s point of view. We also observed

that as far as the global properties are concerned, the average path length is close to the

one in random graphs and that clustering properties are controlled by (and grow with) the

parameter H . With respect to fault tolerance, we observe a high resilience to high churn

rate and particularly good self-healing properties, again mostly controlled by the param-

eter H . In addition, these properties mostly remain independent of the bootstrapping

approach chosen.

In general, when designing gossip membership protocols that aim at randomness, fol-

lowing a push-only or pull-only approach is not a good choice. Instead, only the com-

bination results in desirable properties. Likewise, it makes sense to build in robustness

by purposefully removing old links when exchanging views with a peer. This situation

corresponds in our framework to a choice for H > 0.

Regarding other parameter settings, it is much more difficult to come to general con-

clusions. As it turns out, tradeoffs between, for example, load balancing and fault toler-

ance will need to be made. When focusing on swapping links with a selected peer, the

price to pay is lower robustness against node failures and churn. On the other hand, mak-

ing a protocol extremely robust will lead to skewed indegree distributions, affecting load

balancing.

To conclude, we demonstrated in this extensive study that gossip membership proto-

cols can be tuned to both support high churn rates and provide graph-theoretic properties

(both local and global) close to those of random graphs so as to support a wide range of

applications.



Chapter 3

Average Calculation

As computer networks increase in size, become more heterogeneous and span greater ge-

ographic distances, applications must be designed to cope with the very large scale, poor

reliability, and often, with the extreme dynamism of the underlying network. Aggregation

is a key functional building block for such applications: it refers to a set of functions

that provide components of a distributed system access to global information including

network size, average load, average uptime, location and description of hotspots, etc.

Local access to global information is often very useful, if not indispensable for build-

ing applications that are robust and adaptive. For example, in an industrial control ap-

plication, some aggregate value reaching a threshold may trigger the execution of certain

actions; a distributed storage system will want to know the total available free space; load

balancing protocols may benefit from knowing the target average load so as to minimize

the load they transfer.

In this chapter we elaborate on the aggregation protocol we introduced in Section 1.3.

As mentioned there, the class of aggregate functions we can compute is very broad and in-

cludes many useful special cases such as counting, averages, sums, products and extremal

values. The protocol is suitable for extremely large and highly dynamic systems due to its

proactive structure—all nodes receive the aggregate value continuously, thus being able

to track any changes in the system. The protocol is also extremely lightweight making

it suitable for many distributed applications including peer-to-peer and grid computing

systems. We demonstrate the efficiency and robustness of our gossip-based protocol both

theoretically and experimentally under a variety of scenarios including node and commu-

nication failures.

3.1 Introduction

In this chapter, we focus on aggregation which is a useful building block in large, unreli-

able and dynamic systems [89] (see also Section 1.3). Aggregation is a common name for

a set of functions that provide a summary of some global system property. In other words,

they allow local access to global information in order to simplify the task of control-

ling, monitoring and optimization in distributed applications. Examples of aggregation

functions include network size, total free storage, maximum load, average uptime, lo-

cation and intensity of hotspots, etc. Furthermore, simple aggregation functions can be

used as building blocks to support more complex protocols. For example, the knowledge

of average load in a system can be exploited to implement near-optimal load-balancing

schemes [61].

55
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We distinguish reactive and proactive protocols for computing aggregation functions.

Reactive protocols respond to specific queries issued by nodes in the network. The an-

swers are returned directly to the issuer of the query while the rest of the nodes may or

may not learn about the answer. Proactive protocols, on the other hand, continuously

provide the value of some aggregate function to all nodes in the system in an adaptive

fashion. By adaptive we mean that if the aggregate changes due to network dynamism

or because of variations in the input values, the output of the aggregation protocol should

track these changes reasonably quickly. Proactive protocols are often useful when ag-

gregation is used as a building block for completely decentralized solutions to complex

tasks. For example, in the load-balancing scheme cited above, the knowledge of the global

average load is used by each node to decide if and when it should transfer load [61].

We introduce a robust and adaptive protocol for calculating aggregates in a proac-

tive manner. We assume that each node maintains a local approximate of the aggregate

value. The core of the protocol is a simple gossip-based communication scheme in which

each node periodically selects some other random node to communicate with. During

this communication the nodes update their local approximate values by performing some

aggregation-specific and strictly local computation based on their previous approximate

values. This local pairwise interaction is designed in such a way that all approximate

values in the system will quickly converge to the desired aggregate value.

In addition to introducing our gossip-based protocol, the contributions are threefold.

First, we present a full-fledged practical solution for proactive aggregation in dynamic

environments, complete with mechanisms for adaptivity, robustness and topology man-

agement. Second, we show how our approach can be extended to compute complex ag-

gregates such as variances and different means. Third, we present theoretical and exper-

imental evidence supporting the efficiency of the protocol and illustrating its robustness

with respect to node and link failures and message loss.

In Section 3.2 we define the system model. Section 3.3 describes the core idea of the

protocol and presents theoretical and simulation results of its performance. In Section 3.4

we discuss the extensions necessary for practical applications. Section 3.5 introduces

novel algorithms for computing statistical functions including several means, network

size and variance. Sections 3.6 and 3.7 present analytical and experimental evidence on

the high robustness of our protocol. Section 3.8 describes the prototype implementation of

our protocol on PlanetLab and gives experimental results of its performance. Section 3.9

discusses related work. Finally, conclusions are drawn in Section 3.10.

3.2 System Model

We consider a network consisting of a large collection of nodes that are assigned unique

identifiers and that communicate through message exchanges. The network is highly dy-

namic; new nodes may join at any time, and existing nodes may leave, either voluntarily

or by crashing. Our approach does not require any mechanism specific to leaves: sponta-

neous crashes and voluntary leaves are treated uniformly. Thus, in the following, we limit

our discussion to node crashes. Byzantine failures, with nodes behaving arbitrarily, are

excluded from the present discussion (but see [90]).

We assume that nodes are connected through an existing routed network, such as the

Internet, where every node can potentially communicate with every other node. To ac-

tually communicate, a node has to know the identifiers of a set of other nodes, called its

neighbors. This neighborhood relation over the nodes defines the topology of an overlay
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Algorithm 9 push-pull aggregation

1: loop

2: wait(∆)
3: p← selectPeer()

4: sendPush(p,x)

5: procedure ONPUSH(m)

6: sendPull(m.sender,x)

7: x← update(m.x, x)

8:

9: procedure ONPULL(m)

10: x← update(m.x, x)

network. Given the large scale and the dynamicity of our envisioned system, neighbor-

hoods are typically limited to small subsets of the entire network. The set of neighbors

of a node (thus the overlay network topology) can change dynamically. Communication

incurs unpredictable delays and is subject to failures. Single messages may be lost, links

between pairs of nodes may break. Occasional performance failures (e.g., delay in receiv-

ing or sending a message in time) can be seen as general communication failures, and are

treated as such. Nodes have access to local clocks that can measure the passage of real

time with reasonable accuracy, that is, with small short-term drift.

We focus on node and communication failures. Some other aspects of the model that

are outside of the scope of the present analysis (such as clock drift and message delays)

are discussed only informally in Section 3.4.

3.3 Gossip-based Aggregation

We assume that each node i in the network of N nodes holds a numeric value xi. In a

practical setting, this value can characterize any (possibly dynamic) aspect of the node or

its environment (e.g., the load at the node, available storage space, temperature measured

by a sensor network, etc.). The task of a proactive protocol is to continuously provide

all nodes with an up-to-date estimate of an aggregate function, computed over the values

held by the current set of nodes.

3.3.1 The Basic Aggregation Protocol

In Chapter 1 we have already presented push-pull averaging in Algorithm 4. For the sake

of convenience, we repeat the algorithm here as Algorithm 9, with a slight generalization:

instead of averaging the two values, the state update at the nodes is now expressed as an

abstract method UPDATE. Method UPDATE computes a new local state based on the current

local state and the remote state received during the information exchange. In most of

this chapter, we limit the discussion to computing the average over the set of numbers

distributed among the nodes, that is, method UPDATE(x, y) returns (x + y)/2. However,

additional functions (most of them derived from the averaging protocol) are described in

Section 3.5.

As of the peer sampling service, in Section 3.3.2 for theoretical reasons we will as-

sume that SELECTPEER returns a true uniform random sample over the entire set of nodes.

In Section 3.4.4 we revisit the peer sampling service from a practical point of view, by

looking at realistic implementations based on non-uniform or dynamically changing over-

lay topologies.

Let us now consider the convergence of the protocol. It is easy to see that after one

complete push-pull exchange, the sum of the two local estimates remains unchanged since
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Algorithm 10 Avg

1: for k = 1 to N do ⊲ vector x of length N is the input

2: (i(k), j(k)) = getPair(k) ⊲ perform elementary variance reduction step

3: xi(k) = xj(k) = (xi(k) + xj(k))/2

4: return x

method UPDATE simply redistributes the initial sum equally among the two nodes; a prop-

erty known as mass conservation. So, the operation does not change the global average

but it decreases the variance over the set of all estimates in the system.

It is easy to see that the variance tends to zero in probability, that is, the value at

each node will converge to the true global average in probability, as long as the network

of nodes is not partitioned into disjoint clusters. To see this, one should consider the

minimal value in the system. Clearly, if SELECTPEER returns uniform samples then in

each cycle either the number of instances of the minimal value decreases or the global

minimum increases with a probability of at least 1/N if there are different values from

the minimal value (otherwise we are done because all values are equal). This is because

if there is at least one different value, than any instance of the minimal value will get a

neighbor with a different (thus larger) value with a probability of at least 1/N .

The only non-trivial problem is to characterize the speed of the convergence of the

expected variance. In the following, we will show that each cycle results in a reduction

of the variance by a constant factor, which provides exponential convergence. We will

assume that no failures occur and that the starting point of the protocol is synchronized.

All of these assumptions will be relaxed later in the chapter.

3.3.2 Theoretical Analysis of Gossip-based Aggregation

We will treat the averaging protocol as an iterative variance reduction algorithm over a

vector of numbers. To see how, consider that the distributed protocol in Algorithm 9

results in a series of push-pull exchanges between pairs of nodes. In fact, the behavior

of the protocol is completely characterized by the series of node pairs that perform a

push-pull exchange. This observation motivates the definition of Algorithm AVG (shown

as Algorithm 10) that takes a vector x of length N as a parameter and produces a new

vector x′ = AVG(x) of the same length. The elements of the vector represent the local

approximations at the nodes in the network of size N .

This centralized view of the protocol will let us develop the theoretical tools that will

be used to characterize the original distributed protocol. Of course, in reality the push-

pull exchanges in the network might overlap in time. For the sake of the theoretical

discussion, we assume that the exchanges that involve a fixed node are non-overlapping

in time, and thus these exchanges can be ordered. This defines a partial order that can

always be extended to a total order. Any such extensions are equivalent from the point of

view of convergence properties. Algorithm AVG represents the distributed execution via

generating such a total order of communicating pairs via GETPAIR().

In this framework, we assume we are given an initial vector of numbers x(0) =
(x1(0) . . . xN(0)). The elements of this vector correspond to the initial values at the nodes.

The consecutive cycles of the protocol result in a series of vectors x(1),x(2), . . ., where

x(t + 1) = AVG(x(t)). The behavior of our distributed gossip-based protocol can be

reproduced by an appropriate implementation of GETPAIR. In addition, other implemen-
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tations of GETPAIR are possible that do not necessarily map to any distributed protocol but

are of theoretical interest. We will discuss some important special cases as part of our

analysis.

Without loss of generality, to simplify our expressions, let us assume that the average

of the values in the network is zero. Due to mass conservation, this will be true in all

cycles:
N
∑

i=1

xi(t) = 0, t = 0, 1, . . . (3.1)

Under this assumption the variance in x is now given by

σ2(t) =
1

N

N
∑

i=1

x2i (t). (3.2)

Since the mean of the estimates remains constant (zero) due to mass conservation, from

now on we can focus on σ2(t) as t tends to infinity. In particular, we want σ2(t) to quickly

converge to zero because a small variance means that all nodes have a very accurate

approximation.

Let us begin our analysis of the convergence of the variance with some basic observa-

tions. Let us have a look at the form of σ2(t + 1) when expressed using the elements of

x(t). First, for illustration, consider σ2(t)′ that is the variance of the vector after process-

ing the first pair (i, j) returned by GETPAIR:

Nσ2(t)′ = x21(t) + · · ·+
(

xi + xj
2

)2

+ · · ·+
(

xi + xj
2

)2

+ · · ·+ x2N (t)

= x21(t) + · · ·+
x2i
2

+ · · ·+
x2j
2

+ · · ·+ x2N (t) + xi(t)xj(t).

(3.3)

Clearly, after completing the N cycles of algorithm AVG, we have

Nσ2(t+ 1) =

N
∑

i=1

(

N
∑

j=1

αi,jxj(t)

)2

=

N
∑

i=1

aix
2
i (t) +

∑

i 6=j

bi,jxi(t)xj(t), (3.4)

where the parameters αi,j (and thus ai and bi,j) are random variables that depend on the

random decisions made by algorithm AVG.

We now discuss a few useful observations.

Proposition 3.3.1. If algorithm AVG is symmetric to permutations (that is, for any per-

mutation of the nodes π the series of pairs (i(k), j(k)) has the same probability as the

series (π(i(k)), π(j(k)), k = 1, . . . , N) then for some constant a∗ we have

a∗ = E(a1) = · · · = E(aN) (3.5)

(using the notations in Eq. (3.4)). We will call a∗ the convergence factor. We then have

E(σ2(t+ 1)) ≤ a∗σ2(t). (3.6)

Proof. Eq. (3.5) follows directly from symmetry. Similarly, due to symmetry, it must be

the case that for any i 6= j and m 6= n: E(bi,j) = E(bm,n). Let b denote this common
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constant. Then we have

E(σ2(t+ 1)) =
1

N

N
∑

i=1

E(ai)x
2
i (t) +

1

N

∑

i 6=j

E(bi,j)xi(t)xj(t)

=
a∗

N

N
∑

i=1

x2i (t) +
b

N

∑

i 6=j

xi(t)xj(t)

= a∗σ2(t) +
b

N

∑

i 6=j

xi(t)xj(t)

= a∗σ2(t) +
b

N

N
∑

i=1

(

xi(t)

N
∑

j=1

xj(t)

)

− b

N

N
∑

i=1

x2i (t
2)

= a∗σ2(t)− bσ2(t)

≤ a∗σ2(t),

(3.7)

where we used Eq. (3.1) and the fact that b ≥ 0, which follows from the fact that all the

parameters αi,j in (3.4) are non-negative.

Proposition 3.3.2.
N
∑

i=1

ai ≥
N

4
(3.8)

for any fixed execution of AVG with any implementation of method GETPAIR if N is even.

Proof. Let us introduce the notations a
(k)
i and α

(k)
i,j to represent the parameters that are

analogous to ai and αi,j but in the state when only k cycles of AVG have been completed.

Clearly, for all i = 1, . . .N , a
(N)
i = ai, α

(N)
i,j = αi,j , a

(0)
i = α

(0)
i,i = 1 and α

(0)
i,j = 0 if i 6= j.

First, observe that when a pair (i, j) is picked by algorithm AVG in cycle k, then the

contribution of node i to the difference
∑N

i=1 a
(k+1)
i −

∑N
i=1 a

(k)
i is

2

N
∑

j=1

1

4
(α

(k)
i,j )

2 =
1

2

N
∑

j=1

(α
(k)
i,j )

2 (3.9)

if the sets of non-zero α parameters of node i and j do not overlap, and strictly less if there

is an overlap. Using this insight, let us observe that the maximal possible value of this

contribution is 1/2. This happens when node i is picked for the first time, because in this

case the only non-zero α parameter is α
(k)
i,i = 1. The second largest possible contribution

is 1/4. This can happen only when a node i is picked for the second time, and node i has

exactly two non-zero α values (both having a value of 1/2). To see this, consider that no

α value can possibly be in the interval (1/2, 1), and a node that is selected for the second

time will have at least two non-zero α values.

From these observation we can see that the maximal overall difference
∑N

i=1 a
(N)
i −

∑N

i=1 a
(0)
i is given by N/2 + N/4. The proposition directly follows from this, since

∑N
i=1 a

(0)
i = N .

The assumption that N is even is extremely weak, given that we are interested in

networks where N is very large, where this detail makes very little difference. Dealing

with an odd N would not add much insight to the analysis, however, it would make the

equations more complex, so we will not develop our results for that case.
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Corollary 3.3.3. a∗ ≥ 1/4.

Remark 3.3.4. The equality in Corollary 3.3.3 can be achieved, if AVG returns the N/2
pairs (let us assume that N is even) that form a perfect matching of the nodes as the first

N/2 pair, followed by the N/2 pairs that form a second perfect matching that has no

common pairs with the first perfect matching.

Proposition 3.3.5. If algorithm AVG is symmetric to permutation then

E(σ2(t+ 1)) = (1−O( 1
N
))a∗σ2(t). (3.10)

Proof. Considering (3.7), where we have seen that E(σ2(t + 1)) = (a∗ − b)σ2(t), we

need to prove that b/a∗ = O(1/N). We first prove that
∑

i 6=j bi,j < N . Let us consider

the coefficients αi,j and bi,j in Eq. (3.4). First of all, we know that on any node k we have
∑N

i=1 αk,i = 1; this follows from the mass conservation property of the algorithm. From

this it follows that on any node k we have
∑

i 6=j αk,iαk,j < 1. Now we know that

∑

i 6=j

bi,j =
∑

i 6=j

N
∑

k=1

αk,iαk,j =

N
∑

k=1

∑

i 6=j

αk,iαk,j < N. (3.11)

SinceE(
∑

i 6=j bi,j) = N(N−1)b, it follows that b < 1/(N−1). Based on Corollary 3.3.3

we have b/a∗ < 4/(N − 1), which concludes the proof.

This proposition indicates that the bound in (3.6) is tight in large networks. Having

established the properties of the convergence factor—most importantly, the property that

one needs to concentrate only on the quadratic terms in (3.4)—we can now give the ex-

pected value of the convergence factor for a number of interesting implementations of

method GETPAIR, and ultimately, the convergence factor of Algorithm 9.

Pair Selection: Perfect Matching

As was discussed in Remark 3.3.4, the implementation of GETPAIR that is based on two

perfect matchings is optimal, and results in a convergence factor of a∗ = 1/4. We will call

this implementation GETPAIR_PM where PM stands for perfect matching. This implemen-

tation cannot be mapped to an efficient distributed protocol directly because it requires

global knowledge of the system. What makes it interesting is the fact that it is optimal,

Pair Selection: Random Choice

Moving towards more practical implementations of GETPAIR, our next example is GET-

PAIR_RAND which simply returns a random pair of different nodes independently for each

call to GETPAIR, with all such pairs having an equal probability.

GETPAIR_RAND can easily be implemented as a distributed protocol, provided that SE-

LECTPEER returns a uniform random sample of the set of nodes. When iterating AVG, the

waiting time between two consecutive selections of a given node can be described by the

exponential distribution. In a distributed implementation, a given node can approximate

this behavior by waiting for a time interval randomly drawn from this distribution before

initiating communication. However, as we shall see, GETPAIR_RAND is not a very efficient

pair selector.
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Theorem 3.3.6. The limit of the convergence factor for GETPAIR_RAND is given by

lim
N→∞

a∗ =
1

e
. (3.12)

Proof. First, we repeat the observation of the proof of Proposition 3.3.2 that when a pair

(i, j) is picked by algorithm AVG in cycle k, then the contribution of node i to the differ-

ence
∑N

i=1 a
(k+1)
i −

∑N
i=1 a

(k)
i is

2

N
∑

j=1

1

4
(α

(k)
i,j )

2 =
1

2

N
∑

j=1

(α
(k)
i,j )

2 (3.13)

if the sets of non-zero α parameters of node i and j do not overlap.

In the case of GETPAIR_RAND, the α parameters will overlap only with a diminishing

probability for a large N . This follows from the fact, that any node i will influence only

a constant (O(1)) number of other nodes within one cycle on average, and conversely,

any node is influenced only by a constant number of other nodes on average. So the

probability that a node i gets a pair j with an overlapping set of α parameters has a

probability O(1/N).
Since originally the sum of the coefficients for the quadratic terms in the variance

is
∑N

j=1(α
(k)
i,j )

2, this means that node i reduces its actual contribution by a half every

time it is picked. To be more precise, the remaining half contribution to the variance,
1
2

∑N
j=1(α

(k)
i,j )

2, will now be distributed among two nodes equally, with 1
4

∑N
j=1(α

(k)
i,j )

2

contributed by both node i and j.
However, since from a statistical point of view all the nodes have exactly the same

future because GETPAIR_RAND makes decisions that are independent of the previous deci-

sions, we can assume that the original contribution (a
(0)
i = 1) gets halved each time node

i is picked. This will result in the same expected convergence factor. This convergence

factor will then be given by the expectation

a∗ = E(
1

2φ
) (3.14)

where φ is a random variable that describes the number of times a node i was picked as a

member of a pair. The distribution of φ can be approximated by the Poisson distribution

with parameter 2 for a large N , that is

P (φ = j) =
2j

j!
e−2. (3.15)

Substituting this into the expression E(2−φ) we get

E(2−φ) =
∞
∑

j=0

2−j 2
j

j!
e−2 = e−2

∞
∑

j=0

1

j!
= e−2e = e−1. (3.16)

Comparing the performance of GETPAIR_RAND and GETPAIR_PM we can see that con-

vergence is significantly slower than in the optimal case (the factors are e−1 ≈ 1/2.71 vs.

1/4).
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Pair Selection: a Distributed Solution

Building on the results we have so far, it is possible to analyze our original protocol

described in Algorithm 9. If messages are delivered without delay then (assuming that

the start of the cycle is not synchronized) nodes will wake up in a random order, and each

of them will pair up with a random other node and complete one exchange.

In order to simulate this fully distributed version, the implementation of pair selection

will return random pairs such that in each execution of AVG (that is, in each cycle), each

node is guaranteed to be a member of at least one pair. This can be achieved by picking

a random permutation of the nodes and pairing up each node in the permutation with

another random node, thereby generatingN pairs. We call this algorithm GETPAIR_DISTR.

As we shall see, the performance of this protocol is superior to that of GETPAIR_RAND

although of course does not match GETPAIR_PM that is optimal.

Theorem 3.3.7. The limit of the convergence factor for GETPAIR_DISTR is given by

lim
N→∞

a∗ =
1

2
√
e
. (3.17)

Proof. As in the proof of Theorem 3.3.6, we define φ to be the expected number of times

a node participates in a pair. Random variable φ can be approximated as φ = 1+φ′ where

φ′ has the Poisson distribution with parameter 1, that is, for j > 0

P (φ = j) = P (φ′ = j − 1) =
1

(j − 1)!
e−1. (3.18)

Again, similarly to the proof of Theorem 3.3.6, we calculate E(2−φ) and here we get

E(2−φ) =

∞
∑

j=1

2−j 1

(j − 1)!
e−1 =

1

2e

∞
∑

j=1

2−(j−1)

(j − 1)!
=

1

2e

√
e =

1

2
√
e
, (3.19)

which is the desired formula.

The proof is not complete, however, because we cannot apply the reasoning of Theo-

rem 3.3.6 in this case. The only difference is that here nodes might have different futures,

since the pairs are not independent. In other words, different nodes might have a different

expected number of times to be picked as a member of a pair in light of the number of

times they have been selected before (except at the start of AVG, when no node has been

selected yet).

In Theorem 3.3.6 we imagined the variance reduction process as a sort of stick break-

ing process in which a given initial unit contribution gets halved each time a node is

selected (half of the stick is thrown away) and in addition, the remaining half stick is

broken into two equal pieces and added to the contributions of the two members of the

pair.

Let us divide the original unit stick into atoms such that when the stick is broken in

two, half of the atoms are sent to the other node and half of them stay. Using 2N atoms

of initial size 2−N suffices. In this view, an atom takes a random walk in the network,

and half of its length is thrown away in each step. It makes one step each time the node

it sits on is selected; in that case it stays where it is, or moves to the other node with a

probability of 1/2.

In this setting, we show that in the limit of large N the number of steps one atom

makes (φ′′) has the same distribution as φ, which is sufficient to complete the proof. We
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do not present the complete proof here, because it is rather technical. The main idea is

applying induction. First, we show that P (φ′′ = 1) = 1/e in the limit of large N . In the

inductive step we construct all the possible ways of making exactly k + 1 steps assuming

the possible walks (and their probability) of k steps are known. We then calculate the

relative probability and show that P (φ′′ = k+ 1)/P (φ′′ = k) = 1/k (in the limit of large

N), which completes the proof, since through induction we get

P (φ′′ = k) =
1

(k − 1)!
e−1, k > 0. (3.20)

Comparing the performance of GETPAIR_DISTR to GETPAIR_RAND and GETPAIR_PM,

we can see that convergence is slower than the optimal case but faster than random selec-

tion (the factors are 1/2
√
e ≈ 1/3.3, e−1 ≈ 1/2.71 and 1/4, respectively).

Empirical Results for Convergence of Aggregation

We ran AVG using GETPAIR_RAND and GETPAIR_DISTR for several network sizes and dif-

ferent initial distributions. For each parameter setting 50 independent experiments were

performed.

Recall, that theory predicts that the average convergence factor is independent of the

actual initial node values x(0). To test this, we initialized the nodes in two different ways.

In the uniform scenario, each node is assigned an initial value uniformly drawn from the

same interval. In the peak scenario, one randomly selected node is assigned a non-zero

value and the rest of the nodes are initialized to zero.

Note that in the case of the peak scenario, methods that approximate the average based

on a small random sample (that is, statistical sampling methods) are useless: one has to

know all the values to calculate the average. Also, for a fixed variance, we have the largest

difference between any two values. In this sense this scenario represents a worst case

scenario. Last but not least, the peak initialization has important practical applications as

well as we discuss in Section 3.5.

The results are shown if Figures 3.1 and 3.2. Figure 3.1 confirms our prediction that

convergence is independent of network size and that the observed convergence factors

match theory with very high accuracy. Note that smaller convergence factors result in

faster convergence.

The only difference between the peak and the uniform scenario is that the variance of

the convergence factor is higher for the peak scenario. Note that our theoretical analysis

does not tackle the question of convergence factor variance. We can see however that

the average convergence factor is well predicted and after a few cycles the variance is

decreased considerably.

Figure 3.3 shows the difference between the maximal and the minimal estimates in

the system for both the peak and uniform initialization scenarios. Note that although the

expected variance E(σi) decreases at the predicted rate, in the peak distribution scenario,

the difference decreases faster. This effect is due to the highly skewed nature of the

distribution of estimates in the peak scenario. In both cases, the difference between the

maximal and the minimal estimate decreases exponentially and after as few as 20 cycles

the initial difference is reduced by several orders of magnitude. This means that after

a small number of cycles all nodes, including the outliers, will possess very accurate

estimates of the global average.
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Figure 3.1: Convergence factor σ2(1)/σ2(0) after one execution of AVG as a function

of network size. For the peak distribution, error bars are omitted for clarity (but see

Figure 3.2). Values are averages and standard deviations for 50 independent runs. Dotted

lines correspond to the two theoretically predicted convergence factors: e−1 ≈ 0.368 and

1/(2
√
e) ≈ 0.303.
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Figure 3.2: Convergence factor σ2(i)/σ2(i − 1) for network size N = 106 for different

iterations of algorithm AVG. Values are averages and standard deviations for 50 indepen-

dent runs. Dotted lines correspond to the two theoretically predicted convergence factors:

e−1 ≈ 0.368 and 1/(2
√
e) ≈ 0.303.
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Figure 3.3: Normalized difference between the maximal and the minimal estimates as a

function of cycles with network size N = 106. All 50 experiments are plotted as a single

point for each cycle with a small horizontal random translation.

A Note on our Figures of Merit

Our approach for characterizing the quality of the approximations and convergence is

based on the variance σ, and the convergence factor of the variance a∗, which describes

the speed at which the expected value of σ decreases. To understand better what our

results mean, it helps to compare it with other approaches to characterizing the quality of

aggregation.

First of all, since we are dealing with a continuous process, there is no end result in

a strict sense. Clearly, the figures of merit depend on how long we run the protocol. The

variance σ(i) characterizes the average accuracy of the approximates in the system in the

given cycle i. In our approach, apart from averaging the accuracy over the system, we also

average it over different runs, that is, we consider E(σ(i)). This means that an individual

node in a specific run can have rather different accuracy. We have not considered the

distribution of the accuracy (only the mean accuracy as described above), which depends

on the initial distribution of the values. However, Figure 3.3 suggests that our approach is

robust to the initial distribution.

Another frequently used measure is completeness [91]. This measure is defined under

the assumption that the aggregate is calculated based on the knowledge of a subset of the

values (ideally, based on the entire set, but due to errors this cannot always be achieved).

It gives the percentage of the values that were taken into account. In our protocol this

measure is difficult to adopt directly because at all times a local approximate can be

thought of as a weighted average of the entire set of values. Ideally, all values should

have equal weight in the approximations of the nodes (resulting in the global average

value). To get a similar measure, one could characterize the distribution of weights as a

function of time, to get a more fine-grained idea of the dynamics of the protocol.
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3.4 A Practical Protocol for Gossip-based Aggregation

Building on the simple idea presented in the previous section, we now complete the details

so as to obtain a full-fledged solution for gossip-based aggregation in practical settings.

3.4.1 Automatic Restarting

The generic protocol described so far is not adaptive, as the aggregation takes into ac-

count neither the dynamicity in the network nor the variability in values that are being

aggregated. To provide up-to-date estimates, the protocol must be periodically restarted:

at each node, the protocol is terminated and the current estimate is returned as the ag-

gregation output; then, the current local values are used to re-initialize the estimates and

aggregation starts again with these fresh initial values.

To implement termination, we adopt a very simple mechanism: each node executes

the protocol for a predefined number of cycles, denoted as γ, depending on the required

accuracy of the output and the convergence factor that can be achieved in the particular

overlay topology adopted (see the convergence factor given in Section 3.3).

To implement restarting, we divide the protocol execution in consecutive epochs of

length γ∆ (where ∆ is the cycle length) and start a new instance of the protocol in each

epoch. We also assume that messages are tagged with an epoch identifier that will be

applied by the synchronization mechanism as described below.

3.4.2 Coping with Churn

In a realistic scenario, nodes continuously join and leave the network, a phenomenon

commonly called churn. When a new node joins the network, it contacts a node that is

already participating in the protocol. Here, we assume the existence of an out-of-band

mechanism to discover such a node, and the problem of initializing the neighbor set of

the new node is discussed in Section 3.4.4.

The contacted node provides the new node with the next epoch identifier and the time

until the start of the next epoch. Joining nodes are not allowed to participate in the current

epoch; this is necessary to make sure that each epoch converges to the average that existed

at the start of the epoch. Continuously adding new nodes would make it impossible to

achieve convergence.

As for node crashes, when a node initiates an exchange, it sets a timeout period to

detect the possible failure of the other node. If the timeout expires before the message

is received, the exchange step is skipped. The effect of these missing exchanges due to

real (or presumed) failures on the final average will be discussed in Section 3.7. Note

that self-healing (removing failed nodes from the system) is taken care of by the NEWS-

CAST protocol, which we propose as the implementation of method SELECTPEER (see

Sections 3.4.4 and 3.7).

3.4.3 Synchronization

The protocol described so far is based on the assumption that cycles and epochs proceed

in lock step at all nodes. In a large-scale distributed system, this assumption cannot be

satisfied due to the unpredictability of message delays and the different drift rates of local

clocks.
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Given an epoch j, let Tj be the time interval from when the first node starts participat-

ing in epoch j to when the last node starts participating in the same epoch. In our protocol

as it stands, the length of this interval would increase without bound given the different

drift rates of local clocks and the fact that a new node joining the network obtains the next

epoch identifier and start time from an existing node, incurring a message delay.

To avoid the above problem, we modify our protocol as follows. When a node partic-

ipating in epoch i receives an exchange message tagged with epoch identifier j such that

j > i, it stops participating in epoch i and instead starts participating in epoch j. This

has the effect of propagating the larger epoch identifier (j) throughout the system in an

epidemic broadcast fashion forcing all (slow) nodes to move up to the new epoch. In other

words, the start of a new epoch acts as a synchronization point for the protocol execution

forcing all nodes to follow the pace being set by the nodes that enter the new epoch first.

Informally, knowing that push-pull epidemic broadcasts propagate super-exponentially

(see Chapter 1) and assuming that each message arrives within the timeout used during

all communications, we can obtain a logarithmic bound on Tj for each epoch j. More

importantly, typically many nodes will start the new epoch independently with a very

small difference in time, so this bound can be expected to be sufficiently small, which

allows picking an epoch length such that it is significantly larger that Tj . A more detailed

analysis of this mechanism would be interesting but is out of the scope of the present

discussion. The effect of lost messages (i.e., those that time out) however, is discussed

later.

3.4.4 Importance of Overlay Network Topology for Aggregation

The theoretical results described in Section 3.3 are based on the assumption that the un-

derlying overlay is “sufficiently random”. More formally, this means that the neighbor

selected by a node when initiating communication is a uniform random sample among its

peers. Yet, our aggregation scheme can be applied to generic connected topologies, by

selecting neighbors from the set of neighbors in the given overlay network. This section

examines the effect of the overlay topology on the performance of aggregation.

All of the topologies we examine (with the exception of NEWSCAST) are static—the

neighbor set of each node is fixed. While static topologies are unrealistic in the presence

of churn, we still consider them due to their theoretical importance and the fact that our

protocol can in fact be applied in static networks as well, although they are not the primary

focus of the present discussion.

Static Topologies

All topologies considered have a regular degree of 20 neighbors, with the exception of

the complete network (where each node knows every other node) and the Barabási-Albert

network (where the degree distribution is a power-law). For the random network, the

neighbor set of each node is filled with a random sample of the peers.

The Watts-Strogatz and scale-free topologies represent two classes of realistic small-

world topologies that are often used to model different natural and artificial phenom-

ena [74, 92]. The Watts-Strogatz model [70] is obtained from a regular ring lattice. The

ring lattice is built by connecting the nodes in a ring and adding links to their nearest

neighbors until the desired node degree is reached. Starting with this ring lattice, each

edge is then randomly rewired with probability β. Rewiring an edge at node n means
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Figure 3.4: Convergence factor for Watts-Strogatz graphs as a function of parameter

β. The dotted line corresponds to the theoretical convergence factor for peer selection

through random choice: 1/(2
√
e) ≈ 0.303.

removing that edge and adding a new edge connecting n to another node picked at ran-

dom. When β = 0, the ring lattice remains unchanged, while when β = 1, all edges are

rewired, generating a random graph. For intermediate values of β, the structure of the

graph lies between these two extreme cases: complete order and complete disorder.

Figure 3.4 focuses on the Watts-Strogatz model showing the convergence factor as a

function of β ranging from 0 to 1. Although there is no sharp phase transition, we observe

that increased randomness results in a lower convergence factor (faster convergence).

Scale-free topologies form the other class of realistic small world topologies. In par-

ticular, the Web graph, Internet autonomous systems, and P2P networks such as Gnutella

[93] have been shown to be instances of scale-free topologies. We have tested our proto-

col over scale-free graphs generated using the preferential attachment method of Barabási

and Albert [74]. The basic idea of preferential attachment is that we build the graph by

adding new nodes one-by-one, wiring the new node to an existing node already in the

network. This existing contact node is picked randomly with a probability proportional to

its degree (number of neighbors).

Let us compare all the topologies described above. Figure 3.5 illustrates the perfor-

mance of aggregation for different topologies by plotting the average convergence factor

over a period of 20 cycles, for network sizes ranging from 102 to 106 nodes. Figure 3.6

provides additional details. Here, the network size is fixed at 105 nodes. Instead of

displaying the average convergence factor, the curves illustrate the actual variance reduc-

tion (values are normalized so that the initial variance for all cases is 1) for the same set

of topologies. We can conclude that performance is independent of network size for all

topologies, while it is highly sensitive to the topology itself. Furthermore, the conver-

gence factor is constant as a function of time (cycle), that is, the variance is decreasing

exponentially, with non-random topologies being the only exceptions.
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Dynamic Topologies

From the above results, it is clear that aggregation convergence benefits from increased

randomness of the underlying overlay network topology. Furthermore, in dynamic sys-

tems, there must be mechanisms in place that preserve this property over time. To achieve

this goal, we propose to use NEWSCAST, described in Section 2.2.4 (see Algorithm 8).

Recall that in NEWSCAST the overlay is generated by a continuous exchange of neigh-

bor sets, where each element consists of a node identifier and a timestamp. These sets

have a fixed size, which will be denoted by c. After an exchange, participating nodes

update their neighbor sets by selecting the c node identifiers (from the union of the two

sets) that have the freshest timestamps. Nodes belonging to the network continuously

inject their identifiers in the network with the current timestamp, so old identifiers are

gradually removed from the system and are replaced by newer information. This fea-

ture allows the protocol to “repair” the overlay topology by forgetting information about

crashed neighbors, which by definition cannot inject their identifiers.

Figure 3.7 shows the performance of aggregation over a NEWSCAST network of 105

nodes, with c varying between 2 and 50. From these experimental results, choosing c = 30
is already sufficient to obtain fast convergence for aggregation. Furthermore, this same

value for c is sufficient for very stable and robust connectivity (see Chapter 2). Figures 3.5

and 3.6 provide additional evidence that applying NEWSCAST with c = 30 already results

in performance very similar to that of a random network.

3.4.5 Cost Analysis

Both the communication cost and time complexity of our scheme follow from properties

of the aggregation protocol and are inversely related. The cycle length, ∆ defines the

time complexity of convergence. Choosing a short ∆ will result in proportionally faster

convergence but higher communication costs per unit time.
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As we have seen earlier, if the overlay is sufficiently random then the number of

exchanges for any fixed node in ∆ time units can be described by the random variable

1 + φ′ where φ′ has a Poisson distribution with parameter 1. Thus, on the average, there

are two exchanges per node (one initiated by the node and the other one coming from

another node), with a very low variance. Based on this distribution, parameter ∆ must be

selected to guarantee that, with very high probability, each node will be able to complete

the expected number of exchanges before the next cycle starts. Failing to satisfy this

requirement results in a violation of our theoretical assumptions.

Similarly, parameter γ (the epoch length) must be chosen appropriately, based on the

desired accuracy of the estimate and the convergence factor a∗ characterizing the overlay

network. After γ cycles, we have E(σ2(γ))/σ2(0) = a∗γ . If ǫ is the desired accuracy

of the final estimate, then γ ≥ loga∗ ǫ. Note that a∗ is independent of N , so the time

complexity of reaching a given average precision is O(1).

3.5 Aggregation Beyond Averaging

In this section we give several examples of gossip-based aggregation protocols to calculate

different aggregates. With the exception of minimum and maximum calculation, they are

all built on averaging. We also briefly discuss the question of dynamic queries.

3.5.1 Examples of Supported Aggregates

Minimum and maximum

To obtain the maximum or minimum value among the values maintained by all nodes,

method UPDATE(a, b) of the generic scheme of Algorithm 9 must return max(a, b) or

min(a, b), respectively. In this case, the global maximum or minimum value will be effec-

tively broadcast like an epidemic. Well-known results about epidemic broadcasting [20]

are applicable.

Generalized means

We formulate the general mean of a vector of elements x = (x0, . . . , xN) as

f(x) = g−1

(

∑N

i=0 g(xi)

N

)

(3.21)

where function f is the mean function and function g is an appropriately chosen local

function to generate the mean. Well known examples include g(x) = x which results in

the average, g(x) = xn which defines the nth power mean (with n = −1 being the har-

monic mean, n = 2 the quadratic mean, etc.) and g(x) = ln x resulting in the geometric

mean (nth root of the product). To compute the above general mean, UPDATE(a, b) returns

g−1[(g(a) + g(b))/2]. After each exchange, the value of f remains unchanged but the

variance over the set of values decreases so that the local estimates converge toward the

general mean.
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Variance and other moments

In order to compute the nth raw moment which is the average of the nth power of the

original values, xn, we need to initialize the estimates with the nth power of the local

value at each node and simply calculate the average. To calculate the nth central moment,

given by (x− x)n, we can calculate all the raw moments in parallel up to the nth and

combine them appropriately, or we can proceed in two sequential steps first calculating

the average and then the appropriate central moment. For example, the variance, which is

the 2nd central moment, can be approximated as x2 − x2.

Counting

We base counting on the observation that if the initial distribution of local values is such

that exactly one node has the value 1 and all the others have 0, then the global average is

exactly 1/N and thus the network size, N , can be easily deduced from it. We will use this

protocol, which we call COUNT, in our experiments.

Using a probabilistic approach, we suggest a simple and robust implementation of this

scheme without any need for leader election: we allow multiple nodes to randomly start

concurrent instances of the averaging protocol, as follows. Each concurrent instance is

lead by a different node. Messages and data related to an instance are tagged with a unique

identifier (e.g., the address of the leader). Each node maintains a map M associating a

leader identifier with an average estimate. When nodes i and j maintaining the maps Mi

and Mj perform an exchange, the new map M (to be installed at both nodes) is obtained

by merging Mi and Mj in the following way:

M ={(l, xi/2) | xi =Mi(l) ∈Mi ∧ l 6∈ D(Mj)}
∪ {(l, xj/2) | xj =Mj(l) ∈Mj ∧ l 6∈ D(Mi)}
∪ {(l, (xi + xj)/2 | xi =Mi(l) ∧ xj =Mj(l)},

(3.22)

whereD(M) corresponds to the domain (key set) of mapM and xi is the current estimate

of node i. In other words, if the average estimate for a certain leader is known to only one

node out of the two nodes that participate in an exchange, the other node is considered to

have an estimate of 0.

Maps are initialized in the following way: if node l is a leader, the map is equal to

{(l, 1)}, otherwise the map is empty. All nodes participate in the protocol described in

the previous section. In other words, even nodes with an empty map perform random

exchanges. Otherwise, an approach where only nodes with a non-empty set perform

exchanges would be less effective in the initial phase while few nodes have non-empty

maps.

Clearly, the number of concurrent protocols in execution must be bounded, to limit

the communication costs involved. A simple mechanism that we adopt is the following.

At the beginning of each epoch, each node may become leader of a run of the aggregation

protocol with probabilityPlead. At each epoch, we setPlead = C/N̂ , whereC is the desired

number of concurrent runs and N̂ is the estimate obtained in the previous epoch. If the

systems size does not change dramatically within one epoch then this solution ensures that

the number of concurrently running protocols will be approximately Poisson distributed

with the parameter C.
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Sums and products

Two concurrent aggregation protocols are run, one to estimate the size of the network, the

other to estimate the average or the geometric mean, respectively. The size and the means

together can be used to compute the sum or the product of the initial local values.

Rank statistics

Although the examples presented above are quite general, certain statistics appear to be

difficult to calculate in this framework. Statistics that have a definition based on the in-

dex of values in a global ordering (often called rank statistics) fall into this category.

While certain rank statistics like the minimum and maximum (see above) can be calcu-

lated easily, others, including the median, are more difficult. In our previous work we

have proposed protocols for this purpose as well [13].

An example application: Naive Bayes

A central problem in data mining is classification. We assume that every node i has a

training data set containing training samples. One sample consists of a feature vector

x = (x1, . . . , xr) and a label y. Let us assume that both the features xi and y have a

small discrete domain (indeed, for example, even binary features and binary labels are

common). One wants to build a classification procedure that assigns labels to new ob-

servations (feature vectors) that are not labeled. This classification procedure might have

a form of a decision tree, a regression formula, a description of a joint probability dis-

tribution, etc., [94]. Here, we will focus on a very simple, yet powerful, classification

procedure called Naive Bayes.

The Naive Bayes procedure finds the maximum a posteriori (MAP) estimate

yMAP = argmax
y
p(y|x) (3.23)

with help of some empirical probabilities that are easy to find. Indeed, if we assume that

attributes are conditionally independent with respect to the class attribute (it is a naive

assumption therefore the name: Naive Bayes), the probabilities p(y|x) can be expressed

in terms of p(xi|y) and p(y):

p(y|x) = p(y)p(x|y)
p(x)

≈ p(y)
∏

i p(xi|y)
p(x)

. (3.24)

The term p(x) is not needed, since it is constant for a given feature vector, so it does not

change the MAP estimate yMAP .

Using our averaging protocol, we now need to calculate the average number of training

samples (n), the average number of training samples that have y as label (ny), and the

average number of training samples that have feature xi and label y (nxi,y). Now, each

node can estimate

p(y) ≈ ny

n
, p(xi|y) ≈

nxi,y

ny

. (3.25)

Using these estimates, the MAP estimate yMAP can be calculated. (Note, that ny is re-

dundant, but can nevertheless help in increasing stability.)
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3.5.2 Dynamic Queries

Although here we target applications where the same query is calculated continuously

and proactively in a highly dynamic large network, having a fixed query is not an inherent

limitation of the approach. The aggregate value being calculated is defined by method

UPDATE and the semantics of the state of the nodes (the parameters of method UPDATE).

These components can be changed throughout the system at any time, using for example

an extension of the restarting technique discussed in Section 3.4, where in a new epoch

not only the start of the new epoch is being propagated through gossip but a new query as

well.

Typically, our protocol will provide aggregation service for an application. The exact

details of the implementation of dynamic queries (if necessary) will depend on the spe-

cific environment, taking into account efficiency and performance constraints and possible

sources of new queries.

3.6 Theoretical Results for Benign Failures

3.6.1 Crashing Nodes

The result on convergence discussed in Section 3.3 is based on the assumption that the

overlay network is static and that nodes do not crash. When in fact in a dynamic en-

vironment, there may be significant churn with nodes coming and going continuously.

In this section we present results on the sensitivity of our protocols to dynamism of the

environment.

Our failure model is the following. Before each cycle, a fixed proportion, say Pf ,

of the nodes crash (recall that we do not distinguish between nodes leaving the network

voluntarily and those that crash). Given N nodes initially, PfN nodes are removed. We

assume crashed nodes do not recover. Note that considering crashes only at the beginning

of cycles corresponds to a worst-case scenario since the crashed nodes render their local

values inaccessible when the variance among the local values is at its maximum. In other

words, the more times a node communicates with other nodes, the better it approximates

the correct global average (on average), so removing it at a latter stage does not disturb

the end result as much as removing it at the beginning. Also recall that we are interested

in the average at the beginning of the current epoch as opposed to the real-time average

(see Section 3.4.1).

Let us begin with some simple observations. In our failure model the convergence

factor will stay the same independently of Pf since the failure model is completely blind

(there is no bias towards removing larger or smaller values), and the convergence factor

does not depend on the network size N (as long as N is large). However, the average will

now become a random variable that depends on Pf , since the mass conservation property

no longer holds. Again, due to symmetry, it is trivial to see that the expectation of the

average will not change (we still assume that it is zero). So, to characterizes the expected

error of the approximation of the average, we consider the variance of the mean Var(µ(t)),
where

µ(t) =
1

N

N(t)
∑

i=1

xi(t) (3.26)

and N(t) = (1− Pf)
tN . We will describe Var(µ(t)) as a function of Pf .
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Proposition 3.6.1. Let us assume that the convergence factor is a∗ and algorithm AVG is

symmetric to permutation. Then µ(t) has a variance

Var(µ(t)) ≈ Pf

(1− Pf )N
σ2(0)

1−
(

a∗

1−Pf

)t

1− a∗

1−Pf

. (3.27)

Proof. Let us take the decomposition µ(t + 1) = µ(t) + dt. Random variable dt is inde-

pendent of µ(t), because knowing only the average of a set does not contain information

about the statistics of any strict subset (in this case, the subset that is removed) in the lack

of additional prior information. So

Var(µ(t+ 1)) = Var(µ(t)) + Var(dt), (3.28)

which means that

Var(µ(t)) =

t−1
∑

j=0

Var(dj). (3.29)

This allows us to consider only Var(dt) as a function of failures. Note that E(dt) = 0
since E(µ(t)) = E(µ(t+ 1)). Then, we have

Var(dt) = E((µ(t)− µ(t+ 1))2) ≈ Pf

(1− Pf)N(t)
E(σ2(t))

=
Pf

1− Pf

σ2(0)
a∗t

N(t)
=

Pf

1− Pf

σ2(0)
a∗t

N(1− Pf )t
.

(3.30)

which gives the desired formula when substituting (3.30) into (3.29). In the first equation

we used the fact that E(dt) = 0. The approximation then is the results of elementary

calculations, in which we ignored the terms of the form axixj (i 6= j). Although here

we do not formally quantify the error we make by ignoring these terms (instead, we

perform an experimental validation) the considerations in the proofs of Propositions 3.3.1

and 3.3.5 strongly suggests that the error is not large.

The results of simulations with N = 105 to validate this analysis are shown in Fig-

ure 3.8. For each value of Pf , the empirical data is based on 100 independent experiments

whereas the prediction is obtained from (3.27) with a∗ = 1/(2
√
e). The empirical data

fits the prediction nicely. Note that the largest value of Pf examined was 0.3 which means

that in each cycle almost one third of the nodes is removed. This already represents an ex-

tremely severe scenario. See also Section 3.7.1, where we present additional experimental

analysis using NEWSCAST.

If a∗ > 1 − Pf then the variance is not bounded, it grows with the cycle index,

otherwise it is bounded. Also note that increasing network size decreases the variance of

the approximation µ(i). This is good news for scalability, as the larger the network, the

more stable the approximation becomes.

3.6.2 Link Failures

In a realistic system, links fail in addition to nodes crashing. This represents another

important source of error, although we note that from our point of view node crashes are

more important because we model leaves as crashes, so in the presence of churn crash

events dominate all other types of failure.
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Figure 3.8: Effects of node crashes on the variance of the average estimates at cycle 20.

Let us adopt a failure model in which an exchange is performed only with probability

1 − Pd, that is, each link between any pair of nodes is down with probability Pd. This

model is adequate because we focus on short term link failures. For long term failures

it is not sufficient to model failure as a probability, and long term failures can hardly be

modeled as independent either. Besides, long term link failure in an overlay network

means long term partitioning in the underlying physical network (because if the physi-

cal network was connected, normally the routing service could still function), and thus

the overlay network is also partitioned. In such a partitioned topology our protocol will

simply calculate an aggregate value local to each partitioned cluster.

In Section 3.3.2 it was proven that a∗ = 1/e (where a∗ is the convergence factor) if

we assume that during a cycle for each particular variance reduction step, each pair of

nodes has an equal probability to perform that particular variance reduction step. For the

protocol described in Algorithm 9 we have proven that a∗ = 1/(2
√
e). For this protocol

the uniform randomness assumption does not hold since the protocol guarantees that each

node participates in at least one variance reduction step—the one initiated actively by

the node. In the random model however, it is possible for example that a node does not

participate in a given cycle at all.

Consider that a system model with Pd > 0 is very similar to a model in which Pd = 0
but which is “slower” (fewer pairwise exchanges are performed in a unit time interval). In

the limit case when Pd is close to 1, the uniform randomness assumption described above

(when a∗ = 1/e) is fulfilled with high accuracy.

This motivates our conclusion that the performance can be bounded from below by

the model where Pd = 0, and a∗ = 1/e instead of 1/(2
√
e), and which is 1/(1−Pd) times

slower than the original system in terms of wall clock time. That is, the upper bound on

the convergence factor can be expressed as

a∗d = (
1

e
)1−Pd = ePd−1. (3.31)

Since the factor 1/e is not significantly worse than 1/(2
√
e), we can conclude that practi-

cally only a proportional slowdown of the system is observed. In other words, link failures
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do not result in any loss of approximation quality or increased unreliability.

3.6.3 Conclusions

We have examined two sources of random failures: node crashes and link failures. In

the case of node crashes, the relationship was given between the proportion of failing

nodes and the expected loss in accuracy of the average estimation. We have seen that the

protocol can tolerate relatively large amounts of node crashes and still provide reasonable

estimates. We have also shown that performance degrades gracefully with increasing link

failure probability.

3.7 Simulation Results for Benign Failures

To complement the theoretical analysis, we have performed numerous experiments based

on simulation. In all experiments, we used NEWSCAST as the underlying overlay network

to implement function SELECTPEER in Algorithm 9. As a result, we need no unrealistic

assumptions about the amount of information available at the nodes locally.

Furthermore, all our experiments were performed with the COUNT protocol since it is

the aggregation example that is most sensitive to failures (both node crashes and message

omissions) and thus represents a worst-case. During the first few cycles of an epoch when

only a few nodes have a local estimate other than 0, their removal from the network due

to failures can cause the final result of COUNT to diverge significantly from the actual

network size.

All of experimental results were obtained through PEERSIM, a simulator developed by

us and optimized for aggregation protocols [61, 66]. Unless stated otherwise, all simula-

tions are performed on networks composed of 105 nodes. We do not present results for

different network sizes since they display similar trends (as predicted by our theoretical

results and confirmed by Figure 3.5).

The size of the neighbor sets maintained and exchanged by the NEWSCASTprotocol is

set to 30. As discussed in Section 3.4.4, this value is large enough to result in convergence

factors similar to those of random networks; furthermore, as our experiments confirm, the

overlay network maintains this property also in the face of the node crash scenarios we

examined. Unless explicitly stated, the size estimates and the convergence factor plotted

in the figures are those obtained at the end of a single epoch of 30 cycles. In all figures,

50 individual experiments were performed for all parameter settings. When the result of

each experiment is shown in a figure (e.g., as a dot) to illustrate the entire distribution, the

x-coordinates are shifted by a small random value so as to separate results having similar

y-coordinates.

3.7.1 Node Crashes

The crash of a node may have several possible effects. If the crashed node had a value

smaller than the actual global average, the estimated average (which should be 1/N)

will increase and consequently the reported size of the network N will decrease. If the

crashed node has a value larger than the average, the estimated average will decrease and

consequently the reported size of the network N will increase.

The effects of a crash are potentially more damaging in the latter case. The larger

the removed value, the larger the estimated size. At the beginning of an epoch, relatively
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Figure 3.9: Network size estimation with protocol COUNT where 50% of the nodes crash

suddenly. The x-axis represents the cycle of an epoch at which the “sudden death” occurs.

large values are present, obtained from the first exchanges originated by the initial value

1. These observations are confirmed by Figure 3.9, that shows the effect of the “sudden

death” of 50% of the nodes in a network of 105 nodes at different cycles of an epoch.

Note that in the first cycles, the effect of crashing may be very harsh: the estimate can

even become infinite (not shown in the figure), if all nodes having a value different from 0

crash. However, around the tenth cycle the variance is already so small that the damaging

effect of node crashes is practically negligible.

A more realistic scenario is a network subject to churn. Figure 3.10 illustrates the

behavior of aggregation in such a network. Churn is modeled by removing a number of

nodes from the network and substituting them with new nodes at each cycle. According

to the protocol, the new nodes do not participate in the ongoing approximation epoch.

However this scenario is not fully equivalent to a continuous node crashing scenario be-

cause these new nodes do participate in the NEWSCAST network and so they are contacted

by participating nodes. These contacts are refused by the new nodes which results in an

additional effect similar to link failure.

The size of the network is constant, while its composition is dynamic. The plotted

dots correspond to the average estimate computed over all nodes that still participate in

the protocol at the end of a single epoch (30 cycles), that is, that were originally part of the

system at the start of the epoch. Note that although the average estimate is plotted over

all nodes, in cycle 30 the estimates are practically identical as Figure 3.6 confirms. Also

note that 2,500 nodes crashing in a cycle means that 75% of the nodes ((30× 2500)/105)
are substituted during the epoch, leaving 25% of the nodes that make it until the end of

the epoch.

The figure demonstrates that (even when a large number of nodes are substituted dur-

ing an epoch) most of the estimates are included in a reasonable range. This is consistent

with the theoretical result discussed in Section 3.6.1, although in this case we have an ad-

ditional source of error: nodes are not only removed but replaced by new nodes. While the

new nodes do not participate in the epoch, they result in an effect similar to link failure,

as new nodes will refuse all connections that belong to the currently running epoch. How-
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Figure 3.10: Network size estimation with protocol COUNT in a network of constant size

subject to churn. The x-axis is the churn rate which corresponds to the number of nodes

that crash at each cycle and are substituted by the same number of new nodes.

ever, the variance of the estimate continues to be described by the results in Section 3.6.1

because according to Sections 3.6.2 and 3.7.2, link failures do not change the estimate,

only slows down convergence. Since an epoch lasts 30 cycles, this time is enough for

convergence even beside the highest fluctuation rate. See also Figure 3.8 for the variance

of the estimates plotted against the theoretical prediction.

The above experiment can be considered as a worst case analysis since the level of

churn was much higher than it could be expected in a realistic scenario, considering that

an epoch lasts for a relatively short time. We have repeated our experiments on the well-

known Gnutella trace described in [58] to validate our results on a more realistic churn

scenario as well. Figure 3.11 illustrates the simulation results. Only a short time window

is shown (where the churn rate is particularly variable) to illustrate the accuracy of the

approach better. We can observe that the approximation is accurate (with a one epoch

delay), and the standard deviation is low as well. In this particular trace, during one

epoch approximately 5% of the nodes are replaced. This is a relatively low rate and as

we have seen earlier, the protocol can withstand much higher churn rates. Noted that the

figure illustrates only the fluctuations in the network size as a result of churn and not the

actual churn rate itself.

3.7.2 Link Failures and Message Omissions

Figure 3.12 shows the convergence factor of COUNT in the presence of link failures. As

discussed earlier, in this case the only effect is a proportionally slower convergence. The

theoretically predicted upper bound of the convergence factor (see (3.31)) indeed bounds

the average convergence factor, and—as predicted—it is more accurate for higher values

of Pd.

Apart from link failures that interrupt communication between two nodes in a sym-

metric way, it is also possible that single messages are lost. If the message sent to initiate

an exchange is lost, the final effect is the same as with link failure: the entire exchange
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Figure 3.11: Network size estimation with protocol COUNT in the presence of churn ac-

cording to a Gnutella trace [58]. 50 experiments were run to calculate statistics (mean and

standard deviation), each epoch consisted of 30 cycles, each cycle lasted for 10 seconds.

is lost, and the convergence process is just slowed down. But if the message lost is the

response to an initiated exchange, the global average may change (either increasing or

decreasing, depending on the value contained in the message).

The effect of message omissions is illustrated in Figure 3.13. The given percentage of

all messages (initiated or response) was dropped. For each experiment, both the maximum

and the minimum estimates over the nodes in the network are shown, represented by

the ends of the bars. As can be seen, when a small percentage of messages are lost,

estimations of reasonable quality can be obtained. Unfortunately, when the number of

messages lost is higher, the results provided by aggregation can be larger or smaller by

several orders of magnitude. In this case, however, it is possible to improve the quality

of estimations considerably by running multiple concurrent instances of the protocol, as

explained in the next section.

3.7.3 Robustness via Multiple Instances of Aggregation

To reduce the impact of “unlucky” runs of the aggregation protocol that generate incorrect

estimates due to failures, one possibility is to run multiple concurrent instances of the

aggregation protocol. To test this solution, we have simulated a number t of concurrent

instances of the COUNT protocol, with t varying from 1 to 50. At each node, the t estimates

that are obtained at the end of each epoch are ordered. Subsequently, the ⌊t/3⌋ lowest

estimates and the ⌊t/3⌋ highest estimates are discarded, and the reported estimate is given

by the average of the remaining results.

Figure 3.14 shows the results obtained by applying this technique in a system where

1000 nodes per cycle are substituted with new nodes, while Figure 3.15 shows the results

in a system where 20% of the messages are lost. Recall that even though in the node

crashing scenario the number of nodes participating in the epoch decreases, the correct

estimation is 105 as the protocol reports network size at the beginning of the epoch.

The results are quite encouraging; by maintaining and exchanging just 20 numerical
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Figure 3.12: Convergence factor of protocol COUNT as a function of link failure probabil-

ity.

values (resulting in messages of still only a few hundreds of bytes), the accuracy that may

be obtained is very high, especially considering the hostility of the scenarios tested. It can

also be observed that the estimate is very consistent over the nodes (the bars are short) in

the crash scenario (as predicted by our theoretical results), and using multiple instances

the variance of the estimate over the nodes decreases significantly even in the message

omission scenario, so the estimate is sufficiently representative at every single node.

3.8 Experimental Results on PlanetLab

In order to validate our analytical and simulation results, we implemented the COUNT

protocol and deployed it on PlanetLab [95]. PlanetLab is an open, globally distributed

platform for developing, deploying and accessing planetary-scale network services. At the

time of performing these experiments, more than 170 academic institutions and industrial

research labs are members of the PlanetLab consortium, providing more than 400 nodes

for experimentation.

A summary of the experimental results obtained on PlanetLab is illustrated in Fig-

ure 3.16. During the experiment, 300 machines belonging to the PlanetLab testbed were

used. Each machine was running up to 20 virtual nodes, each participating as a distinct

entity. In other words, the maximum size of our emulated network was 6000 virtual

nodes, distributed over five continents. The size of the network was made to oscillate

between 2500 and 6000 nodes during the experiment. Virtual nodes were removed and

added using a central scheduler that randomly picked nodes from the network to produce

the oscillation effect shown in the figure. The number of concurrent protocol instances

was 20 (see Section 3.7.3), and parameter c of NEWSCAST was c = 30. The length of a

cycle is 5 seconds, while the number of cycles in an epoch is 30 (that is, the length of an

epoch is approximately 2.5 minutes). Several experiments were run, all of them starting

at 02:00 Central European Time during workdays. All of them produced results similar

to those shown in the figure. The communication mechanism of our implementation is
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Figure 3.13: Network size estimation with protocol COUNT as a function of lost messages.

The length of the bars illustrate the distance between the minimal and maximal estimated

size over the set of nodes within a single experiment.
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Figure 3.14: Network size estimation with multiple instances of protocol COUNT. 1000
nodes crash at the beginning of each cycle. The length of the bars correspond to the
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single experiment.
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Figure 3.15: Network size estimation with protocol COUNT as a function of concurrent

protocol instances. 20% of messages are lost. The length of the bars correspond to the
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single experiment.
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based on UDP. This choice is motivated by the fact that in a network based on NEWSCAST,

interactions between nodes are short-lived, so establishing a TCP connection is relatively

expensive. On the other hand, the protocol can tolerate message omissions. The observed

message omission rate during our experiments varied between 3% and 8%.

The figure shows two curves, one representing the real size of the network at the

beginning of a given epoch, and the other representing the estimated size, averaged over

all nodes in the network. The (very small) standard deviation of the estimates over all

nodes is also illustrated using vertical bars. These experiments further confirm the validity

and practicality of our mechanisms.

3.9 Related Work

Since our work overlaps with a large number of fields, including gossip-based and epi-

demic protocols, load balancing, aggregation and network size estimation (in both overlay

and wireless ad hoc networks), we restrict our discussion to the most relevant publications

from each area.

Protocols based on epidemic and gossiping metaphors have found numerous practi-

cal applications. Examples include database replication [20] and failure detection [52].

A recently completed survey by Eugster et al. provides an excellent introduction to the

area [59]. Note that our approach applies gossiping only as the communication model

(periodic information exchange with random peers). Strictly speaking, nothing is “gos-

siped”, the dynamics of the system is closer to a diffusion process. This is why, for

example, theoretical results on epidemic spreading are not directly relevant here.

The load balancing protocol presented in [96] builds on the idea of generating a match-

ing in the network topology and balancing load along the edges in the matching. Although

the basic idea is similar, our work assumes a random overlay network (that we provide

using NEWSCAST) and does not require the communications to take place in a matching

in this network. Recall however that we have shown that the matching is the optimal case

for our protocol; fortunately random pair selection has similar performance as well.

There are a number of general purpose systems for aggregation that offer a database

abstraction (supporting queries about the state of the system) and that are based on struc-

tured (typically hierarchical) topologies. Perhaps the best-known example of this ap-

proach is Astrolabe [87], and more recently, SDIMS [97]. In these systems a hierarchical

architecture is deployed which reduces the cost of finding the aggregates and enables the

execution of complex database queries. However, maintenance of the hierarchical topol-

ogy introduces additional overhead, which can be significant if the environment is very

dynamic. Our gossip-based aggregation protocol is substantially different. Although the

class of aggregates that it can compute is fairly general, and dynamic queries can also

be implemented, it is not a general purpose system: it is extremely simple, lightweight,

and targeted for unstructured, highly dynamic environments. Furthermore, our protocol

is proactive: the updated results of aggregation are known to all nodes continuously.

The protocol presented in [91] suggests the so called Grid Box hierarchies to pro-

cess queries in a structured fashion, which (compared to our protocol) involves increased

message sizes and more complicated (so more vulnerable) execution which involves a

logarithmic number of phases to calculate a single value. On the other hand, the overall

approach is similar in the sense that all nodes are equivalent (run the same algorithm) and

they all learn the end result.
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Kempe et al. [34] propose an aggregation protocol similar to ours: it is based on gos-

siping and is tailored to work on random topologies. The main difference with the present

work is that they consider push-only gossiping mechanisms, which results in a slightly

more complicated (though still very simple) protocol. The complication comes from the

fact that in a push-only approach some nodes attract more “weight” due to their more

central position, so a normalization factor needs to be kept track of as well. Besides, other

difficulties arise in practical settings if the directed graph used to push messages is not

strongly connected. In our case the effective communication topology is undirected so we

need only weak connectivity to allow the protocol to work. Furthermore, their discussion

is limited to theoretical analysis, while we consider the practical details needed for a real

implementation and evaluate their performance in unreliable and dynamic environments

through simulations.

Related work targeted specifically to network size estimation should also be men-

tioned. A typical approach is to sample some property of the system which is random but

depends on network size and so can be used to apply maximum likelihood estimation or

a similar technique. This approach was followed in [98] in the context of multicasting.

Another, probabilistic and localized technique is described in [99] where a logical ring

is maintained and all nodes estimate network size locally based on the estimates of their

neighbors. Unlike these approaches, our protocol provides the exact size in the absence

of failures (assuming also that size is an integer which limits the necessary numeric pre-

cision) with very low cost and the approximation continues to be very accurate in highly

unreliable and dynamic environments.

In principle, aggregation (even in the presence of malicious failures) could be achieved

as follows: nodes run a protocol solving the agreement problem [100] (or the weaker

approximate agreement problem [101, 102]) with their local values as the input. This

suggests that the problems of aggregation and agreement are related. However, agreement

protocols are designed for relatively small scale systems where the main problem is to deal

with Byzantine failure. Agreement protocols are typically round based, requiring each

node to communicate with every other node in a given interval of time (round). While the

problem itself is similar, this approach is clearly not practical in the highly dynamic and

extremely large scale settings we have in mind.

Finally, aggregation is an important problem in wireless and ad hoc networks as well.

For instance, [103] represents a reactive approach where queries are propagated through

the system and the answer propagates back to the source node (see the distinction between

reactive and proactive approaches in the Introduction). The approach introduced in [104]

is similar to ours. It is assumed that the network is a one-hop network (so all nodes can

directly communicate with any other node), and a protocol is described that can manage

the matching process that implements neighbor selection in this environment.

3.10 Conclusions

We have presented a full-fledged proactive aggregation protocol and have demonstrated

several desirable properties including low cost, rapid convergence, robustness and adap-

tivity to network dynamics through theoretical an experimental analysis.

We proved that in the case of average calculation, the variance of the approximation

of the average decreases exponentially fast, independently of network size. This result

suggests both efficiency and scalability. We demonstrated that the method can be applied

to calculate a number of aggregates beside the average. These include the maximum and
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minimum, geometric and harmonic means, network size, sum and product. We proved

theoretically that the protocol is not sensitive to node crashes, which confirms our ap-

proach of not introducing a leave protocol, but instead handling leaves as crashes. Link

failures were also shown to only slightly slow down convergence.

The protocol was simulated on top of several different topologies, including random

graphs, the complete graph, small-world networks like the Watts-Strogatz and Barabási-

Albert topologies, and a dynamic adaptive unstructured network: NEWSCAST. It was

demonstrated that the protocol is efficient on all of these topologies that have a small

diameter.

We tested the robustness of the protocol in several failure scenarios. We have seen that

very accurate estimates for the aggregate values can be obtained even if 75% of the nodes

crash during the running of the protocol. Furthermore, it was confirmed empirically that

the protocol is unaffected by link failures, which result only in a proportional slowdown

but no loss in accuracy. Effects of single messages being lost are more severe but for

reasonable levels of message loss, the protocol continues to provide highly-accurate ag-

gregate values. Robustness to message loss can be greatly improved by the inexpensive

and simple extension of running multiple instances of the protocol concurrently and calcu-

lating the final estimate based on the results of the concurrent instances. For node crashes

and link failures, our experimental results are supported by theoretical analysis. Finally,

the empirical analysis of the protocol was completed with emulations on PlanetLab that

confirmed our theoretical and simulation results.
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Chapter 4

Distributed Power Iteration

This chapter serves as our first example of a modular application of gossip components

that work together to solve a relatively complex problem. As we will see, in this applica-

tion the peer sampling service and gossip based averaging (described in Chapters 2 and

3, respectively) will both be used along with an asynchronous iteration algorithm.

The problem we tackle is determining the dominant eigenvector of matrices defined by

weighted links in overlay networks. These eigenvectors play an important role in many

peer-to-peer applications. Examples include trust management, importance ranking to

support search, and virtual coordinate systems to facilitate managing network proximity.

Robust and efficient asynchronous distributed algorithms are known only for the case

when the dominant eigenvalue is exactly one. We present a fully distributed algorithm

for a more general case: non-negative square matrices that have an arbitrary dominant

eigenvalue.

The basic idea is that we apply a gossip-based aggregation protocol coupled with

an asynchronous iteration algorithm, where the gossip component controls the iteration

component. The norm of the resulting vector is an unknown finite constant by default;

however, it can optionally be set to any desired constant using a third gossip control com-

ponent. Through extensive simulation results on artificially generated overlay networks

and real web traces we demonstrate the correctness, the performance and the fault toler-

ance of the protocol.

4.1 Introduction

The calculation of the dominant eigenvector of a matrix has long been a fundamental tool

in almost all areas of science. In recent years, eigenvector calculation has found new

and important applications in fully distributed environments such as peer-to-peer (P2P)

overlay networks.

For example, the PageRank algorithm [105] calculates the importance ranking for

hyperlinked web pages. The calculated ranks are given by the dominant eigenvector of

a matrix that can be derived from the adjacency matrix of the graph defined by the hy-

perlinks. Fully distributed algorithms have already been proposed to implement PageR-

ank [106–108]. As another example, trust assignment is a key problem in P2P networks.

In [109] a method was proposed, that assigns a global trust value to each peer, through

calculating the dominant eigenvector of the matrix containing local (pairwise) trust val-

ues. Finally, the eigenvectors that belong to the largest few absolute eigenvalues also play

a role in esthetic low dimensional graph layout [110]. This application is relevant in vir-

89



90 CHAPTER 4. DISTRIBUTED POWER ITERATION

tual coordinate assignment that allows to map the actual delays among all pairs of nodes

onto the distance in the n-dimensional Euclidian space [111].

Motivated by these applications, and firmly believing that new ones will keep emerg-

ing, we identify fully distributed eigenvector calculation as an important P2P service that

should be studied in its own right.

The environments we target impose special requirements. We assume, that there is

a large number of nodes, the connections are volatile and unreliable and the eigenvector

needs to be continuously updated and maintained in a decentralized way. Communication

is implemented through message passing, where messages can be dropped or delayed.

However, nodes have access to a local clock that measures the passage of real time with

a reasonable accuracy. We do not assume that the local clocks at different nodes are

synchronized.

In this model, we propose a protocol that involves three components. The first is

an instantiation of the asynchronous iteration model described in [112]. This algorithm

requires that the dominant eigenvalue is exactly one. We extend this protocol with a

gossip-based control component that allows the iteration algorithm to converge even if

the dominant eigenvalue is less than or greater than one. A third gossip component can be

applied to explicitly control the exact value of the vector norm (which is an unspecified

finite value without this third component).

These extensions make the asynchronous iteration robust to dynamic change and er-

rors. Traditional methods are very sensitive to the dominant eigenvalue being exactly one:

the slightest deviation results in misbehavior on the long run. Besides, the protocol is able

to implement algorithms that assume a dominant eigenvalue different from one. A recent

promising example is a ranking method using unnormalized web-graphs [113].

We demonstrate the correctness, the performance and the fault tolerance of the pro-

tocol through extensive simulation results on artificially generated overlay networks and

real web traces.

4.2 Chaotic Asynchronous Power Iteration

Given a square matrix A, vector x is an eigenvector of A with eigenvalue λ, if Ax = λx.

Vector x is a dominant eigenvector if there are no other eigenvectors with an eigenvalue

larger than |λ| in absolute value. In this case λ is a dominant eigenvalue and |λ| is the

spectral radius of A.

We concentrate of the abstract problem of calculating the dominant eigenvector of

a weighted neighborhood matrix of some large network, in a fully distributed way. By

“fully distributed” we mean the worst case, when the elements of the vector are held by

individual network nodes, one vector element per one node. The matrix A is defined by

physical or overlay links between the network nodes, more precisely, the weights assigned

to these links: let matrix element Aij be the weight of the link from node j to node i. If

there is no link from j to i then Aij = 0.

In [112], Lubachevsky and Mitra present a chaotic asynchronous family of message

passing algorithms to calculate the dominant eigenvector of a non-negative irreducible

matrix, that has a spectral radius of one. Algorithm 11 shows an instantiation of this

framework, that we will apply here.

In the algorithm, the values xi represent the elements of the vector that converges to

the dominant eigenvector. The values bki are buffered incoming weighted values from

incoming neighbors in the graph. These values are not necessarily up-to-date, but, as
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Algorithm 11 Asynchronous iteration executed at node i.

1: loop

2: wait(∆)
3: for each j ∈ out-neighborsi do

4: send weight Ajixi to j

5: bi ←
∑

k∈in-neighbors
i

bki
6: xi ← bi

7: procedure ONWEIGHT(m)

8: k ← m.sender

9: bki ← m.x

shown in [112], the only assumption about message failure is that there is a finite upper

bound on the age of these values. The age of value bki is defined by the time that elapsed

since k sent the last update successfully received by i. This bound can be very large, so

delays and message drop are tolerated extremely well. In addition, the values bki have to

be initialized to be positive.

In dynamic scenarios, when nodes or network links are added or removed, the algo-

rithm is still functional. Temporary node failures, churn, and link failures are all regarded

as message failures, and are therefore covered by the assumption of the finite upper bound

on update delay. Permanent changes can be dealt with as well: after the change the vector

will start converging to the new eigenvector, provided simple measures are taken to make

sure nodes remove dead links and take new ones into consideration.

4.3 Adding Normalization

Let λ1 be a dominant eigenvalue ofA. We can assume that λ1 ≥ 0 sinceAwas assumed to

be non-negative. The asynchronous method described above is known to work correctly

if λ1 = 1, but if λ1 > 1 or λ1 < 1, then the vector elements will grow indefinitely or tend

to zero, respectively. This motivates us to propose a control component that continuously

approximates the average growth rate of the vector elements, and normalizes each up-

dated component with this value. Note that after we achieve convergence, the growth rate

of every single vector element becomes λ1. This suggests that approximating the global

average using local, limited information is a viable plan.

We adopt the gossip protocol described in Chapter 3 to approximate the average

growth rate. More precisely, we will use this algorithm to approximate the geometric

mean of the local growth rates b
(m+1)
i /x

(m)
i over all nodes i, where b

(m+1)
i is the value cal-

culated in line 5 in Algorithm 11 and x
(m)
i is the value of xi before executing line 6. The

geometric mean is a more natural choice since we average multiplicative factors (growth

rates).

The averaging protocol in Algorithm 9 is run by all nodes in parallel with the dis-

tributed power iteration. As of notation, let the gossip period of the averaging protocol

be ∆r and let ri be the current approximation of the average at node i. As a result of the

protocol, at all nodes these approximations quickly converge to the average of the initial

values of the local approximations. The protocol relies on a peer sampling service, that

returns a random node from the system. We use NEWSCAST to implement this service, a

detailed description can be found in Section 2.2.4.

To calculate the geometric mean, each node i, when updating xi, overwrites the local

approximation of the growth rate by the logarithm of the locally observed growth rate

of the vector element held by the node. That is, node i sets ri = log(b
(m+1)
i /x

(m)
i ). The
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approximation of the growth rate is therefore eri(t) at node i at time t. This value is used to

normalize bi, that is, we replace line 6 by xi = bi/e
ri(t) in the active thread of the iteration

algorithm.

A cycle length ∆r < ∆ is chosen so that a sufficiently accurate average is calculated,

in spite of the continuous updates of ri external to the averaging protocol. According to

preliminary experiments, setting ∆r = ∆/5 is already a safe choice on all the problems

we examined. This is because, based on the results from Chapter 3, the approximation

error decreases exponentially fast, besides, the growth rate is similar at all vector elements,

as mentioned before.

4.4 Controlling the Vector Norm

The iteration component combined with gossip-based normalization is designed to achieve

convergence, however, the norm of the converged vector is not known in advance. In some

applications this might not be sufficient, since interpreting a single vector element be-

comes impossible, only relative values carry information. Besides, in scenarios when the

matrix A constantly and frequently changes, the vector norm can grow without bounds

or can tend to zero without explicitly controlling the vector norm. Finally, knowing a

suitable vector norm makes it possible to implement some algorithms that require global

knowledge. We will describe the random surfer operator of the PageRank algorithm as an

example.

To address these issues, we apply a second gossip component for calculating the mea-

sure that we want to keep under control: for example, the maximum or the average of

the absolute value of the vector elements. The calculation of these measures is accom-

plished by another instance of Algorithm 9, instantiated to calculate both the average and

the maximum of the vector elements xi (see Section 3.5.1).

Let the period of this component be ∆n. The initial values in the normalization gossip

component are updated at the same time when the growth rate gossip component updates

its own initial values, as described in the previous section. It must be noted that in the

case of norm calculation, ∆n = ∆/30 appears to be necessary according to preliminary

experiments, since, unlike growth rates, the vector elements themselves are not guaranteed

to be similar, so we need to achieve very good convergence during a single period of the

iteration algorithm.

Let us now present two examples for the application of the calculated average and

maximum.

4.4.1 Keeping the Vector Norm Constant

Let us now assume that ni(t) is the approximation of either the maximum or the average

of the vector at node i. To push this value towards one, we propose the following heuristic

control factor to modify the normalization factor to introduce a bias towards the vector of

which the average or maximum, respectively, is one. Intuitively, if ni(t) is too large, we

decrease the local value a little more, and if it is too low, we increase a little more. More

formally, we calculate a factor c as

c = eri(t) ·
(

0.2

1 + 1/ni(t)
+ 0.9

)

(4.1)
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and subsequently replace line 6 with xi = bi/c. The factor c in (4.1) is a sigmoid func-

tion over the logarithm of ni(t), transformed to have range [0.9, 1.1]. This means that

the growth rate approximation is never altered by more than 10% no matter how far the

average is from one.

4.4.2 The Random Surfer Operator of PageRank

As a relatively more complex example of the possibilities this framework offers, we

present the implementation of the random surfer operator used in the PageRank algo-

rithm [105]. This operator will in turn allow us to implement PageRank as well.

The PageRank algorithm is concerned with the normalized adjacency matrix of a di-

rected graph (e.g., the WWW link graph). Apart from this directed graph, the PageRank

algorithm uses a “random surfer” operator R as well, defined as Rij = 1/N , for all

i, j = 1, . . . , N , where N is the number of nodes. This corresponds to the definition of R
as being a uniform random walk on the fully connected graph (hence the name “random

surfer”). A very attractive feature of the random surfer operator is that it sends the same

weight to every node. Hence there is no need to actually implement the all-to-all links, ei-

ther in a centralized or in a distributed calculation. The net effect of R is to add a constant

weight to each node at each propagation step. In other words, R times any vector gives

a vector which is uniform, and whose value may be known if the average of the vector

is known [105]. Hence, we can effectively replace matrix A with the PageRank operator

(1−ǫ)A+ǫR where the second term involvingR may be known as long as the average of

x is known. Note that ǫ is a parameter of the PageRank algorithm, and defines the weight

of the random surfer operator.

As described above, we can in fact obtain an approximation of the vector average.

Then we can implement the PageRank R operator—a global operator—using purely local

operations: node i now has the update rule

xi = (1− ǫ) bi
eri(t)

+ ǫni(t), (4.2)

where ni(t) is the locally known converged approximation of the average at time t. Fi-

nally, note that controlling the average of the vector and applying the random surfer oper-

ator can be done simultaneously as well, using the update rule

xi = (1− ǫ)bi
c
+ ǫni(t), (4.3)

where c is defined as in (4.1).

4.5 Experimental Results

We performed extensive event-based simulation experiments using the PEERSIM simula-

tor [66]. The goal of the experiments was to demonstrate that our method is both efficient

and robust to failure.

4.5.1 Notes on the Implementation

In the case of one of the components—the gossip-based protocol that continuously cal-

culates the average of the current vector approximation, described in Section 4.4—we

applied two modifications to increase robustness.
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First, instead of Algorithm 9, we applied push averaging presented in [34] and in Sec-

tion 1.3.1. This variant is very similar; the main difference is that it is slightly modified

so that it can apply the “push only” communication model, while the original version is

based on the “push-pull” model. In the push model, the nodes only send messages, but

need not answer them. In the push-pull model all messages must be answered immedi-

ately. We apply the push variant because it is more robust to message delays: while in

the push-pull version the state of the nodes are inconsistent for a short time (between the

sending and reception of the answer), this problem does not exist in the push version.

The second modification of this component is that we apply the epoch-based restart-

ing technique described in Chapter 3. This is necessary to prevent nodes from mixing

converged values with freshly initialized ones, since otherwise we could never achieve

convergence, since the local values are constantly re-initialized by the iteration compo-

nent.

4.5.2 Artificially Generated Matrices

For evaluating the protocol we applied a set of artificially generated matrices with con-

trolled properties. To model real applications mentioned in the Introduction, all matrices

are sparse and are derived from the adjacency matrix of a link graph. First let us define

the graphs that were used to define the matrices.

All graphs have 5000 nodes. The baseline case is a directed random graph, according

to the k-out model. In this model, k random out-links are added to each node. We

generated an instance of this model with k = 8.

The second graph is a scale free graph generated by the Barabási-Albert model [114].

Most importantly, the degree distribution of this graph follows a power law, that is ex-

tremely unbalanced with many low degree nodes and a few high degree nodes, and that

is known to describe many interesting emergent networks such as the WWW or social

relationships [114]. The parameter of the model was set to two. In this case the Barabási-

Albert model defines an undirected graph by starting with two disconnected nodes, and

subsequently adding nodes one by one, linking each new node to two existing nodes.

These two nodes are selected with a probability proportional to their degree (preferential

attachment). The average degree in the graph is thus four.

The third graph was generated starting with an undirected ring, and adding two ran-

dom out-links from all nodes (note that this procedure follows a modified version of the

Watts-Strogatz model [70]). The motivation behind using this graph is that, as we will

see, its adjacency matrix has a small eigenvalue gap, which results in a slow convergence

of the power iteration. This graph was chosen to test whether our method is sensitive to a

small eigenvalue gap.

The matrices were derived from the adjacency matrices of these graphs. We note

for completeness that the specific instances of the directed graphs we used (the random

k-out and the small gap graphs) were all strongly connected. Since our convention is

that the element Aij describes the weight for network link (j, i)—so that matrix vector

multiplication can be defined by sending messages along the outgoing (and not incoming)

links—the adjacency matrices were first transposed. The first set of matrices consists

of the transposed adjacency matrices. The second set contains the column normalized

versions of the matrices in the first set. The normalized versions are such that the weights

of the outgoing links sum up to one for all the nodes, therefore these matrices describe

random walks on the graphs.



4.5. EXPERIMENTAL RESULTS 95

random k-out scale free small gap

normalized unnorm. normalized unnorm. normalized unnorm.

λ1 1.0000 8.0000 1.0000 1.3981 1.0000 4.1938

|λ2| 0.3573 2.8345 0.8373 1.1737 0.9754 3.9976

Table 4.1: The first and second largest magnitude eigenvalues. Note that the largest mag-

nitude eigenvalue is guaranteed to be real and positive.

Table 4.1 shows the first two largest magnitude eigenvalues for all the problem in-

stances. Note that the eigenvalue gap (the difference between the first and second largest

eigenvalues) determines the convergence speed of the power iteration [115], and thus it is

a good indicator of the speed of our method as well. For a small gap, convergence is slow.

With a zero gap, the power iteration does not converge at all. Since all matrix elements

are real and non-negative, the largest eigenvalue is real and non-negative as well.

4.5.3 Results

Each experiment was carried out as follows. First, each node i was initialized to have

xi = 1 and bi = 1. As we explained previously, the starting time of individual nodes

is irrelevant from the point of view of convergence results, as long as all nodes start

eventually. In the simulations we started each node at a random time within the first ∆
time units counted from the first snapshot time t0.

Two versions of the method were run for each problem. In the first, we do not apply

the vector normalization gossip component described in Section 4.4. In this case we

expect the vector norm to converge to a previously unknown value, given that we do not

change the underlying matrices in these experiments. In the second version we do apply

vector normalization. In particular, we apply the maximum of the vector for this purpose,

and therefore we expect the maximum to converge to one.

The evaluation metrics were as follows. We first computed the correct dominant

eigenvector (x∗) using a centralized algorithm. Following general practice in matrix com-

putations, we measured the angle of the actual approximation and the correct vector to

characterize convergence. That is, we computed the cosine of the angle

cosα(t) =
‖x∗T

x(t)‖2
‖x∗‖2‖x(t)‖2

, (4.4)

and used the angle α(t) as a metric, which tends to zero as t increases. As a second metric,

we measured the maximum of the vector elements to verify normalization.

The failure scenarios involved varying message drop probabilities, and varying mes-

sage delays. Message drop was modeled by dropping all messages with a given proba-

bility, and message delay and delay jitter was modeled by drawing a delay value from a

specified interval uniformly, for all messages. Obviously, these settings were applied for

all messages sent by any of the components of the protocol equally.

Figure 4.1 shows the results of the experiments. First of all, even the more moderate

failure scenario can be considered pessimistic, not to mention the more severe scenario.

This is because in the application scenarios we envision, the interval ∆ can be rather

long, in the range of ten to thirty seconds, so a delay of 10% of ∆ is already large. Most



96 CHAPTER 4. DISTRIBUTED POWER ITERATION

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  50  100  150  200  250  300  350

a
n

g
le

 (
ra

d
ia

n
)

cycles

random k-out, with vector normalization

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  50  100  150  200  250  300  350

a
n

g
le

 (
ra

d
ia

n
)

cycles

scale free, with vector normalization

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  200  400  600  800  1000

a
n

g
le

 (
ra

d
ia

n
)

cycles

small gap, with vector normalization

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 0  50  100  150  200  250  300  350

m
a

x
im

a
l 
v
e

c
to

r 
v
a

lu
e

cycles

random k-out, with vector normalization

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0  50  100  150  200  250  300  350

m
a

x
im

a
l 
v
e

c
to

r 
v
a

lu
e

cycles

scale free, with vector normalization

10
-1

10
0

10
1

10
2

10
3

 0  200  400  600  800  1000

m
a

x
im

a
l 
v
e

c
to

r 
v
a

lu
e

cycles

small gap, with vector normalization

normalized graph, no failure
normalized graph, scenario 1
normalized graph, scenario 2

no failure
scenario 1
scenario 2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  50  100  150  200  250  300  350

a
n

g
le

 (
ra

d
ia

n
)

cycles

random k-out, without vector normalization

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  50  100  150  200  250  300  350

a
n

g
le

 (
ra

d
ia

n
)

cycles

scale free, without vector normalization

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  200  400  600  800  1000

a
n

g
le

 (
ra

d
ia

n
)

cycles

small gap, without vector normalization

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0  50  100  150  200  250  300  350

m
a

x
im

a
l 
v
e

c
to

r 
v
a

lu
e

cycles

random k-out, without vector normalization

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0  50  100  150  200  250  300  350

m
a

x
im

a
l 
v
e

c
to

r 
v
a

lu
e

cycles

scale free, without vector normalization

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 0  200  400  600  800  1000

m
a

x
im

a
l 
v
e

c
to

r 
v
a

lu
e

cycles

small gap, without vector normalization

Figure 4.1: Simulation results. Scenario 1 involves Pdrop = 0.1, and a random message

delay drawn from [0,∆/10] uniformly. In scenario 2, Pdrop = 0.3 and the message delay

is drawn from [∆/10,∆/2].
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Figure 4.2: Simulation results with the PageRank algorithm. Scenario 1 involves Pdrop =
0.1, and a random message delay drawn from [0,∆/10] uniformly. In scenario 3, Pdrop =
0 and the message delay is the same as in scenario 1.

importantly, from the point of view of the averaging and maximum finding protocols, that

have a much shorter cycle length of ∆n = ∆/30, these delay values are extreme.

From the experiments we can conclude that when the vector norm is not controlled

explicitly, then convergence is fast, comparable to that of the centralized power iteration.

Our preliminary experiments (not shown) suggest that message delay has virtually no

effect on the convergence results, when Pdrop = 0. Higher drop rates slow down conver-

gence but do not change its characteristics significantly.

When we do apply vector normalization, convergence slows down somewhat due to

the interference of vector normalization and asynchronous iteration. In the extreme failure

scenario we don’t achieve full convergence. The reason is that the extremely high delay

and message drop rate prevents the propagation of the current maximum of the vector to

all nodes during the interval ∆, and so different nodes might normalize with a different

value. As a side effect, the maximum does not converge to one, and there is a constant

noise factor in the approximation of the eigenvector. However, in the less severe, but still

pessimistic scenario we do achieve convergence.

4.5.4 PageRank on WWW Crawl Data

As a more realistic case study, we tested our method on the same dataset used in [116],

available from the authors. It was generated by a crawler, starting from one page within

the domain of the University of Notre Dame. This sample has 325729 nodes. On this

dataset we executed the PageRank algorithm, as described in Section 4.4. The weight of

the random surfer operator was ǫ = 0.2. This way, for the complete linear operator of the

PageRank algorithm, we have λ1 = 0.84648, λ2 = 0.8.

The results of the method are shown in Figure 4.2 in various failure scenarios. We can

observe that the protocol is now more sensitive to failure than in the case of the previous

experiments, although the achieved accuracy is still satisfactory (note the logarithmic

scale of the plots). The reason is that to get correct rank values the vector average must be

used for controlling the norm of the vector, that is, it is guaranteed that the average of the

vector stays one. The average is used to implement the random surfer operator as well.

However, the calculation of the average is more sensitive to failure than the calculation

of the maximum. This way, the approximation of the actual average of the vector has a

small noise factor, that is inherited by the approximation of the ranks.
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We can also note that the protocol scales well: the network examined here is two

orders of magnitude larger than the previously examined networks, while convergence

speed is still similar.

4.6 Related Work

Due to its importance, the distributed calculation of the dominant eigenvalue of large ma-

trices has an extensive literature. In the area of parallel and cluster computing, the focus

has largely been the optimization of existing, often iterative, methods on parallel com-

puters and clusters (for a summary, see [115]). Such optimizations include partitioning;

for example, different parts of the vector can be freely assigned to different processors

in order to minimize message exchange and to maximize speedup. Besides, due to the

reliable computing platform, synchronization can be efficiently implemented. This model

is radically different from ours: in our case the assignment is fixed and given a priory,

and the main goal is to achieve robustness to high rates of message delivery failures.

Asynchronous protocols have also been proposed for implementing iterative methods,

and important convergence results are available as well (see [117] for a summary). These

protocols are extremely fault tolerant and also efficient, but so far no algorithms are known

that can deal with the case when the dominant eigenvalue is different from one. This

introduces a certain sensitivity to dynamic environments even if λ1 ≈ 1, besides, many

interesting applications where λ1 6= 1 cannot be tackled, for example [113].

Finally, in the context of P2P systems the main focus is on distributed PageRank

implementations, where in all cases λ1 = 1 is assumed, for example, [106–108]. The

EigenTrust protocol in [109] also applies a similar implementation, but the authors as-

sume all values are updated in each round, presumably unaware of the advantages of the

long existing asynchronous version of the protocol, and thereby offering a rather fragile

algorithm.

4.7 Conclusions

In this chapter we have addressed the problem of designing a fully distributed and ro-

bust algorithm for finding the dominant eigenvector of large and sparse matrices, that are

represented as weights of links between nodes of a network. Our contribution can be sum-

marized as follows. First of all, our algorithm does not require the dominant eigenvalue to

be one. This is an important feature even if the problem involves a dominant eigenvalue of

one (like PageRank does). In PageRank, sophisticated techniques for “fixing” the graph

are required to make sure the dominant eigenvalue is one, which are not needed in our

case, as we demonstrated. Besides, the protocol opens the door for applications where the

dominant eigenvalue is known to be different from one [113].

Second, the norm of the approximation of the dominant eigenvector can be controlled

as well. In other words, in addition to guaranteeing that the norm of the vector converges

to a finite value, we can define this value explicitly using an additional gossip-component.

This also means that the algorithm can be run indefinitely in a continuously changing

environment.

Finally, we demonstrated the robustness of the algorithm through event-based simula-

tion experiments, both on artificially generated graphs and on web-crawl data.



Chapter 5

Slicing Overlay Networks

In this chapter we demonstrate yet another application of the gossip scheme: we will

show how to apply the gossip framework to implement a form of resource sharing via

maintaining partitions in the network in the face of node churn and failures. An interesting

aspect of this application is that—although it is seemingly unrelated to averaging at first

sight—its convergence can be described with the same tools we developed in Chapter 3

to characterize the convergence of averaging.

The motivation of slicing is that recently there has been an increasing interest to har-

ness the potential of P2P technology to design and build rich environments where services

are provided and multiple applications can be supported in a flexible and dynamic manner.

In such a context, resource assignment to services and applications is crucial. Current ap-

proaches require significant “manual-mode” operations and/or rely on centralized servers

to maintain resource availability. Such approaches are neither scalable nor robust enough.

Our contribution towards the solution of this problem is proposing and evaluating a

gossip-based protocol to automatically partition the available nodes into “slices”, also

taking into account specific attributes of the nodes. These slices can be assigned to run

services or applications in a fully self-organizing but controlled manner. The main ad-

vantages of the proposed protocol are extreme scalability and robustness. We present

approximative theoretical models and extensive empirical analysis of the proposed proto-

col.

5.1 Introduction

Following the scale shift in distributed systems and their increasing dynamism, peer-to-

peer overlay networks have imposed themselves as the key to build and maintain large-

scale dynamic distributed systems. One important problem in the field of overlay net-

works is the design of infrastructures on which several applications might run together

and share resources. Examples of such applications are Desktop-grid like computing

platforms [118], and testbed platforms such as PlanetLab [95].

One key sub-problem is such environments is resource assignment to services and

applications, and the definition of the resource itself. For example, in PlanetLab, the core

concept is a slice, which refers to a virtualized network running over multiple physical

nodes, and where each node can participate in multiple slices. Such slices are assigned

to specific applications, sharing the platform. However, existing approaches are mostly

manual and/or centralized. In contrast to this, we are interested in massively large scale

and extremely dynamic networks, in which centralized slice assignment is not an option

99
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and where slices need not only to be assigned, but also maintained, to face constant churn.

In this chapter, as a step towards a full self-organizing architecture, we focus on a well-

defined problem: ordered slicing. Our objective is to create and maintain a partitioning

of the network (we call the partitions slices in the following). This implies that slices are

defined as subsets of the network, that is, each node belongs to exactly one slice at any

given point in time. However, several such partitionings can be maintained in parallel.

The ordered nature of the slicing means that specific attributes can be taken into account

to partition the network: the partitioning is done along a fixed attribute of the nodes. For

example, a service might require a slice composed of the top 20% of the nodes providing

the largest bandwidth. Besides, we need to provide this top 20% constantly, even if the

nodes in the top 20% constantly change due to churn or changing node properties.

Many metrics may be used to sort the nodes such as available resources (memory,

bandwidth, computing power) or some specific behavioral pattern such as up-time. Note

that slicing the network at random, and focusing only on the size of the slices is a special

case of our ordered slicing protocol. We also note that the slice sizes are expressed as a

percentage of the network, that is, if the network grows, slices grow accordingly.

The rest of the chapter is organized as follows. In Section 5.2 we provide the problem

statement and the system model. In Section 5.3 we describe our gossip-based slicing

protocol. An approximative theoretical model of our approach is presented in Section 5.4

and an extensive empirical analysis is presented in Section 5.5.

5.2 Problem Definition

5.2.1 System Model

We consider a network consisting of a large collection of nodes that are assigned unique

identifiers (typically IP addresses) and that communicate through message exchanges.

The network is highly dynamic; new nodes may join at any time, and existing nodes may

leave, either voluntarily or by crashing. In the following, we limit our discussion to node

crashes. Voluntary leaves are implemented as crashes: our protocols will not require a

dedicated leave procedure, nor any failure detection. Successful delivery of messages

happens without delay, however, messages may be dropped. Byzantine failures, with

nodes behaving arbitrarily, are excluded from the present discussion.

We assume that nodes are connected through an existing physical routed network, such

as the Internet, where every node can potentially communicate with every other node. To

actually communicate, a node has to know the identifiers of a set of other nodes (its

neighbors), for example, the IP address in the case of an IP network. This neighborhood

relation over the nodes defines the topology of the overlay network. Given the large scale

and the dynamism of our envisioned system, neighborhoods are typically limited to small

subsets of the entire network. The neighbors of a node (and, thus, the overlay topology)

may change dynamically over time.

5.2.2 The Ordered Slicing Problem

Intuitively, the ordered slicing problem asks for a partitioning of the nodes in the overlay

network into groups (slices) in such a way, that the groups are ordered with respect to

some given metric, such as the availability of a resource, or some other relevant property.

For example, we might be interested in creating and maintaining a slice composed of the
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top 10% nodes according to available bandwidth, expected up-time, and so on. Note that

creating a slice of a given size, populated with random nodes, is a special case where the

metric is not taken into account, or, equivalently, assuming all nodes have the same value

of the metric. Slice sizes are expressed as a percentage of the network size.

To define this problem, let N denote the network size and let each node i have an

attribute, xi. This value will typically measure the availability of some resource at node

i. We assume that there exists a total ordering over the domain of the attributes values, so

that the values in the network (x1, . . . , xN ) can be ordered. Let us also assume that there

is a slice specification that defines an ordered partitioning of the nodes. That is, the slice

specification is a list of positive real numbers s1, . . . , sk such that
∑

si = 1, that define

slices S1, . . . , Sk, where the size of Si is siN and for all i < j, a ∈ Si and b ∈ Sj we have

xa ≤ xb. We also assume that the slice specification is known at each node locally.

The problem is to automatically assign each node to slices in such a way that satisfies

the slice specification, using only local message exchange with currently known neigh-

bors. That is, we want each node to find out, which slice it belongs to, and, as a function

of continuous changes in the network, maintain this assignment up-to-date.

The difficulty lies in the fact that the correct solution needs global information in that

each node needs to calculate the number of nodes that preceed them in the total order,

and break ties whenever the number of preceeding nodes is not well defined (for example,

if there are many identical attribute values in the network). Furthermore, the dynamism

and failures in the system add extra difficulty, as this assignment needs to be continuously

maintained in the face of a changing set of nodes.

As opposed to most traditional approaches that require only eventual correctness pro-

vided there is no failure or change in the system for a sufficiently long time, we focus

on a best effort approximation which is as close to the optimal solution as possible. In

other words, instead of focusing on the worst case, we focus on optimizing the perfor-

mance under normal dynamic operation. Nevertheless our solution is actually eventually

consistent.

Note that the solution we present here can easily be extended to more general cases,

such as when more independent attributes are involved, or when overlapping groups need

to be maintained, and so on. However, the problem definition above allows us to keep the

focus on the analysis of the key novel contributions introduced here.

5.3 A Gossip-based Approach

As mentioned previously, to let nodes decide locally whether they belong to a certain

slice or not (expressed at a percentage of the whole size which is not known either),

the key issue is to enable a node to approximate what percentage of nodes preceed it in

the ordering according to the attribute value. There are at least two natural choices to

implement this functionality. The first is through the application of protocols to calculate

the ranking of the nodes in the ordering [13,34]. However, known protocols are expensive

and they are not suitable to maintain ranking information cheaply in the face of large scale

and dynamism. The second is to approximate the distribution of the attribute values and

use this information to map any attribute value to an approximate ranking [119,120]. This

approach however is not robust to skewed distributions and does not provide a sufficiently

accurate information for the present purposes.

To deal with dynamism and large scale, we follow a third approach, which is based on

the sorting of randomly generated numbers. The basic idea is that each node generates one
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Algorithm 12 Slicing

1: loop

2: wait(∆)
3: p← selectSlicePeer()

4: if p 6= null then

5: sendPush(p,(x, r))

6: procedure ONPUSH(m)

7: sendPull(m.sender,(x, r))
8: onPull(m)

9:

10: procedure ONPULL(m)

11: if (x−m.x)(r−m.r) < 0 then

12: r ← m.r

uniform random number from a fixed interval, and subsequently the set of these random

numbers are sorted “along the attribute values” with the help of the protocol we describe

below. Sorting along the attribute values means that—via swapping the random numbers

among a suitable sequence of pairs of nodes—we would like to achieve that the order of

the random numbers reflects the order of the attribute values over the nodes.

After sorting, the node is able to make a judgment about its position in the sorting of

the attribute values based on the random number it currently holds, because the distribu-

tion of the random numbers is known (that is, uniform from a fixed interval) and because

the order of the random numbers reflect the order of the attribute values. For example, if

the random numbers are drawn from [0, 1], then a node decides that it is in the first half of

the sorting if, after sorting along the attribute values, it holds a value less than 0.5. Apart

from being simple, this approach supports dynamism well, as all joining nodes can locally

initialize their random number and subsequently participate in the sorting. Furthermore,

the approach works independently of the distribution of the attribute values: they can even

be identical at all nodes, in which case only the sizes of the slices are determined, but the

nodes will be assigned to slices at random.

However, the sorting problem might seem equally difficult to our original problem.

Our main contribution—apart from proposing the application of sorting—is a gossip-

based sorting protocol that is simple to implement, incurs minimal costs and is efficient

enough for the purposes of ordered slicing. The basic idea relies on a simple swapping of

the random numbers between nodes. For example, let nodes i and j have attribute values

xi = 10 and xj = 20, and random numbers ri = 0.8 and rj = 0.1. These nodes simply

swap their random numbers in order to make them reflect the ordering of the attribute

value. In order to make such pairs of nodes discover each other, we rely on a gossip-

based algorithm.

Our sorting protocol is based on the NEWSCAST protocol (see Chapter 2.2.4). The

basic idea behind the sorting algorithm is that each node will passively look for candidate

peers to swap its random value with, in order to improve the sorting. These candidates

are discovered using the constantly changing set of neighbors provided by the NEWSCAST

protocol. The sorting protocol will be based on NEWSCAST not through the usual peer

sampling API (method SELECTPEER that returns a random peer) but it will have a more

intimate relationship with NEWSCAST. First, the node descriptors in the NEWSCAST view

will contain not only the node address and the timestamp, but also the values of x and r at

the node at the time of submitting the descriptor. Second, the slicing protocol will ask for

peers from the newscast view that are likely to be good candidates to swap random values

with.

The algorithm is shown in Algorithm 12. On peer i method SELECTSLICEPEER returns

a peer j from the NEWSCAST view such that (xi − xj)(ri− rj) < 0, which means that the

given peer is a potential candidate to swap random values with. It is not guaranteed that
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a suitable peer exists in the view. If there is no suitable peer then no push message is sent

and therefore no exchange is performed.

Note, that if (xi − xj)(ri − rj) ≥ 0 according to the current view, it is still possible

that in reality peer j has become a good candidate in the meantime, because the relative

order of two peers can potentially be reversed and the information in the descriptor might

be slightly outdated. Similarly, it is possible that—although node j seems to be a suitable

one—in the meantime its random value has changed and it is not actually suitable any-

more. In this latter case the push and pull messages are sent (in vain) but no exchange

happens.

5.4 Analogy with Gossip-based Averaging

In this section, we analyze the protocol mostly based on the insight that the protocol can

be considered an instance of gossip based averaging (see Chapter 3). For the present

section, we assume here that the attribute values do not change and that the set of nodes

does not change either. This also means that the set of random numbers ri held by the

nodes remains the same at any given point in time.

Let us define ρ(xi) to be the rank of xi in the sorting of the x values, and, similarly,

let ρ(ri) be the rank of ri in the sorting of the r values. Let

δi(t) = ρ(xi(t))− ρ(ri(t)). (5.1)

When δi(t) = 0, we know that ri(t) is the random value that belongs to node i. The state

we want to reach is the one in which δi = 0 for all i = 1, . . . , N , at which point the ri
values are sorted w.r.t. the xi values. Let us assume that all the values xi and ri are unique,

so their rank is well defined. This is purely to keep our discussion simple. Note that this

is the worst case: if some of the values are not unique, then the problem becomes easier;

for example, if all the values ri or xi are the same, then all permutations are sorted and

there is no problem to solve.

Our main observation is that the slicing protocol in Algorithm 12 can be considered

an averaging algorithm over the values δi. To see this, consider first that the sum of these

values remains zero after each exchange. That is, we have the mass conservation property:

N
∑

j=1

δi(t) =
N
∑

j=1

ρ(xi(t))− ρ(ri(t)) =
N
∑

j=1

ρ(xi(t))−
N
∑

j=1

ρ(ri(t)) = 0 (5.2)

Similarly to averaging, it is easy to verify that the maximal δ value will decrease every

time its node participates in a successful exchange. Similarly, the minimal value will

increase. Besides, it is evident that for each node, participating in a successful exchange

has a finite probability in each cycle. This means that the variance of the values decreases,

which proves convergence in probability. The following proposition will describe the

effect of an exchange on the participating δ values in more detail.

Proposition 5.4.1. Let node i and j perform a successful exchange at time t. After the

exchange, we have

E(δi(t + 1)) = E(δj(t + 1)) =
δi(t) + δj(t)

2
(5.3)
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Proof. Since the exchange was successful, we must have (xi(t)−xj(t))(ri(t)−ri(t)) < 0.

Actually, this also means that

(ρ(xi(t))− ρ(xj(t)))(ρ(ri(t))− ρ(ri(t))) < 0. (5.4)

Without loss of generality, let us assume throughout the proof that δi(t) < 0 and

|δi(t)| > |δj(t)| (the other logical cases are symmetrical to this). In this case, the possible

values of ρ(rj(t)) consistent with (5.4) are ρ(ri(t))−1, ρ(ri(t))−2, . . . , ρ(xi(t))−δj(t)+
1. Note that since we know δj(t), we know that ρ(xj(t)) = ρ(rj(t)) + δj(t). The (δi(t +
1), δj(t+1)) pairs that belong to these options are (δi(t)+1, δj(t)−1), (δi(t)+2, δj(t)−
2), . . . , (δj(t)− 1, δi(t) + 1).

Now, we know that 1 ≤ ρ(xi(t)) ≤ N + δi(t). For any fixed value of ρ(xi(t)) such

that 1 ≤ ρ(xi(t))− δj(t)+1 and ρ(ri(t))+ δj(t)−1 ≤ N , we know that all options listed

above are possible and have equal probability, so

E(δi(t+ 1) | ρ(xi(t)) = E(δj(t+ 1) | ρ(xi(t)) =
1

n

n
∑

k=1

δi(t) + k =
1

n

n(δi(t) + δj(t))

2
=
δi(t) + δj(t)

2
,

(5.5)

where n = δj(t)− δi(t)− 1.

We only sketch how to deal with the case when the value of ρ(xi(t)) is such that

1 > ρ(xi(t)) − δj(t) + 1 or ρ(ri(t)) + δj(t) − 1 > N . In this case, some of the options

are not possible. However, these impossible options are symmetric: if some settings for

node j are not possible because ρ(xi(t)) is too close to 1, then we have a symmetric value

of ρ(xi(t)) (too close to N) where the same number of options are not possible on the

opposite end of the list of options. Considering the symmetry of the series of options for

(δi(t+1), δj(t+1)), it is not hard to see that the the desired expectation holds also in this

regime.

This result makes slicing very similar to averaging, since the only difference is that in

the case of averaging both nodes will have exactly the average (xi(t) + xj(t))/2, whereas

here this is true only in expectation.

Like in Chapter 3, to characterize the convergence of the protocol we will focus on

the variance of the values that here we will call the disorder measure:

σ(t) =
1

N

N
∑

i=1

δi(t)
2, (5.6)

This measure is minimized when the sorting is perfect, when it takes the value of zero.

The value of this measure is shown in Figure 5.1. Note that the figure indicates that less

than 20 cycles are sufficient to reduce the average error to 1% of the network size, which

means that nodes are N/100 positions away from their correct position on average, inde-

pendently of network size. With c = 80, 40 cycles are enough to reach 0.1% precision.

From Chapter 3 Proposition 3.3.5 and Corollary 3.3.3 can be shown to hold in the

case of slicing as well using Proposition 5.4.1. Therefore we expect that the disorder is

reduced exponentially fast as a function of the number of successful exchanges (note that

in the case of averaging every peer can perform a successful exchange with every other

peer at any time, whereas here it becomes harder and harder to find suitable peers). As can

be seen in Figure 5.2, the qualitative prediction of exponential behavior is very accurate.
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Figure 5.1: Disorder as a function of cycles. Curves for a fixed c completely overlap when

normalized by N2.

Furthermore, slicing appears to approximate the theoretically minimal convergence

factor, that is, a∗ = 1/4 (using the notation from Proposition 3.3.5 and Corollary 3.3.3).

In the case of averaging, this minimal convergence factor could be reached using a series

of exchanges based on two independent perfect matchings in one cycle. In the case of

slicing, we speculate that any series of N/2 exchanges are closer to a perfect matching

than to a set of random pairs. This is because in each cycle the set of suitable peers for

any node is relatively small, and its size is proportional to δi(t), given that δi(t) at node i
decreases at roughly the same rate for each node i.

5.5 Experimental Analysis

We have performed extensive simulation experiments in order to study the probability of

finding a peer to swap with, as well as the behavior of the protocol in the presence of

message drop and node dynamism (churn). The experiments were performed using the

PEERSIM simulator [66]. All scenarios were run with three network sizes (N = 30000,

100000 and 300000) and three view size settings (c = 20, 40 and 80).

5.5.1 The Number of Successful Swaps

Since the nodes are not guaranteed to find suitable peers to swap values with, the expo-

nential convergence is valid only as a function of the number of successful swaps, and

not as a function of cycles. Here we experimentally evaluate the probability of finding a

suitable peer as a function of time.

Figure 5.3 shows our experimental results regarding the number of successful swaps

as a function of cycles. The number of swaps depends on the view size parameter c, but

in all cases it has a power-law tail that decreases approximately as 1/x. In the first cycles

however, the number of exchanges remain approximately constant. This is due to the

fact that the algorithm uses c > 1 candidates to eventually select a peer. If p(t) is the

probability that a random peer is a suitable peer, then in each selection step, the algorithm
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Figure 5.2: The exponential decrease of the disorder as a function of number of successful

swaps (normalized by the network size), for different values of parameter c (view size)

and network sizes. Lines that belong to the same network size fully overlap.

selects a suitable peer with probability 1 − (1− p(t))c. While p(t) is large (that is, while

t is small), this probability remains close to one, and as a result the disorder σ decreases

exponentially fast as a function of cycles (see Figure 5.1). However, when p(t) becomes

small (as δi(t) becomes small), convergence slows down. Most importantly, this result is

independent of network size which allows for a scalable and robust setting of parameters.

5.5.2 Message Drop

The protocol generates a large number of independent message exchanges (push and pull)

at all nodes. In the implementation, the messages are assumed to be sent using an unreli-

able channel, such as UDP, and there is no failure detection mechanism.

If the push message is dropped, the exchange is dropped as a whole. These cases sim-

ply slow down the convergence proportionally to the number of failures, without changing

its characteristics.

If the pull message is dropped then the random value originally held by the selected

peer is lost, since the selected peer first sets the value received in the push message. In

other words, one of the values gets duplicated and the other gets lost. This however has

no dramatic effect, as long as there are still a sufficient number of different values, since

the distribution of the set of all values is still uniform (since no bias is involved in the

message failures). Indeed, as shown in Figure 5.4, we can only observe a proportional

slowdown, under 10% uniform message drop, that can be considered a rather significant

drop rate. For other network sizes we obtain identical results. We can conclude that the

quality of ordering is highly robust to message drop failures.

However, diversity of the values is important, because the “resolution” of the system

(the number and size of the groups it can order) depends on this diversity. If there is no

churn, then there will be fewer and fewer swaps as the system converges to the ordered

state, as described in Section 5.4. Besides, when each value still represented has a small

number of copies, it becomes very unlikely that all copies of a specific value are com-

pletely removed. Due to these two properties, diversity practically stops decreasing very
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Figure 5.3: Swaps as a function of cycles. Curves completely overlap when normalized

by N .

soon. In addition, in the presence of extreme failure rates, we can add a simple technique

to further fight the lack of diversity: whenever a node sees another node in its view that

holds the same random value, it replaces its own value with a random one. This technique

in effect introduces a very low rate artificial churn, that is dealt with just like real churn

(see Section 5.5.3). We also note that if there is natural churn, then diversity is maintained

by the churn itself.

5.5.3 Churn

To examine the effect of churn, we define an artificial scenario in which a given propor-

tion of the nodes crash and are subsequently replaced by new nodes in each cycle. This

scenario is a worst case scenario because the new nodes are assumed to join the system

for the first time (their random value ri is independent of their attribute value xi) and the

crashed nodes are assumed never to join the system again. The view of joining nodes is

initialized with descriptors of randomly selected nodes.

Churn rate defines the number of nodes that are replaced by new nodes in each cycle.

We consider the churn rates 0.1% and 1%. Since churn is defined in terms of cycles, in

order to validate how realistic these settings are, we need to define the cycle length. With

the very conservative setting of 10 seconds, which results in a very low load at each node,

the trace described in [58] corresponds to 0.2% churn in each cycle. In this light, we

consider 1% a comfortable upper bound of realistic churn, given also that the cycle length

can easily be decreased as well to deal with even higher levels of churn.

The results of the experiments are shown in Figure 5.5. The ordering effort of the pro-

tocol and the continuously introduced disorder reaches an equilibrium after a few cycles,

after which the level of order remains stable. Even with a 1% churn rate in each cycle, the

protocol manages to keep the average distance from the correct position by approximately

an order of magnitude less than that in a random permutation. Note that in this scenario,

during the 50 cycles shown, almost half of the network gets replaced at least once. We

can further improve the performance of the protocol using techniques that take the age

(time spent in the network) into account. One technique is called age bias; when using
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this technique, a node, when selecting the neighbor to swap with, chooses the one among

the candidates which has the most similar age. This can be easily implemented without

extra communication steps, if the node descriptors in the view also contain node age. As

a result, only the younger nodes tend to be disordered, while they can still converge and

while the older nodes that have already converged remain protected. Indeed, as shown

in Figure 5.6, we obtain a considerable improvement using the age bias technique, if, in

addition to the age bias, we also require a certain maturity (that is, minimal age) to be

considered as part of any slice. In other words, the order among the nodes that have a

certain minimal age improves significantly.

5.5.4 An Illustrative Example

To illustrate how well our approach copes well with highly dynamic environments, Fig-

ure 5.7 provides a visualization of three slices that are maintained in a network of size

1000, over 1200 cycles, using age bias and a maturity level of 20 cycle. The slice spec-

ification is (1/3, 1/3, 1/3), we have three slices of equal size. The view size is c = 20.
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Figure 5.7: Visualization of groups in extreme failure scenarios.
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After the start of churn the network seems to shrink. This is due to the fact that we con-

sider only mature nodes, that is, those that are older than 20 cycles.. The scenario we

applied includes churn (1% in each cycle), removal of a random half of the network and

subsequently duplicating network size in one cycle. We observe that the slices remain

relatively well defined, especially if we consider that the entire network gets replaced

several times during the period shown. We also observe that as soon as the churn stops,

the slices get stabilized as well. Note that our goal cannot be to eliminate churn within

a slice completely, but only to make sure it is similar to the churn the entire network is

experiencing.

5.6 Conclusions

We have described a solution to automatically partition a highly dynamic network accord-

ing to a given metric as well as to maintain such a partitioning in the presence of churn.

In our approach to the ordered slicing problem, each node has to identify which section

of the network it belongs to, ordered along an attribute xi, using only local information.

Our solution relies on a robust and scalable gossip-based sorting protocol. We have pre-

sented approximative theoretical results based on an analogy with average calculation and

demonstrated the robustness of the protocol in simulation experiments.

We focused only on the identification of the slices, which is in itself a challenging

problem. However, to be practically useful, these slices have to be presented to users and

applications as groups. One solution to this problem is to execute a slice specific NEWS-

CAST protocol inside each slice, which implements the peer sampling service (providing

samples from the slice). Users of a slice will simply be part of the slice and access it

through the peer sampling service. Nodes (and users) can join a slice-specific NEWSCAST

via a random contact from the slice. Such contacts can be stored (and continuously up-

dated) together with the slice specification, which, as we mentioned previously, can be

thought of as a very small database stored at each node and maintained cheaply using

anti-entropy gossip.



Chapter 6

T-Man: Topology Construction

So far we have focused on computations based on the peer sampling service that is im-

plemented using a random overlay network. Now we turn our attention to the problem

of constructing structured overlay networks that can be used to implement distributed

data structures or to optimize distributed applications via exploiting geographical node

proximity or the similarity of interests of the participating agents.

In general, large-scale overlay networks have become crucial ingredients of fully-

decentralized applications and peer-to-peer systems. Depending on the task at hand,

overlay networks are organized into different topologies, such as rings, trees, semantic

and geographic proximity networks. We argue that the central role overlay networks play

in decentralized application development requires a more systematic study and effort to-

wards understanding the possibilities and limits of overlay network construction in its

generality.

The contribution of this chapter is a gossip protocol called T-MAN that can build a

wide range of overlay networks from scratch, relying only on minimal assumptions. The

protocol is fast, robust, and very simple. It is also highly configurable as the desired

topology itself is a parameter in the form of a ranking method that orders nodes according

to preference for a base node to select them as neighbors. We present extensive empirical

analysis of the protocol along with theoretical analysis of certain aspects of its behavior.

6.1 Introduction

Overlay networks have emerged as perhaps the single-most important abstraction when

implementing a wide range of functions in large, fully decentralized systems. The over-

lay network needs to be designed appropriately to support the application at hand effi-

ciently. For example, application-level multicast might need carefully controlled random

networks or trees, depending on the multicast approach [62, 87]. Similarly, decentralized

search applications benefit from special overlay network structures such as random or

scale-free graphs [121,122], superpeer networks [123], networks that are organized based

on proximity and/or capacity of the nodes [124, 125], or distributed hash tables (DHT-s),

for example, [81, 83].

In current work, protocol designers typically assume that a given network exists for

a long period of time, and only a relatively small proportion of nodes join or leave con-

currently. Furthermore, applications either rely on their own idiosyncratic procedures for

implementing join and repair of the overlay network or they simply let the network evolve

in an emergent manner based on external factors such as user behavior.

111
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We believe that there is room and need for interesting research contributions on at

least two fronts. The first concerns the question whether a single framework can be used

to develop flexible and configurable protocols without sacrificing simplicity and perfor-

mance to tackle the plethora of overlay networks that have been proposed. The second

front concerns scenarios in overlay construction that are often overlooked, such as mas-

sive joins and leaves, as well as quick and efficient bootstrapping of a desired overlay from

scratch or some initial state. Current approaches either fail or are prohibitively expensive

in such scenarios. Combining results on these two fronts would enable several interesting

possibilities. These include: (i) overlay network creation on demand, (ii) deployment of

temporary and adaptive decentralized applications with custom overlay topologies that

are designed on-the-fly, (iii) federation or splitting of different existing architectures [17].

We address both questions and present an algorithm called T-MAN for creating a large

class of overlay networks from scratch. The algorithm is highly configurable: the network

to be created is defined compactly by a ranking method. The ranking method formalizes

the following idea: when shown a set of nodes, we assume each node in the network

is able to decide which ones it likes from the set more and which ones it likes less (we

will later use this ability of nodes to help them have neighbors they like as much as

possible). In other words, each node can order any set of nodes. Formally speaking, the

ranking method is able to order any set of nodes given a so called base node. By defining

an appropriate ranking method, we will be able to build a wide variety of topologies,

including sorted rings, trees, toruses, clustering and proximity networks, and even full-

blown DHT networks, such as the CHORD ring with fingers (as discussed in Chapter7).

T-MAN relies only on an underlying peer sampling service (see Chapter 2) that creates an

initial overlay network with random links as the starting point.

The algorithm is gossip based: all nodes periodically communicate with a randomly-

selected neighbor and exchange (bounded) neighborhood information in order to improve

the quality of their own neighbor set. This approach, while requiring no more messages

than the heartbeats already present in proactive repair protocols, is simple, and achieves

fast and robust convergence as we demonstrate. Here, we limit our study to the overlay

construction problem. Our main contribution is to show that a single, generic gossip-

based algorithm can create many different overlay networks from scratch quickly and

efficiently.

The roadmap of the chapter is as follows. Sections 6.3 and 6.4 present the system

model and the overlay construction problem. Section 6.5 describes the T-MAN protocol.

In Section 6.6 we present theoretical and experimental results to characterize key prop-

erties of the protocol and to give guidelines on parameter settings. Section 6.7 presents

practical extensions to the protocol related to bootstrapping and termination, and exten-

sive experimental results are also given to examine the behavior of the protocol in different

failure scenarios. Section 6.8 concludes the chapter.

6.2 Related Work and Contribution

Related work in bootstrapping include the algorithm of Voulgaris and van Steen [126]

who propose a method to jump-start PASTRY [81]. This protocol is specifically tailored

to PASTRY and its message complexity is significantly higher than that of T-MAN. More

recently, the bootstrapping problem has been addressed in other specific overlays [127–

129]. These algorithms, although reasonably efficient, are specific to their target overlay

networks.
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An approach closer to T-MAN is VICINITY, described in [130]. Although VICINITY

was inspired by the earliest version of T-MAN, it does contain notable original components

related to overlay maintenance, such as churn management, and other techniques to boost

performance.

Finally, we mention related work that use gossip-based probabilistic and lightweight

algorithms. We note that these algorithms are targeted neither at efficient bootstrapping,

nor at generic topology management. Massoulié and Kermarrec [131] propose a protocol

to evolve a topology that reflects proximity. More recent protocols applying similar prin-

ciples include [132] and [133]. Repair protocols used extensively in many DHT overlays

also belong to this category (e.g., [83, 134, 135]).

Our contribution with respect to related work is threefold. First, we introduce a

lightweight probabilistic protocol that can construct a wide range of overlay networks

based on a compact and intuitive representation: the ranking method. The protocol has

a small number of parameters, and relies on minimal assumptions, such as nodes being

able to obtain a random sample from the network (the peer sampling service). The pro-

tocol is an improved and simplified version of earlier variants presented at various work-

shops [15–17]. Second, we develop novel insights for the tradeoffs of parameter settings

based on an analogy between T-MAN and epidemic broadcasts. We describe the dynamics

of the protocol considering it as an epidemic broadcast, restricted by certain factors de-

fined by the parameters and properties of the ranking method (that is, the properties of the

desired overlay network). We also analyze storage complexity. Third, we present novel

algorithmic techniques for initiating and terminating the protocol execution. We present

extensive simulation results that support the efficiency and reliability of T-MAN.

6.3 System Model

We consider a set of nodes connected through a routed network. Each node has an address

that is necessary and sufficient for sending it a message. Furthermore, all nodes have

a profile containing any additional information about the node that is relevant for the

definition of an overlay network. Node ID, geographical location, available resources,

etc. are all examples of profile information. The address and the profile together form the

node descriptor. At times, we will use “node descriptor” and “node” interchangeably if

this does not cause confusion.

The network is highly dynamic; new nodes may join at any time and existing nodes

may leave, either voluntarily or by crashing. Our approach does not require any mecha-

nism specific to leaves: spontaneous crashes and voluntary leaves are treated uniformly.

Thus, in the following, we limit our discussion to node crashes. Byzantine failures, with

nodes behaving arbitrarily, are excluded from the present discussion.

We assume that nodes are connected through an existing routed network, where every

node can potentially communicate with every other node. To actually communicate, a

node has to know the address of the other node. This is achieved by maintaining a partial

view (view for short) at each node that contains a set of node descriptors. Views can be

interpreted as sets of edges between nodes, naturally defining a directed graph over the

nodes that determines the topology of an overlay network.

Communication incurs unpredictable delays and may be subject to failures. Single

messages could lost, links between pairs of nodes may break. Nodes have access to local

clocks that can measure the passage of real time with reasonable accuracy, that is, with

small short-term drift. Local clocks are not required to be synchronized.
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Finally, we assume that all nodes have access to the peer sampling service (see Chap-

ter 2) that returns random samples from the set of nodes in question. From a theoretical

point of view we will assume that these samples are indeed random. From a practical

point of view, we have seen that the peer sampling service indeed has suitable realistic

implementations that provide high quality samples at a low cost.

6.4 The Overlay Construction Problem

Intuitively, we are interested in constructing some desirable overlay network, possibly

from scratch, by filling the views at all nodes with descriptors of the appropriate neigh-

bors. For example, we might want to organize the nodes into a ring where the nodes

appear in increasing order based on their ID. Or we might want to construct a proximity

network, where the neighbors of a node are those that are closest to it according to some

metric.

We allow for arbitrary initial content of the views of the nodes in this problem defini-

tion (including empty views), noting that, as mentioned in our system model, nodes have

access to random samples from the network, so they have access to at least random nodes

from the network. In other words, starting from any arbitrary network, we want to fill the

node views with the appropriate neighbors as fast as possible at a reasonable cost.

In order to have a well defined problem, we need to specify how the desired overlay

is represented as an input to the protocol. The representation must be compact, intuitive,

yet descriptive enough to capture the widest possible range of topologies.

Our proposal for the representing the desired overlay is the ranking method. As ex-

plained before, the ranking method sorts a set of nodes (potential neighbors) according to

the “taste” of a given base node. More formally, the input of the problem is a set of N
nodes, the target view size K (bounded by N) and a ranking method RANK. The ranking

method takes as parameters the base node x and a set of nodes {y1, . . . , yj}, j ≤ N , and

outputs an ordered list of these j nodes. All nodes in the network apply the same ranking

method, which they are assumed to know a priori. We will analyze and test only ranking

methods that are based on a partial ordering of the given set, and that return some total

ordering consistent with this partial ordering (note however, that this is not an inherent

restriction). Accordingly, we allow for an element of uncertainty (if there can be many

total orderings consistent with the partial ordering we pick a random one).

A target graph that we wish to construct is defined by the ranking method. We present

the definition of a target graph in a constructive way, through the following (inefficient)

approach, for illustration. In this approach, each node disseminates its descriptor to all

other nodes such that eventually, every node has collected locally the descriptor of every

node in the network. At this point, each node sorts this set of descriptors according to

the ranking method and picks the first K elements to be its neighbors. The resulting

structure is called a target graph. Note that in this manner we define a graph, and not only

a topology, because in addition to knowing the structure of the network, such as a ring,

we also know the exact location of each node in the structure.

Disseminating all the descriptors to all the nodes is a naive solution to this overlay

construction problem with a communication cost that is at least linear in N for each node

and a storage cost that is also linear in N for each node. A practical approach has to

significantly reduce the cost of this naive solution both in terms of communication and

storage. The T-MAN protocol described in the next section achieves precisely this.
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(b) (c)(a)

Figure 6.1: Target graphs for different ranking methods and K = 2. (a) One-dimensional

distance-based, circular ranking method applied to a set of uniform node profiles; (b)

same ranking method as before but with a different set of node profiles that are clustered;

(c) direction-dependent ranking method achieves sorting even for clustered node profiles.

Although representing the target graph through the ranking method and parameter K
clearly restricts the scope of the algorithm, through the examples presented here and in the

rest of this chapter we will see that a wide range of interesting applications are covered.

One (but not the only!) way of actually defining useful ranking methods is through a

distance function that defines a metric space over the set of nodes. The ranking method

can simply return an ordering of the given set according to non-decreasing distance from

the base node.

To clarify the notions of ranking method and target graphs, let us consider a few

simple examples, where K = 2 and the profile of a node is a real number in the interval

[0,M [. We can define a ranking method based on the one-dimensional distance function

d(a, b) = |a− b|, in which case the target graph will be linear. Alternatively—to connect

the two ends of the line—we can use d(a, b) = min(M − |a− b|, |a− b|), which results

in a circular structure. As illustrated in Figure 6.1(a), if the node profiles are more-or-less

uniformly distributed over the interval [0,M [, the target graph that belongs to the circular

distance function will be a connected ring. If the node profiles are not evenly distributed

over [0,M [ but are clustered, the very same ranking method will result in a target graph

that consists of disconnected clusters (Figure 6.1(b)).

It is important to note that there are target graphs of practical interest that cannot be

defined through a global distance function. This is the main reason for using ranking

methods, as opposed to relying exclusively on the notion of distance; the ranking method

is a more general concept than distance. This fact will become important in Chapter 7

(practical application example), where it is necessary to be able to build, for example, a

ring, even in the case of uneven node descriptor distributions when distance-based rank-

ing methods would define clustered target graphs (as in Figure 6.1(b)). Figure 6.1(c)

illustrates how a direction-dependent ranking can be used to avoid clustering in the target

graph. Here, the output of the ranking method RANK(x, {y1, . . . , yj}) is defined as fol-

lows. We first construct a sorted ring out of the set of input profiles y1, . . . , yj and the

base node x. We then assign a rank value to each node defined as the minimal hop count

to the node from x in this ring. The output of the ranking method is a list of the input

profiles ordered according to this rank value. In this manner, the first 2α positions in the

ranking contain α nodes preceeding x and α nodes following x in the sorted ring; hence

the name “direction-dependent”.
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Algorithm 13 T-MAN

1: loop

2: wait(∆)
3: p← selectPeer(ψ, rank(myDescriptor,view))

4: sendPush(p, toSend(p,m))

5:

6: procedure ONPUSH(msg)

7: sendPull(msg.sender, toSend(msg.sender,m))

8: onPull(msg)

9: procedure ONPULL(msg)

10: view.merge(msg.buffer)

11:

12: procedure TOSEND(p,m)

13: buffer← (MyDescriptor)

14: buffer.append(view)

15: buffer← rank(p,buffer)

16: return buffer.subList(1, m)

6.5 The T-MAN Protocol

As mentioned earlier, the T-MAN protocol is based on a gossiping scheme, in which all

nodes periodically exchange node descriptors with peer nodes, thereby constantly improv-

ing the set of nodes they know—their partial views. Each node executes Algorithm 13.

Notice that the algorithm fits in the scheme of the gossip protocols discussed so far. Any

given view contains the descriptors of a set of nodes. As before, the view is a list data

structure and it is also a set (each node has at most one descriptor on the view). Method

MERGE is a set operation in the sense that it keeps at most one descriptor for each node.

Parameter m denotes the message size as measured in the number of node descriptors that

the message can hold. Method SELECTPEER selects a random sample among the first ψ
entries in the list given as its second parameter.

In this section we do not specify how node views are initialized. In the rest of the chap-

ter, we always describe the particular node view initialization procedure that we assume.

These procedures include random initialization for the purposes of theoretical analysis in

Section 6.6 and practical solutions based on various broadcasting schemes and realistic

random peer sampling in Section 6.7.

We note that the protocol does not place a limit on the view size. This is done in order

to decrease the number of parameters, thereby simplifying the presentation. One might

expect that lack of a limit on view size might present scalability problems due to views

growing too large. As we will show in Section 6.6, however, the storage complexity of

nodes due to views grows only logarithmically as a function of the network size. Fur-

thermore, preliminary experiments for the applications we consider show that imposing a

comfortable limit on view sizes (larger than both m and K) does not result in any observ-

able decrease in performance. This suggests that the simplification of ignoring view size

limits is justified and is not critical for these applications. As usual, we define a cycle to

be an interval of ∆ time units.

Figure 6.2 illustrates the results of T-MAN for constructing a torus (visualizations were

obtained using [136]). For this example, it is clear that only a few cycles are sufficient

for convergence, and the target graph is already evident even after the first few cycles.

In the next sections we will show that this rapid convergence is not unique to the torus

example but that T-MAN performs well in a wide range of settings and that it is scalable,

very similarly to epidemic broadcast protocols.

In Table 6.1 we summarize the parameters of the protocol. Note that K (target view

size) controls the size of the target graph, and consequently, affects the running time of

the protocol. For example, if we increaseK while keeping the ranking method fixed, then

the protocol will take longer to converge since it has to find a larger number of links.
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after 2 cycles after 3 cycles after 4 cycles

after 6 cycles after 7 cycles after 10 cycles

Figure 6.2: Illustration of constructing a torus over 50×50 = 2500 nodes, starting from a

uniform random graph with initial views containing 20 random entries and the parameter

values m = 20, ψ = 10, K = 4.

6.6 Key Properties of the Protocol

In this section we study the behavior of our protocol as a function of its parameters, in

particular, m (message size), ψ (peer sampling parameter) and the ranking method RANK.

Based on our findings, we will extend the basic version of the peer selection algorithm

with a simple “tabu-list” technique as described below. Furthermore, we analyze the

storage complexity of the protocol and conclude that on the average, nodes needO(logN)
storage space where N is the network size.

To be able to conduct controlled experiments with T-MAN on different ranking meth-

ods, we first select a graph instead of a ranking method, and subsequently “reverse-

engineer” an appropriate ranking method from this graph by defining the ranking to be

the ordering consistent with the minimal path length from the base node in the selected

graph. We will call this selected graph the ranking graph, to emphasize its direct relation-

ship with the ranking method.

Note that the target graph is defined by parameter K, so the target graph is identical

to the ranking graph only if the ranking graph is K-regular. However, for convenience, in

this section we will not rely onK because we either focus on the dynamics of convergence

(as opposed to convergence time), which is independent of K, or we study the discovery

of neighbors in the ranking graph directly.

In order to focus on the effects of parameters, in this section we assume a greatly sim-

plified system model where the protocol is initiated at the same time at all nodes, where

there are no failures, and where messages are delivered instantly. While these assump-
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RANK() Ranking method: determines the preference of nodes as neighbors of a base

node

K Target view size: along with RANK(), it determines the target graph

∆ Cycle length: sets the speed of convergence but also the communication cost

ψ Peer sampling parameter: peers are selected from the ψ most preferred

known neighbors

m Message size: maximum number of node descriptors that can be sent in a

single message

Table 6.1: Parameters of the T-MAN protocol.

tions are clearly unrealistic, in Section 6.7 we show through event-based simulations that

the protocol is extremely robust to failures, asynchrony and message delays even in more

realistic settings.

6.6.1 Analogy with the Anti-Entropy Epidemic Protocol

In Section 6.4 we defined the overlay construction problem with the help of a naive

approach that involved the full dissemination of all the node descriptors to every node.

Here we would like to elaborate on this idea further. Indeed, the anti-entropy epidemic

protocol—when used to implement the naive approach—can be seen as a special case of

T-MAN, where the message sizem is unlimited (i.e.,m ≥ N such that every possible node

descriptor can be sent in a single message) and peer selection is uniform random from the

entire network. In this case, independently of the ranking method, all node descriptors

that are present in the initial views will be disseminated to all nodes. Furthermore, it is

known that full convergence is reached in less than logarithmic time in expectation (see

Chapter 1).

For this reason, the anti-entropy epidemic protocol is important also as a base case

protocol when evaluating the performance of T-MAN, where the goal is to achieve similar

convergence speed to anti-entropy, but with the constraint that communication is limited

to exchanging a constant amount of information in each round. Due to the communication

constraint, the performance will no longer be independent of the ranking method.

6.6.2 Parameter Setting for Symmetric Target Graphs

We define a symmetric target graph to be one where all nodes are interchangeable. In

other words, all nodes have identical roles from a topological point of view. Such graphs

are very common in the literature of overlay networks. The behavior of T-MAN is more

easily understood on symmetric graphs, because focusing on a typical (average) node

gives a good characterization of the entire system.

We will focus on two ranking graphs, both undirected: the ring and a k-out random

graph, where k random out-links are assigned to all nodes and subsequently the direction-

ality of the links is dropped. We choose these two graphs to study two extreme cases for

the network diameter. The diameter (longest minimal path) of the ring is O(N) while that

of the random graph is O(logN) with high probability.

Let us examine the differences between realistic parameter settings and the anti-

entropy epidemic dissemination scenario described above. First, assume that the message
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(b) T-Man with Tabu List

Figure 6.3: Time to collect 50% of the neighbors at distance one in the ranking graph.

Network size is N = 2000. Node views are initialized to contain 5 random links each.

Graph (b) was obtained using a tabu list of size 4.

size m is a small constant rather than being unlimited. In this case, the random peer se-

lection algorithm is no longer appropriate: if a node i contacts peer j that ranks low with

i as the base node, then i cannot expect to learn new useful links from j because now (due

to the small m) node j has a strong bias in its view towards nodes that rank high with j as

a base node.

On the other hand, if a node i selects peers that rank too high with i as the base node,

then convergence might slow down as well. The reason for this is that consecutive peers

returned by the peer selection method will more often get repeated; in part because a node

i is more likely to select a peer to communicate with that selected i shortly before, and in

part because there are simply fewer nodes that are “close” to any given node than nodes

that are far from it. This in turn results in increased correlation between the partial views

of communicating partners, so the epidemic process is not maximally efficient.

Figure 6.3 illustrates this tradeoff using two ranking graphs: the ring and a random

graph. The latter is generated by first constructing a 2-out directed regular random graph

by selecting two random out-edges for each node, and subsequently taking the undirected

version of this graph. The average degree of a node is thus 4, with a small variance. The

basic version in Figure 6.3(a) applies the peer selection algorithm which picks a random

peer from the highest ranking ψ nodes from the view, as described earlier. The point

ψ = N and m = N corresponds to an anti-entropy epidemic dissemination (i.e., peer

selection is unbiased and there are no limits on message size) which is optimal.

As predicted, with no limits on the message size (m = N), we can observe the effect

due to the lack of randomness if the selected peer ranks too high (ψ is small). Further-

more, for large ψ performance again degrades when we place a limit on the message size

since the correlation between communicating peers’ ranking of the same set of nodes is

reduced. This effect is less pronounced for larger m because now we might obtain useful

information by chance even if there is little correlation between the rankings.

To verify our explanation as to why performance degrades with decreasing ψ, we

apply a tabu list at all nodes in order to avoid contacting the same peers over and over

again. The tabu list contains a fixed number of peers that a given node communicated

with most recently. The node then does not initiate connection with any nodes in its
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Figure 6.4: Number of contacts made by nodes while constructing a binary tree. Statistics

are over 30 independent runs. The parameters are N = 10000, m = 20, number of cycles

is 15, ψ = 10 and the tabu list size is 4. In the ranking graph, the root is node 0 and the

out-links of node i are 2i+ 1 and 2i+ 2.

tabu list. We experimented with a tabu list size of 4. This mechanism does not add any

communication overhead since it simply records the last 4 communications, but it is rather

effective in reducing the negative effects of small ψ values as Figure 6.3(b) illustrates.

We can draw several other conclusions from the results in Figure 6.3. First, the tabu

list slightly improves even the performance of anti-entropy epidemic dissemination with

completely random peer selection (m = ψ = N). This is due to the fact that initially

views contain only few nodes (to be precise, five, in this case). Without a tabu list, this

significantly increases the chance of contacting the same peers in the first few cycles,

while the views are still small. Such communications are not effective in advancing dis-

semination due to the correlated views of the communicating peers. Also note that when

there is no limit on message size, the random graph outperforms the ring, especially when

the tabu list is applied. This is due to the fact that the number of neighbors of a node in the

random graph increases exponentially, so even for a small set of closest nodes, diversity

is very high.

Finally, we note that the exponentially increasing neighborhood becomes a disadvan-

tage when ψ is larger, because the view of peers that are further away from the base node

in the ranking graph will be more uncorrelated to the view of the original peer. This sug-

gests that for such graphs, peer selection should be aggressive (ψ = 1) and should be

combined with the use of tabu lists.

6.6.3 Notes on Asymmetric Target Graphs

The topological role of nodes in asymmetric target graphs is not identical. For exam-

ple, some nodes can be more central or more connected than others, there can be bridge

nodes connecting isolated clusters, and so on. While symmetric graphs already exhibit

complex behavior, we argue that asymmetric graphs cannot be treated reasonably in a

common framework. Each case needs a separate analysis that needs to take into account

the particular structure of the graph.
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Figure 6.5: Time to collect 50% of the neighbors at distance one in the ranking graph.

The network size is N = 2000. Node views are initialized by 5 random links each. The

tabu list size is 4.

To understand the problem better, consider a ranking method that is independent of

the base node. This ranking method will induce a star-like structure since all nodes will

be attracted to the very same high ranking nodes. In this case, more and more nodes

will contact the nodes that rank high in the (in this case, common) ranking. As a result,

convergence speeds up enormously, at the cost of a higher load on the central nodes. The

reason is simple: the central nodes can collect the high ranking descriptors faster because

they are contacted by many nodes. Due to their central position, they also distribute them

very rapidly. One can even exploit this effect. For example, if the goal is to build a super-

peer topology, with the high bandwidth nodes in the center, then the central nodes might

actually be able to deal with the extra load, thus resulting in an efficient, but still fully

self-organizing solution.

This effect can be observed in other interesting topologies as well. For example,

rooted regular trees, where the non-leaf nodes have k out-links and one in-link, except the

root, that has no in-links. If the ranking graph has such a topology, the resulting target

graph will be asymmetric with highly nonuniform average traffic at nodes, as shown in

Figure 6.4. One reason for this result is that a large proportion of the nodes are leaves.

Leaf nodes, having only one neighbor, will have a tendency to talk to nodes that are further

up in the hierarchy. This adds extra load on internal nodes and puts them in a more central

position.

This in turn has a non-trivial effect on the convergence of the protocol, and allows T-

MAN to have better performance for trees than for symmetric graphs. Figure 6.5 illustrates

this effect. In Figure 6.5(a), we can observe the performance of T-MAN for a rooted and

balanced binary tree as a ranking graph. We can see that there is a peculiar minimum

when message size is unlimited but ψ is small. In this region, the binary tree consistently

outperforms the ring, even for a small m.

This effect is due to the asymmetry of a binary tree. To show this, we ran T-MAN

with an additional balancing technique, to cancel out the effect of central nodes. In this

technique, we limit the number of times any node can communicate (actively or passively)

in each cycle to two. In addition, nodes also apply hunting [20], that is, when a node

contacts a peer, and the peer refuses the connection due to having exceeded its quota, the
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node immediately contacts another peer until the peer accepts connection, or the node

runs out of potential contacts. The results are shown in Figure 6.5(b). In the region of

practical settings of ψ and m, the advantage of the binary tree disappears, while the ring

preserves the same performance.

More detailed analysis reveals that in the initial cycles, nodes that are close to the root

play a bootstrap function and communicate more than the rest of the nodes. After that, as

the overlay network is taking shape, nodes that are further down the hierarchy take over

the management of their local region, and so on. This is a rather complex behavior, that

is emergent (not planned), but nevertheless beneficial. This also suggests that if the target

graph is not symmetric, then extra attention is needed when explaining the behavior of

T-MAN.

6.6.4 Storage Complexity Analysis

We derive an approximation for the storage space that is needed for maintaining views

by the nodes (recall that there is no hard limit enforced by the protocol). This approx-

imation is based on a number of simplifying assumptions that convert the problem into

a model of disseminating news items, where only the most interesting news items can

spread due to limited message size. Subsequently, we present experimental validation of

the approximation using T-MAN on different realistic target graphs.

The News Spreading Model

To derive the approximation, we assume that the ranking method is independent of the

base node, that is, all nodes rank a given set of node descriptors the same way. The

rational for this assumption is the following. One conclusion of previous sections was

that the success of T-MAN crucially depends on the fact that whenever a node i selects a

peer j using SELECTPEER, the ranking of the current neighbors of i with node j as a base

node is similar to the ranking with node i as a base node, because this way nodes i and j
can provide relevant node descriptors to each other with a higher probability. Assuming

that the ranking does not depend on the base node means that any selected node j is

guaranteed to produce an identical ranking to node i, which is the ideal case for T-MAN.

This assumption, however, introduces a side-effect: it implies that the target graph

is a star-like structure, with the m highest ranking nodes forming a clique, and all the

other nodes pointing to these m nodes. This level of asymmetry is highly non-typical and

therefore is an unrealistic scenario for T-MAN. To “fix” this side-effect, we assume that

SELECTPEER returns a random node from the entire network, which makes the role of all

nodes identical.

In this setting, node descriptors have no relation to actual nodes anymore (that is,

the node addresses in the descriptors are never used), so we can think of the model as

spreading news items that have a natural ranking based on “interestingness”.

In the following we present a simplified deterministic model of the dynamics of news

spreading to obtain a heuristic baseline, to which the storage complexity of T-MAN can be

compared. Let ni,j(t) denote the number of news items of rank j at node i at time t. The

value of ni,j(t) is 0 or 1, and ni,j(t) is monotonically increasing, because we assumed that

the local view size is not bounded.

First of all, if m ≥ N then the values ni,j(t) (i, j ∈ {1, . . . , N}) are identically

distributed random variables, since there is no competition between the news items for the
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slots available for spreading. Clearly, whenm < N , thenE(ni,j(t)) can grow undisturbed

until the effect of the competition kicks in, in other words, until the item with rank j is

no longer competitive for the available m slots. Motivated by this, in our simplified

deterministic model we will approximate ni,j(t) by

n̂i,j(t) =

{

E(ni,j(t) | m ≥ N) if t ≤ t∗

E(ni,j(t
∗) | m ≥ N) if t > t∗

(6.1)

where t∗ is the point in time when n̂i,j stops growing due to the fact that there are already

enough more interesting news items at the local node i so that the item with rank j will

no longer be included in the most interesting m items.

For j ≤ m we know that t∗ =∞, because these items will always be included in any

message sent. For j > m, this point in time can be calculated using the fact that at time t∗

j
∑

k=1

n̂i,k(t
∗) = jn̂i,j(t

∗) = m, (6.2)

where the first equation comes from the fact that ni,j(t) (i, j ∈ {1, . . . , N}) are identically

distributed. (Note that although t∗ can be calculated, we do not actually need to calculate

it, we simply need to know only that it is well defined.) This means that we have

n̂i,j(t) =
m

j
, for t > t∗, j > m. (6.3)

Figure 6.6 compares the prediction of this model and the converged distribution obtained

experimentally via simulation with T-MAN. The figure uses the notation nj =
∑

i ni,j ,

which is the overall number of news items of rank j in the network. The indicated predic-

tion is, accordingly,
∑

i n̂i,j = Nm/j.
Equation (6.3) allows us to approximate the actual storage space that is required for

the views of the nodes. We focus only on the items that rank lower than m, because the

highest rankingm items will be stored by all the nodes taking a constant amount of space.

The sum of all entries with a rank higher than m stored in the system after convergence

(when all messages are composed of the m most popular items already) is

N
∑

j=m

n̂j =
N
∑

j=m

Nm

j
= Nm

N
∑

j=m

1

j
= Θ(N logN), (6.4)

where we used the well known approximation of the harmonic number and the fact that

m is constant. Therefore each view stores Θ(logN) entries on the average. Note that this

result is independent of the number of iterations executed to reach convergence, and it is

also independent of the actual form of the function n̂i,j(t); recall that the only assumption

we made was that these functions are monotonically increasing.

Finally, we note that n̂j = Nm/j = Nmj−1 results in a power law distribution, as

it follows the form j−γ . Power laws are very frequently observed in complex evolving

networks [114]. The phenomenon is often due to some form of “the rich get richer”

effect. One can link our results to the study of other complex networks, for example,

social networks. All nodes start with a random constant-size set of news items, and they

gossip always only the m most interesting ones that they currently know. This dynamics

results in a power law distribution of news items, with the most interesting news being

known to everyone. Furthermore, each participant learns only about Θ(logN) news items

from the overall N news items available.
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Experiments were run with N = 104, m = 20 and ψ = 10, without a tabu list. Note that

the plots contain three snapshots of the simulation for cycles 2, 4 and 10.
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Empirical Validation

We verify experimentally that the prediction in (6.3) holds for T-MAN when different

ranking methods are employed. This would support as a consequence the claim that

Equation (6.4) characterizes the storage complexity of the protocol.

We need to generalize nj since ranking can now depend on the base node. Let nj be

the number of nodes that know about the node with rank j according to their own ranking

of the entire network. Figure 6.7 shows the values of nj for three ranking graphs at three

different times. Although the experiments reported in Figure 6.7 were performed without

a tabu list, further experiments (not shown) show that tabu lists have no observable effect

on the distribution of ranks in the views. They only speed up convergence of the protocol

as discussed earlier.

In Figure 6.7 we can observe that the ring fulfills the assumptions of Section 6.6.4

best: the nj values that have not stopped growing have the same value at each time point,

which means they indeed grow at the same rate. The largest deviation can be observed in

the case of the random graph. There, the growth of the nj values slows down smoothly

which implies that the assumption they grow at the same rate does not hold. This results

in a slight “overshoot” where the observed values are slightly higher than those predicted.

Note that in the case of the binary tree, the predicted values match closely the observed

ones even though the topology is not symmetric. This further underlines the robustness

of the prediction. In other words, the seemingly strong assumptions of the theory in fact

leave the essential dynamics almost unchanged, which indicates that we could understand

important features of the protocol. Of course, the more central nodes need more storage

capacity, the prediction holds only on average. However, in our preliminary experiments

(not shown), we have seen that setting a reasonable hard limit on the view size that is

significantly larger than m (for example, 1000 items) does not result in any significant

difference in performance. For this reason we opted for the simplified discussion and we

omit hard limits on the view size in the following.

6.7 Experimental Results

In the previous section we considered the most basic version of the protocol to shed light

on its convergence properties and storage complexity. This section is concerned with

developing additional techniques that allow for the practical application of the protocol; in

particular, we address two important problems: how to start and how to stop the protocol.

We also present an extensive empirical analysis under different parameter settings and

different failure scenarios, introduced by a brief discussion of the simulation environment

and the figures of merit we focus on.

6.7.1 A Practical Implementation

So far we assumed that the protocol is started at all nodes at once, in a synchronous

fashion, and we were not dealing with termination at all. We also assumed that at all

nodes the initial set of known peers is a random sample from the network. In this section,

we replace these unrealistic assumptions with practically feasible solutions.
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Peer Sampling Service

The peer sampling service provides each node with continuously up-to-date random sam-

ples of the entire population of nodes. Such samples fulfill two purposes: they enable the

random initialization of the T-MAN view, as discussed in Section 6.5, and make it possi-

ble to implement a starting service as well, allowing for the deployment of various gossip

based broadcast and multicast protocols.

We consider an instantiation of the peer sampling service based on the NEWSCAST

protocol (see Section 2.2.4), chosen for its low cost, extreme robustness and minimal

assumptions. The basic idea of NEWSCAST is that each node maintains a local set of

random node addresses: the (partial) view. Periodically, each node sends its view to a

random member of the view itself. When receiving such a message, a node keeps a fixed

number of freshest addresses (based on timestamps), selected from those locally available

in the view and those contained in the message.

Each node sends one message to one other node during a fixed time interval. Imple-

mentations exist in which these messages are small UDP messages containing approxi-

mately 20-30 IP addresses, along with the ports, timestamps, and descriptors such as node

IDs. The time interval is typically long, in the range of 10 s. The cost is therefore small,

similar to that of heartbeat messages in many distributed architectures. The protocol pro-

vides high quality (i.e., sufficiently random) samples not only during normal operation

(with relatively low churn), but also during massive churn and even after catastrophic

failures (up to 70% nodes may fail), quickly removing failed nodes from the local views

of correct nodes.

Starting and Terminating the Protocol

We implemented a simple starting mechanism based on well-known broadcast protocols.

The content of the broadcast message may be a simple “wake up” specifying when to build

a predefined network, or it may include additional information specifying what network to

build (e.g., by providing the implementation of a specific ranking function). To simplify

our simulation environment, we adopt the first approach; technical issues related to the

second one may be easily solved in a real implementation.

The following terminology is used when discussing the starting mechanism. We say

that a node is active if it is aware of and explicitly participating in a specific instance of

T-MAN; if the node is not aware that a protocol is being executed, it is called inactive.

Initially, there is only one active node, the initiator, activated by an external event

(e.g., a user’s request). An inactive node may become active by exchanging information

with nodes that are already active. When a node becomes active, it immediately starts

executing the T-MAN protocol. The final goal is to activate all nodes in the system, i.e., to

start the protocol at all nodes.

The actual implementation of the broadcast can take many forms that differ mainly in

communication overhead and speed.

Flooding As soon as a node becomes active for the first time, it sends a “wake up” mes-

sage to a small set of random nodes, obtained from the peer sampling service. Sub-

sequently, it remains silent.

Anti-Entropy, Push-only Periodically, each active node selects a random peer and sends

a “wake-up” message [20].
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Figure 6.8: Probability distribution of end-to-end delays as reported in the King data

set [137].

Anti-Entropy, Push-Pull Periodically, each node (active or not) exchanges its activation

state with a random peer. If either of them was active, they both become active [20].

As described above, a node becomes active as soon as it receives a message from

another active node. Note, however, that messages belonging to the starting protocol are

not the only source of activation; a node may also receive a T-MAN message, from a node

that has already started to execute the protocol. This message also activates the recipient

node.

As is well known, flooding is fast and effective but very expensive due to message

duplications. In comparison, the most important advantage of the other two approaches is

the dramatically lower communication overhead per unit time. The overhead can further

be reduced to almost zero, due to the fact that the starting service messages can be piggy-

backed, for example, on NEWSCAST messages that implement the peer sampling service.

After the target graph has been built, the protocol does not need to run anymore and

therefore must be terminated. Clearly, detecting global convergence is difficult and ex-

pensive: what we need is a simple local mechanism that can terminate the protocol at all

nodes independently.

We propose the following mechanism. Each node monitors its own local view. If

no changes (i.e., node additions) are observed for a specified period of time (δidle), it

suspends its active thread. We call this state suspended. If a view change occurs when

a node is suspended (due to an incoming message initiated by another node that is still

active), the node switches again to the active state, and resets its timer that measures idle

time.

6.7.2 Simulation Environment

All the experiments are event-based simulations, performed using PEERSIM, an open-

source simulator designed for large-scale P2P systems and publicly available at Source-

Forge [66]. The applied transport layer emulates end-to-end delays between pairs of nodes

based on the traces of the King data set [137]. Delays reported in these traces range from

1 ms to 400 ms, and the probability distribution is as shown in Figure 6.8.

The following parameters are fixed in the experiments: the size of the tabu list is 4, and

the peer selection parameter (ψ) is 1. If different values are not explicitly mentioned, the

message size (m) is 20, the cycle length (∆) is 1 s, and the value of δidle is set to 4 s. Each
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experiment is repeated 50 times with different random seeds. Plots show the average

of the observed measures, along with error bars; when graphically feasible, individual

experiments are displayed as separate dots with a small random translation.

6.7.3 Ranking Methods

To emphasize the robustness of T-MAN to the actual target graph being built, we per-

formed all experiments on two different tasks: building a sorted ring, and building a

binary tree. These two graphs have very different topologies: the ring has a large (linear)

diameter while the tree has a small (logarithmic) one. Besides, as pointed out in Sec-

tion 6.6.3, in the tree some nodes are more central than others, while in the ring all nodes

are equal from this point of view.

In the previous sections, we applied the concept of a ranking graph to (implicitly)

define the ranking method. This approach is not practical, so we need to define explicit

and locally computable ranking methods.

Sorted Ring

Creating a sorted ring is very useful, for example, for the decentralized computation of

the ranking of nodes [13] or jump-starting distributed hash tables, such as CHORD [83].

The latter application is further discussed in Chapter 7.

We assume that the node profile is an element of a collection, over which a total

ordering relation is defined. In particular, we work with 60-bit integers as node profiles

that are initialized at random for each node. We want the target graph to be a ring, in

which the node profiles are ordered (except one pair where the largest and smallest values

meet) to close the ring.

To achieve this target graph, the output of the ranking method RANK(x, y1, . . . , yk)
is defined as follows. First we construct a sorted ring (as defined above) out of the set

of input profiles y1, . . . , yk and the base node x, and assign a rank value to all nodes: the

minimal hop count from x in this ring. The output of the ranking method is an ordered list

of the input profiles according to these assigned rank values. Note that this is a direction-

dependent ranking method, that cannot be induced by a distance metric over the node

profiles. For simplicity, we will call T-MAN with this ranking method SORTED RING.

Binary Tree

The second topology we consider is an undirected rooted binary tree. To achieve a well

controlled target graph for the sake of experimental comparison, the node profiles are de-

fined as follows. If there areN nodes, then we assign the integers 1, . . . , N to the nodes in

some arbitrary order. The node with value 1 is the root. Using the binary representation of

these integers, the node 0a2 . . . am has two children: a2 . . . am0 and a2 . . . am1. Numbers

starting with 1 belong to leafs.

It is easy to calculate the shortest path length in this tree between two arbitrary nodes,

based on the two node profiles. This notion of distance is used to define the ranking

function required by T-MAN to build the tree: RANK(x, y1, . . . , yk) sorts the input profiles

y1, . . . , yk according to distance from the base node x. For simplicity, we will call T-MAN

with this ranking method TREE.
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Figure 6.9: Convergence time as a function of size, using different starting protocols.

6.7.4 Performance Measures

We are interested both in the effectiveness (speed and quality) and efficiency (cost) of the

protocol. We evaluate our protocols using the following performance measures: conver-

gence time, target links found, termination time and communication costs.

convergence time The time needed to obtain the perfect target graph. In the case of

SORTED RING, each node must know at least its first successor and predecessor in

the sorted ring. For TREE, each node different from the root must know its parent,

and non-leaf nodes must know their children.

target links found The number of links in the target graph that are actually found by

T-MAN at a certain time, typically at termination time. This allows for a more fine-

grained assessment of performance than convergence time.

termination time The total time needed to complete (start, execute and stop) the protocol

at all nodes. This may be considerably longer than convergence time, although, as

we will see, typically only few nodes are still active after reaching convergence.

communication cost The number of messages exchanged. Note that all messages ever

exchanged are of the same size.

The unit of time will be cycles or seconds, depending on which is more convenient

(note that cycle length defaults to 1 s). We also note that convergence time is not defined

if the protocol terminates before converging. In this case, we use the number of identified

target links as a measure.

6.7.5 Evaluating the Starting Mechanism

Figure 6.9 shows the convergence time for SORTED RING and TREE, using the starting

protocols described in Section 6.7.1. The cycle length of the anti-entropy versions was the

same as that of T-MAN, and the flooding protocol used 20 random neighbors at all nodes.

The case of synchronous start is also shown for comparison. Note that these figures do not

represent a direct measure of the performance of well-known starting protocols; rather,

convergence time plotted here represents the overall time needed to both start the protocol

and reach convergence, with T-MAN and the broadcast protocol running concurrently.
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Figure 6.10: Convergence time (bottom curves) and termination time (top curves) as a

function of δidle.

In the case of flooding, “wake-up” messages quickly reach all nodes and activate the

protocol; almost no delay is observed compared to the synchronous case. Anti-entropy

mechanisms result in a few seconds of delay. In the experiments that follow, we adopt the

anti-entropy, push-pull approach, as it represents a good trade-off between communica-

tion costs and delay. Note however that (unlike the push approach) the push-pull approach

assumes that at least the starting service was started at all nodes already.

6.7.6 Evaluating the Termination Mechanism

We experimented with various settings for δidle ranging from 2 s to 12 s. Figure 6.10 shows

both convergence time (bottom three curves) and termination time (top three curves) for

different values of δidle, for SORTED RING and TREE, respectively. In both cases, ter-

mination time increases linearly with δidle. This is because, assuming the protocol has

converged, each additional cycle to wait simply adds to the termination time.

For small values convergence was not always reached, especially for TREE. For

SORTED RING, all runs converged except the case when δidle = 2 and N = 216, when

76% of the runs converged. For TREE, all runs converged with δidle > 5 and no runs

converged for (δidle = 2, N = 213), (δidle = 2, N = 216), and (δidle = 3, N = 216). Even

in these cases, the quality of the target graph at termination time was almost perfect, as

shown in Figure 6.11. In the worst of our experiments, we observed that no more than

0.1% of the target links were missing at termination. This may be sufficient for most ap-

plications, especially considering that the target graphs will never be constructed perfectly

in a dynamic scenario, where nodes are added and removed continuously. Nevertheless,

from now on, we discard the parameter combinations that do not always converge.

Apart from longer executions, an additional consequence of choosing large values of

δidle is a higher communication cost. However, since not all nodes are active during the

execution, the overall number of messages sent per node on average is less than one quar-

ter of the number of cycles until global termination. To understand this better, Figure 6.12

shows how many nodes are active during the construction of SORTED RING and TREE, re-

spectively. The curves show both an exponential increase in the number of active nodes

when starting, and an exponential decrease when stopping. The period of time in which

all nodes are active is relatively short.

These considerations suggest the use of higher values for δidle, at the cost of a larger

termination time and a larger number of exchanged messages. The chosen value of δidle
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Figure 6.11: Quality of the target TREE graph at termination time as a function of δidle

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

a
c
ti
v
e
 n

o
d
e
s
 (

%
)

Time (s)

Sorted Ring

size=2
10

size=2
13

size=2
16

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

a
c
ti
v
e
 n

o
d
e
s
 (

%
)

Time (s)

Tree

size=2
10

size=2
13

size=2
16

Figure 6.12: Proportion of active nodes during execution.

(4 s) represents a good trade-off between the desire of obtaining a perfect target graph and

the consequently larger cost in time and communication.

6.7.7 Parameter Tuning

Cycle Length If a faster execution is desired, one can always decrease the cycle length.

However, after some point, decreasing cycle length does not pay off because message

delay becomes longer than the cycle length and eventually the network will be congested

by T-MAN messages. Figure 6.13 shows the behavior of T-MAN with a cycle length vary-

ing between 0.2 s and 4 s. The figure shows the number of cycles required to terminate

the protocol. Small cycle lengths require a larger number of cycles, while after a given

threshold (around 1 s), the number of cycles required to complete a protocol is almost

constant. The reason for this behavior is that with short cycles, multiple cycles may be

executed before a message exchange is concluded, thus wasting bandwidth in sending and

receiving old information multiple times.
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Figure 6.13: Termination time as a function of cycle length.
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Message Size In Section 6.6, we have examined the effect of the message size param-

eter (m) in detail. Here we are interested in the effect of message size on termination

time. Figure 6.14 shows that by increasing the size of messages exchanged by SORTED

RING termination time slightly increases after around m = 20. The reason is that a node

becomes suspended only after the local view remains unchanged for a fixed number of

cycles, but increasing the message size has the effect of increasing the number of cycles

in which view changes might occur, thus delaying termination. The results for TREE have

more variance, which might have to do with the unbalanced nature of the topology, as

discussed in Section 6.6.3.

6.7.8 Failures

The results discussed so far were obtained in static networks, without considering any

form of failure. Here, we consider two sources of failure: message losses and node

crashes. Since in this chapter we consider only the overlay construction problem, and

not maintenance, we do not explicitly consider scenarios involving node churn. Instead,

we model churn through nodes leaving, and do not allowing joining nodes to participate

in an ongoing construction. Furthermore, since we do not have a leave protocol, leaving

nodes are identical to crashing nodes from our point of view.

Message Loss While a simple solution could be to adopt a reliable, connection-oriented

transport protocol like TCP, it is more attractive to rely on a lightweight but perhaps
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Figure 6.15: Termination time as a function of message loss rate.
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Figure 6.16: Target links found by the termination time as a function of message loss rate.

unreliable transport. In this case, we need to demonstrate that T-MAN can cope well with

message loss. Figure 6.15 shows that T-MAN is highly resilient to message loss and so

a datagram-oriented protocol like UDP is a perfectly suitable choice, as message losses

only slow down the protocol slightly. Many message exchanges are either never started

or never completed, thus requiring more cycles to terminate the protocol execution. The

quality does not suffer much either. In both SORTED RING and TREE, around 1% of the

target links may be missing, as shown by Figure 6.16. Note that the mean message loss

ratio for geographic networks like the Internet is around 2% [138], an order of magnitude

smaller than the maximum message loss ratio tested in our experiments.

Node Crashes Figure 6.17 shows the behavior of T-MAN with a variable failure rate,

measured as the total number of nodes leaving the network per second per node. We

experimented with values ranging from 0 to 10−2, which is two orders of magnitude larger

than the value of 10−4 suggested as the typical behavior of some P2P networks [139]. The

results show that both SORTED RING and TREE are robust in normal scenarios, with TREE

being considerably more reliable in the range of extreme failure rates. This is due to the

unbalanced nature of the topology as discussed in Section 6.6.3.
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Figure 6.17: Target links found by the termination time as a function of failure rate.

6.8 Conclusions

We presented T-MAN, a lightweight gossip-based protocol for constructing various over-

lay networks. The target network is given by the ranking method, which is a parameter

of the protocol. T-MAN is robust to the target network: it exhibits good performance that

is mostly invariant over a wide range of target networks such as rings and trees. The

protocol is simple and robust to failure scenarios which makes it attractive for practical

applications.

In closing, we note that T-MAN has been successfully applied for constructing the

CHORD overlay network (see Chapter 7) and the PASTRY overlay network (see Chapter 8).

In this chapter, we have chosen to focus on overlay construction as opposed to overlay

maintenance. Possible overlay maintenance techniques involve limited local view sizes

and periodic removal of old entries from the view. In addition, random samples from the

network can constantly be injected into the local view.



Chapter 7

Bootstrapping Chord

In this chapter we describe a practically relevant application of T-MAN: we use it to create

a CHORD network [83]. Structured peer-to-peer overlay networks like CHORD are now an

established paradigm for implementing a wide range of distributed services. While the

problem of maintaining these networks in the presence of churn and other failures is the

subject of intensive research, the problem of building them from scratch has not been

addressed (apart from individual nodes joining an already functioning overlay). Here, we

address the problem of jump-starting a popular structured overlay, CHORD, from scratch.

This problem is of crucial importance in scenarios where one is assigned a limited

time interval in a distributed environment such as a data center for Cloud computing, and

the overlay infrastructure needs to be set up from the ground up as quickly and efficiently

as possible, or when a temporary overlay has to be generated to solve a specific task on

demand.

We introduce T-CHORD, that can build a CHORD network efficiently starting from a

random unstructured overlay. After jump-starting, the structured overlay can be handed

over to the CHORD protocol for further maintenance. We demonstrate through extensive

simulation experiments that the proposed protocol can create a perfect CHORD topology

in a logarithmic number of steps. Furthermore, using a simple extension of the protocol,

we can optimize the network from the point of view of message latency.

7.1 Introduction

Structured overlay networks have received considerable attention recently [81, 83]. A

wide range of distributed services and applications can efficiently be implemented on

top of structured overlays. The fundamental abstraction that is the basis of numerous

applications is key-based routing [80]. Key-based routing protocols are based on routing

tables stored at each node and that are used to forward messages for a specific key towards

the destination: the node that is responsible for the given key. The neighborhood relations

specified by the routing tables define the overlay topology, whose structure depends on

the specific implementation.

While the problem of maintaining these networks in the presence of churn and other

failures is the subject of intensive research, the problem of building them from scratch

has not been addressed apart from handling node joins to an existing overlay. Yet, in

some important scenarios, we face the problem of jump-starting structured overlays from

scratch. This problem gains particular importance if one is assigned a limited time interval

in a distributed environment such as PlanetLab [95], or a Grid [140], and the overlay
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infrastructure needs to be set up from the ground up as quickly and efficiently as possible,

or when a temporary overlay has to be generated to solve a specific task on demand.

Existing join protocols are not designed to handle the massive concurrency involved in

a jump-starting process, when all the nodes are trying to join at the same time [83]. On the

other hand, naive approaches where nodes are forced to join the overlay in some specified

order results in at least linear time needed to construct the network (not to mention the

serious problem of synchronizing the operations).

We propose a solution to the jump-starting problem called T-CHORD that is simple,

scalable, robust, and efficient. T-CHORD is a protocol for bootstrapping the CHORD topol-

ogy on demand starting from an unstructured, uniform random overlay. The purpose of

T-CHORD is purely jump-starting the overlay; the constructed network is handed over to

the CHORD protocol for further maintenance.

T-CHORD is based on T-MAN. As we have seen in Chapter 6, T-MAN is a generic

mechanism for building and maintaining a wide range of different topologies, including

rings, grids and trees. Briefly, T-CHORD works as follows. We assume the existence of

a connected unstructured overlay network characterized by a random topology (such as

those produced by protocols in Chapter 2). Nodes are assigned unique IDs from a circular

ID space. Starting from the initial random overlay, T-MAN is used to build the ring to be

used by CHORD for consistent routing. At all nodes, as a “side effect” of its execution (by

remembering all the encountered nodes), T-MAN can also provide a larger set of nodes

from which CHORD fingers can be selected.

We have evaluated the topologies obtained by T-CHORD through simulation. The re-

sults, presented in Section 7.4, confirm that the obtained topology is equivalent to (in fact,

at times slightly better than) the “optimal” CHORD topology (as defined in the CHORD

protocol specification) based on routing performance: loss rate, hop count and latency.

7.2 System Model

We consider a network consisting of a large collection of nodes that are assigned unique

identifiers and that communicate through message exchanges. The network is highly

dynamic; new nodes may join at any time, and existing nodes may leave, either voluntar-

ily or by crashing. Since voluntary leaves can be trivially managed by simple “logout”

protocols, in the following we limit our discussion to node crashes, that are much more

challenging. Byzantine failures, with nodes behaving arbitrarily, are excluded from the

present discussion.

We assume that nodes are connected through an existing routed network, such as the

Internet, where every node can potentially communicate with every other node. To actu-

ally communicate, a node has to know the identifiers of a set of other nodes (its neigh-

bors). This neighborhood relation over the nodes defines the topology of the overlay

network. Given the large scale and the dynamism of our envisioned system, neighbor-

hoods are typically limited to small subsets of the entire network. The neighbors of a

node (and, thus, the overlay topology) can change dynamically.

7.3 The T-CHORD protocol

Let us now describe the proposed algorithms. In this section we will heavily build on

algorithms and concepts introduced in Chapter 6.
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7.3.1 A Brief Introduction to Chord

CHORD is an example of a key-based overlay routing protocol. In such protocols, subsets

of the key space are assigned to nodes, and each node has a routing table that it uses

to route messages addressed by a specific key towards the node that is responsible for

that key. These routing protocols are used as a component in the implementation of the

distributed hash table abstraction, where (key, object) pairs are stored over a decentralized

collection of nodes and retrieved through the routing protocol.

We provide a simplified description of CHORD, necessary to understand T-CHORD.

Nodes are assigned random t-bit IDs; keys are taken from the same space. The ID length

t must be large enough to make the probability of two nodes or two keys having the

same ID negligible. Nodes are ordered in an sorted ring as described in Section 6.7.3.

The way this ring is constructed naturally inspires a follows relation over the entire ID

(and key) space: we say that a follows b if (a − b + 2t) mod 2t < 2t−1; otherwise, a
precedes b. We also define a notion of distance, again, inspired by the sorted ring, as

follows: d(a, b) = min(|a − b|, 2t − |a − b|). The successor of an arbitrary number i
(that is, not necessarily existing node ID) is the node with the smallest ID that follows i,
as defined above. We denote the successor of i by succ1(i). The concepts of predecessor,

jth successor, and jth predecessor are defined similarly. Key k is under the responsibility

of node succ1(k).
Each node maintains a routing table that has two parts: leaves and fingers. Leaves

define an r-regular ring lattice, where each node n is connected to its r nearest successors

succ1(n) . . . succr(n) in the sorted ring. Fingers are long range links: for each node n,

its jth finger is defined as succ1(n + 2j), with j ∈ [0, t − 1]. Routing in CHORD works

by forwarding messages following the successor direction: when receiving a message

targeted at key k, a node n forwards it to its leaf or finger that precedes (or is equal to)

and is closest to succ1(k), the intended recipient of the message.

Due to the fingers, the number of nodes that need to be traversed to reach a destination

node isO(logN) (with high probability), whereN is the size of the network [83]. Leaves,

on the other hand, are used to improve the probability of delivering a message in case of

failures, and to avoid that the ring can be broken into disjoint partitions.

7.3.2 T-CHORD

In the context of CHORD, our overlay construction problem translates to initializing the

routing tables of all nodes simultaneously from scratch. The existing join protocol is not

designed to handle the massive concurrency involved in a jump-starting process, when all

the nodes are trying to join at the same time [83]. On the other hand, naive approaches

where nodes are forced to join the overlay in some specified order results in at least linear

time needed to construct the network (not to mention the serious problem of synchroniz-

ing the operations).

For constructing the leaf set and the fingers simultaneously, we apply T-MAN with an

appropriate ranking method. As usual, we use node ID-s as node profiles. The ranking

method we adopt is simply the ranking method of SORTED RING as seen in Chapter 6. At

any time, the actual leaf and finger sets are then constructed by each node locally from

nodes in their current view. Note, that the view is not bounded, so the node descriptors

that were received in the initial (non-converged) cycles are available as well. These nodes

are not useful for the leaf set (that defines the ring), however, they are crucial for the

fingers, that represent shortcuts in the ring.
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As of starting and termination, we experiment with both synchronous and realistic

starting and termination policies. The realistic policies are those that were described in

Chapter 6.

7.3.3 T-CHORD-PROX: Network Proximity

At a node n, for an exponent j ∈ [1, t− 1], several nodes in the current view may belong

to the finger range Fj = [n + 2j−1 mod 2t, n + 2j − 1 mod 2t]. In T-CHORD, the

finger nearest to n with respect to the ID space was selected among them, according to

the convention applied in the original CHORD. However, exploiting this degree of freedom

would allow us to optimize for message latency (a key measure of performance in routing)

and select the fastest possible finger that falls in the interval. This would enable the

construction of low-latency routing paths between nodes, improving the overall routing

performance of the network.

Inspired by this insight, we propose T-CHORD-PROX, a variant of T-CHORD based on

proximity. The protocol is the same as before, however, when constructing the finger

table, for all finger exponents j T-CHORD-PROX picks p nodes at random from Fj (or the

entire Fj set, if its size is less then or equal to the parameter p), and measures the latency

by sending distance probes to them. A distance probe can be implemented as a simple

ping-pong exchange, for example. This simple protocol builds a routing network that

results in a number of hops similar to the original CHORD, but outperforms it in terms of

latency.

7.4 Experimental Results

We performed extensive simulation experiments in order to compare the jump-started

overlay to the perfect CHORD topology, and to characterize the scalability and robustness

of our protocols. All of the experimental results were obtained using PEERSIM [66].

7.4.1 Experimental Settings

By default, in all experiments all nodes are initialized with a random view obtained from

the NEWSCAST protocol (see Section 2.2.4). Subsequently, T-MAN is run to create an

ordered ring, and to collect long range links as well. When T-MAN reaches a pre-specified

number of cycles, each node runs T-CHORD locally to extract its routing tables from the

T-MAN view, creating the CHORD topology. We note that in Section 7.4.6 we deviate from

this default in order to analyze practical starting and termination mechanisms.

We focus on the routing performance of the obtained overlay. Three routing metrics

have been taken into consideration. Hop count is the number of nodes that are traversed

by a message to reach its destination. In case of failures, message timeouts (failed hops)

are counted separately. Delivery delay measures the time needed to reach the destination.

Our latency model is based on the King dataset [137], that provides end-to-end latency

measurements for a set of 1740 routers. Each node is attached through a 1ms link to

a randomly selected router [81]. In case of failures, a time equal to twice the latency is

added to the total delay in order to simulate timeouts. Loss rate is the fraction of messages

that do not reach the destination node.

Since our goal is to jump-start CHORD, the baseline routing performance is defined

by the perfect CHORD topology over the same set of nodes. We construct this topology
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Figure 7.1: Loss rate, hop count and message delay as a function of the number of T-MAN

cycles executed

off-line, using the specification of the CHORD protocol, and we compare the performance

of this ideal topology with the ones generated by T-CHORD. We emphasize again that our

goal is not to develop a novel routing mechanism or a new structured overlay: our goal is

to create a CHORD topology efficiently from scratch.

Besides routing performance, we also need to measure communication overhead for

building the topology. In case of T-CHORD without proximity, communication costs are

given just by T-MAN exchanges. Given the periodic nature of T-MAN, these costs can

be easily computed: each T-MAN node sends one message and receives one message on

the average per cycle, with m descriptors included in each message. T-MAN is run for

O(logN) cycles. In T-CHORD-PROX, the cost of latency probes must also be considered.

Unless stated otherwise, all figures are based on the following parameters: network

size N = 216 nodes, message size m = 10, size of the leaf set in the CHORD target topol-

ogy r = 5, maximum number of probes per routing table entry p = 5. In all figures,

20 individual experiments were performed. Average values for each of the metrics are

shown; error bars are used to show minimum and maximum values among the experi-

ments (standard deviation is often too small to be visualized). To aid the visualization,

some of the bars are slightly shifted horizontally.

7.4.2 Convergence

The routing performance of the topologies obtained by T-CHORD depends on the number

of T-MAN cycles executed before the routing tables are built. In particular, the ring must

be completed in order to guarantee the correct delivery of all messages. This is illustrated

in Figure 7.1, where the loss rate and the observed hop count for T-CHORD and T-CHORD-

PROX are shown as a function of the number of T-MAN cycles that have been run. Initially,

all messages are lost: local views contain only random nodes, so the routing algorithm

is unable to deliver messages. The loss rate rapidly decreases, however, reaching 0 after

only 14 cycles. At that point, the leaf ring is completely formed in all our experiments.

Note that the curves for T-CHORD and T-CHORD-PROX overlap almost completely.

Regarding hop counts, the results confirm that the quality of the routing tables sta-

bilizes after few cycles, for both versions of T-CHORD. Message delay follows a similar

behavior, except that T-CHORD-PROX shows a significant improvement. The increasing

tendency of the hop count curves is explained by the fact that in the beginning, in spite of

the low quality overlay, a few messages reach their destination “by chance” in a few hops,
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Figure 7.2: Average hop count and message delay as a function of network size
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while most of the messages are lost.

7.4.3 Scalability

The experiments discussed so far were run in a network with a fixed size (216 nodes). To

assess the scalability of T-CHORD, Figure 7.2 plots measurements against network size

varying in the range [210, 218]. Results for the ideal CHORD topology are also shown. All

algorithms scale logarithmically with size.

Quite interestingly, T-CHORD performs slightly better than CHORD. Regarding hop

count, this is explained by the fact that the distance of the longest fingers tend to be

larger in our case (due to not strictly satisfying the CHORD specification), which speeds

up reaching the destination node if it resides in the most distant half of the ring. Regarding

message delay, as expected, T-CHORD-PROX outperforms both T-CHORD and CHORD, due

to its latency-optimized set of fingers. To obtain such performance, T-CHORD-PROX pays

a price in terms of latency probes. In this experimental setting, with parameter p set to 5,

we have observed a total number of probes per node scaling logarithmically from 45 (for

N = 210) to 77 (forN = 218). This is expected, as the number of expected different finger

entries per node is O(logN) [83]. These values can be tuned by varying the p parameter.
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Figure 7.4: Hop count and message delay as a function of message size m

Figure 7.3 plots the number of cycles needed to obtain the 1-regular lattice (the ring),

sufficient to guarantee the consistent routing of messages (absence of message losses) [83],

and the r-regular lattice used to provide additional fault-tolerance. In both cases, the con-

vergence is obtained in a logarithmic number of cycles. Note that the actual execution

time of the protocol depends on the length of a cycle, which is a parameter of the pro-

tocol. Based on results in Chapter 6, a cycle length of 1-2 seconds is very reasonable.

Considering the results, we can conclude that any practical network can very safely be

constructed in less then a minute (30 cycles).

Finally, as part of our measurements regarding scalability, let us consider the storage

complexity of T-MAN. In Section 6.6.4 we argued that storage complexity is O(logN)
per node. This is why we do not have an upper bound on the view size. Indeed, in our sim-

ulation experiments, the average amount of descriptors discovered during the execution

ranges from as little as 70 (N = 210) to 140 (N = 218).

7.4.4 Parameters

To evaluate the impact of the T-MAN message size (m) on the routing performance of our

algorithm, we performed the simulations shown in Figure 7.4. For message size m we

set the size of the CHORD leaf set to be r = m/2. The plots show that good results are

obtained even when using small message size, although it must be noted that in the case

of m = 4, approximately 0.6% of the messages are not delivered to their destination.

7.4.5 Robustness

To test robustness, we have considered two different failure models: crash and churn. In

the former, failures are catastrophic: a given percentage of nodes are suddenly removed

from the completed CHORD network. In the latter, the same percentage of nodes are

removed during the execution of T-CHORD, evenly distributed over time.

The two models play different roles in our analysis. The crash model is the only

one applicable to the ideal CHORD network that we use for comparison, since we build

it off-line, without using the actual CHORD maintenance protocol. We use this model to

obtain a lower bound for routing performance. In the churn model, on the other hand,

failures influence the execution of T-MAN; we use this model to show that our algorithm

can indeed survive failures during its execution.
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Figure 7.5: Loss rate, hop count, failed hops, and message delay under different failure

scenarios

It is important to note that a direct comparison between the results of T-CHORD-PROX

and the other results is not fair. T-CHORD-PROX probes nodes for latency before inserting

them in the finger set, which means that only a few fingers (the ones that fail in the period

after the probing) are down when the routing performance is evaluated.

We have simulated an increasing percentage of nodes removed in a network of size 216,

with T-MAN running for 20 cycles. The results are presented in Figure 7.5. Once again,

our routing metrics show that the topology obtained by T-CHORD without proximity is

comparable to the ideal CHORD topology, in both the crash and the churn models.

It is interesting to compare the simulated churn rate with the churn rate observed in de-

ployed P2P networks [141]. In the worst case, the churn rate corresponds to 50% divided

by 20 cycles, i.e. 2.5% per cycle. A cycle length of 2 seconds (a perfectly reasonable

choice that enables the construction of a 216 topology in less than a minute) corresponds

to 0.0125 failures per node per second, two orders of magnitude larger than the rates

observed in deployed networks (around 10−4 failures per node per second ( [141])).

7.4.6 Starting and Termination

So far we have experimented with the protocol assuming that the startup is synchronized,

and that termination is based on a pre-determined number of cycles. Here we add to the

protocol the startup and termination mechanisms described in Chapter 6. We will now

characterize time in terms of seconds and not cycles, due to the more fine-grained nature

of the simulations. We set ∆ = 1. In the experiments here m = 10, however, we build

leaf sets of size r = 10 and not r = 5 as before, so convergence is somewhat slower even
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Figure 7.6: The effect of parameters affecting starting and termination.

for synchronous startup.

Figure 7.6 contains the results of this set of experiments. The upper left plot shows

the convergence time for different starting protocols and for a variable network size. The

relative convergence time of the different mechanisms is similar to what can be seen in

Figure 6.9.

The upper right plot presents termination times for different values of parameter δidle.
For small values of δidle and for large networks, we found that the protocol never reaches

convergence. Nevertheless, the lower left plot shows that even for small values of δidle,
the number of messages never delivered to the correct destination is smaller than 1%,

which means that the obtained overlay is a good approximation of CHORD. However, for

δidle = 8, all our test runs resulted in 100% successful message delivery, so we adopt this

value for the protocol. The slight disadvantage is a larger number of messages exchanged

and a slower termination time.

Finally, the lower right plot shows the average number of messages sent by a node in

the network until termination. This is significantly lower than the termination time, which

could be expected based on our findings discussed before (see Figure 6.12), namely that

most of the nodes terminate much earlier than the global termination time.

7.5 Related Work

Bootstrapping structured overlays is somewhat under-emphasized in comparison with

other research topics. Existing proposals have assumed networks that are already formed,

or networks that grow progressively, using the native join protocol. The discovery of

the node to join may be facilitated either by a central (well-known) node, or through a
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universal ring, a shared overlay providing discovery and deployment services [142].

Join protocols enable a new node to find its position inside the structured topology [81,

83]. For example, the single-join protocol of CHORD requires a node to locate its position

inside the ring, and then to locate each of its O(logN) distinct fingers [83]. Since both

operations require O(logN) hops (messages), the cost of a single-join is O(log2N).
This aggressive protocol is superseded by a light-weight one that can support concur-

rent joins. In this case, nodes just find their position in the ring (with a O(logN) routing

operation), while fingers are updated subsequently by a stabilization protocol. The proto-

col is efficient “... unless a tremendous number of nodes joins the system.” [83], in which

case the updating rate of fingers is not sufficient and routing requires a linear number

of hops. In comparison, our approach builds the topology in O(logN) cycles, with two

messages sent and two messages received per node per cycle, with each message being a

collection of m 128-bit IDs.

The problem of bootstrapping an overlay topology has started recently to gain interest

from the research community. Angluin et al. [129] propose an asynchronous algorithm

whose goal is to build a linked list of nodes sorted by their identifiers. Their approach

is based on binary search trees that are built in O(WlogN) time, where W is the length

of node identifiers. On comparison, our approach builds the ring in O(logN) time, in-

dependently from the size of identifiers. Furthermore, our approach can deal with high

level of churn, while churn has not been considered in [129]. Aberer et al. [127] propose

a mechanism for bootstrapping a P-Grid topology in O(log2N) time.

Finally, Voulgaris and van Steen [126] propose an epidemic protocol with a similar

goal: jump-starting Pastry. However, their proposal is rather expensive: it requires run-

ning O(logK) instances of a modified NEWSCAST protocol [6] in parallel (where K is the

size of the ID space), and it does not take latency into account. Besides, it is highly spe-

cific to Pastry, whereas our approach, being based on T-MAN, that is able to evolve a wide

range of topologies, is potentially more generic. Indeed, we already have preliminary

results for building Pastry as well, through an XOR-based ranking function for T-MAN,

with costs similar to T-CHORD.

7.6 Conclusions

We have addressed the problem of jump-starting a popular structured overlay, CHORD,

from scratch. The proposed protocols, T-CHORD and T-CHORD-PROX are scalable, light-

weight and robust, and can be applied to scenarios (such as Grids [140] and large-scale

testbeds like Planet-Lab [95]), where the overlay infrastructure needs to be built from the

ground up as quickly and efficiently as possible.

Although here we targeted CHORD, our approach is more general, and it can be applied

to other overlay protocols as well. Chapter 8 will contain an example where we build a

prefix-table based overlay.



Chapter 8

Towards a Generic Bootstrapping

Service

In this last chapter, we present another application of T-MAN, namely the bootstrapping of

prefix-based structured overlay networks such as PASTRY. In addition, we also propose a

modular approach to combine several gossip components, and we argue that bootstrapping

different overlay networks is an important service in this architecture.

The novel application scenarios for P2P systems that are supported by this bootstrap-

ping service include merging and splitting of large networks, or multiplexing relatively

short-lived applications over a pool of shared resources. In such scenarios, the architec-

ture needs to be quickly and efficiently (re)generated frequently, often from scratch. We

propose the bootstrapping service abstraction as a solution to this problem. We present an

instance of the service that can jump-start any prefix-table based routing substrate quickly,

cheaply and reliably from scratch. We experimentally analyze the proposed bootstrapping

service, demonstrating its scalability and robustness.

8.1 Introduction

Structured overlay networks are increasingly seen as a key layer (or service) in peer-to-

peer (P2P) systems, supporting a wide variety of applications. Index-based lookup is

generally considered to be a “bottom” layer (e.g., [135, 142]), based on the assumption

that the life cycle of supported systems is similar to grassroots file sharing networks:

there exists at least one functional network, membership can change due to churn, and

the network size can also fluctuate, but relatively smoothly. Join operations are assumed

to be uncorrelated. Most simulation and analytical studies also reflect these assumptions,

since they are often based on traces collected from real file sharing networks.

While this scenario may be appropriate for many important applications, we believe

that overlay networks can be important design abstractions in radically different scenarios

that have not yet been considered by the P2P research community. In particular, massive

joins to a large overlay network are not supported by known protocols very well, and

many protocols have trouble dealing with massive departures as well. Other related sce-

narios that are important yet under-emphasized include bootstrapping a large network

from scratch, merging two or more networks, splitting a large network into several pieces,

and recovering from catastrophic failure.

If these scenarios were to be supported efficiently, we could build a fully open and

flexible computing infrastructure that points well beyond current applications. We envi-

145



146 CHAPTER 8. TOWARDS A GENERIC BOOTSTRAPPING SERVICE

sion scenarios that involve (virtual) organizations with (possibly) large pools of resources

organized in overlay networks. We want to allow these overlay networks to freely and

flexibly merge with and split from networks of other organizations on demand, and we

want to admit allocation (or sale) of pools of resources for relatively short periods to users

who could then build their own infrastructures on demand and abandon them when they

are done. This vision is in line with current efforts to enhance the flexibility of Grid

infrastructures using P2P technology [143].

To support the above vision, we propose a P2P architecture with two main compo-

nents: the peer sampling service and a dedicated bootstrapping service. Merging several

large networks or starting an application from scratch within its time-slice are unusual

and radical events that many existing P2P protocols are not designed to cope with. To

provide a reliable platform in the face of massive joins and departures, we propose the

peer sampling service (see Section 2) as a lightweight bottom-most layer of our P2P ar-

chitecture. The bootstrapping service is then built on top of this peer sampling service.

In the proposed architecture, large collections of resources can be readily aggregated into

global structured overlays rapidly and efficiently. This then allows the use of existing,

well-tuned protocols without modification to maintain the overlays once they have been

formed. As a concrete example of the bootstrapping service, we present a novel proto-

col that can efficiently build prefix-based overlay routing substrates such as Pastry [81],

Kademlia [144], Tapestry [145] and Bamboo [51] from scratch.

Considering related work in the area, massive joins to already running overlays have

been addressed previously (e.g., [134, 135]) proposing a form of periodic repair mecha-

nism for maintaining the leaf set, not unlike the one presented here. More recently the

bootstrapping problem has been addressed as well, focusing on specific overlays [16,127,

128]. Our contribution with respect to related work is twofold. First, we propose an ar-

chitecture that can support a protocol that jump-starts an entire overlay from scratch. Our

protocol is independent of the protocol that manages the routing substrate: we singled

out the abstract bootstrap service as an important architectural component. Second, our

protocol is efficient and lightweight, and supports overlays based on prefix-tables and leaf

sets.

The outline of this chapter is as follows. Section 8.2 presents the architecture to sup-

port the scenarios mentioned above. Section 8.3 describes the protocol implementing

the bootstrapping of routing substrates, while Section 8.4 presents experimental results.

Finally, Section 8.5 concludes the chapter.

8.2 The Architecture

Our ultimate goal is to design a P2P architecture that allows for large pools of resources to

behave almost like a liquid substance: it should be possible to merge large pools, or split

existing pools into several pieces easily. Furthermore, it should be possible to bootstrap

potentially complex architectures on top of these liquid pools of resources quickly on

demand.

The architecture is outlined in Figure 8.1. The lowest layer, the peer sampling service,

implicitly defines a group abstraction by allowing higher layers to obtain addresses of

random samples from the actual set of participating peers; even shortly after massive

joins or catastrophic failures. The basic idea of the architecture is that we require only

this lowest layer to be liquid, that is, persistent to the radical scenarios we described, and

we propose to build all other overlays on demand. In other words, the sampling service
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Figure 8.1: The layers of the proposed architecture. The highlighted part is discussed in

this chapter.

functions as a last resort that provides a very basic, but at the same time extremely robust

service, which is sufficient to enable jump starting or recovering all higher layers of the

architecture.

As shown in Figure 8.1, the architecture supports other components in addition to

structured overlays. For example, a number of components rely only on random samples,

like probabilistic broadcast (gossip) or aggregation (see Chapter 3). The architecture can

also support other overlays, such as proximity based ones (see Chapter 6).

The bottom layer of the proposed P2P architecture is the peer sampling service (see

Chapter 2). Due to its low cost, extreme robustness and minimal assumptions, gossip

based peer sampling protocols are an ideal bottom layer that makes the bootstrap service

feasible. The sampling service is useful (and, in fact, sufficient) for gossip-based protocols

that are based on sending information periodically to random peers. In this chapter, as

usual, we again use the NEWSCAST protocol in our experiments (see Section 2.2.4).

8.3 Bootstrapping Prefix Tables

As argued earlier, our architecture crucially relies on the existence of a lightweight and

efficient implementation of the bootstrapping service, that in turn relies on peer sampling.

Here we develop a protocol that fulfills these requirements. We have already addressed

bootstrapping CHORD in Chapter 7 based on a sorted ring, and additional fingers that

are defined based on distance in the ID space. However, an important alternative design

decision of DHT-s is applying prefix-based routing tables, which have some important

advantages, such as independence of ID distribution, but which are a significantly differ-

ent task to build and maintain. The protocol that we present here constructs prefix-based

routing tables at all participating nodes simultaneously, and from scratch. The key idea is

similar to that of T-CHORD; nodes build a sorted ring, and during the process they collect

entries to fill the prefix tables at all nodes.

The prefix table is defined as follows. We assume that all nodes have unique numeric

IDs. An ID is represented as a sequence of digits in base 2b—each digit is encoded as

a b-bit number. The prefix table of a given node contains IDs that belong to different

types based on the length of the common prefix with the node’s own ID. The types are

defined by a pair (i, j), where i is the length (in base 2b digits) of the longest common

prefix of the ID and the node’s own ID, and j is the actual value of first differing (base

2b) digit. For each entry type (i, j) the table contains up to k alternative IDs. (Note that



148 CHAPTER 8. TOWARDS A GENERIC BOOTSTRAPPING SERVICE

it is possible that there are less than k node IDs with the desired prefix and digit among

the participating nodes, in which case we cannot fill all the k slots; hence k is only an

upper bound.) Many overlay routing substrates are based on this prefix table: for example

Pastry [81], Kademlia [144], Tapestry [145] and Bamboo [51]. Using the constructed

prefix tables and the leaf sets (that define the sorted ring), the routing tables of all these

networks can be bootstrapped.

To sum up, each node has a prefix table and a leaf set to fill, and the leaf set is being

evolved to contain the nearest neighbors in the sorted ring of node IDs. Unlike in the case

of T-CHORD, here the leaf set is symmetric, so constructing the leaf can be achieved using

SORTED RING directly. The size of the leaf set is denoted bym. The protocol we propose is

similar to T-CHORD in that it is an instance of SORTED RING with some modifications. Like

in T-CHORD, the prefix table entries are constantly being filled using any new information

that is arriving in the incoming messages.

The main new idea w.r.t. T-CHORD is that the gradually improving prefix table is fed

back into the ring building process, so that the two components mutually boost each other.

That is—although the ring-building process fills in most of the entries in the prefix tables

as a side-effect—the prefix tables can already fulfill a kind of routing function before

being completed, just like in DHT-s. Especially in the end phase, when most of the

nodes have found their place in the ring, but a few still have an incorrect neighborhood,

the gossip mechanism of T-MAN and the almost complete prefix tables together can help

these last nodes find their correct neighborhood quickly, essentially as if they were routed

by the routing substrate under construction.

To implement this idea, we modify method TOSEND() in Algorithm 13, which is re-

sponsible for generating a set of node descriptors to be sent to the peer node. Knowing the

ID of the peer, the method optimizes the information to be sent as follows. First it takes

the union of the leaf set, r random samples taken from the sampling service, the current

prefix table, and its own descriptor (in other words, all locally available information). It

applies the ranking function to this set, and keeps the first m entries. In addition, it adds

to the message all node descriptors that are potentially useful for the peer for its prefix

table (i.e., have a common prefix with the peer ID). The size of this additional part is not

fixed but is bounded by the size of the full prefix table, and usually is smaller in practice.

Let us summarize the parameters specific to the protocol. The prefix table is defined

by b (the number of bits in a digit) and k, the number of alternatives entries to be stored

for all the specific prefix types. The size of the leaf set is m. Finally, r is the number of

random samples used for improving the messages to be sent. Note that these samples are

“free” (if r is not too large) since the generic peer sampling layer is assumed to function

independently of the bootstrapping service.

8.4 Simulation Results

Both the sampling service and the bootstrapping service were implemented for the PEER-

SIM simulator [66]. We focus on two aspects of the protocol: scalability and fault toler-

ance. To this end, we fix all the parameters of the protocol, except the network size and

failure model. In our simulations IDs are 64-bit integers. Although typical definitions

of the ID space consider 128-bit integers, using only 64 bits for our simulations is not

limiting since the length of the largest common prefix is much less than 64 bits for all

node pairs in networks of any practical size. The extra bits play no role in this protocol.
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Figure 8.2: Results in the absence of failures. When a curve ends, the corresponding

tables are perfect at all nodes.

The parameters of the prefix table were chosen to match common settings: b = 4 and

k = 3. For networks that do not require multiple alternatives of a given table entry, setting

k > 1 is still useful because it allows for optimizing the routes according to proximity as

we did in the case of T-CHORD-PROX. The leaf set size was m = 20 and the parameter r
was set to be 30. We experimented with network sizes (N) of 214, 216 and 218 nodes.

Method SELECTPEER() of T-MAN uses parameter ψ = m/2 (a peer is selected from

the m/2 highest ranking nodes) and no tabu list is used. The startup technique we use is

flooding, as described in Chapter 6. The protocol is then run until the perfect leaf sets and

prefix tables are found at all nodes, based on the actual set of IDs in the network. This

cannot be decided locally, and indeed, the protocol has no stopping criterion. However,

since our protocol is cheap and needs only a small number of iterations, in practice, af-

ter initialization it can be run simply for a fixed number of cycles that are known to be

sufficient for convergence.

To test scalability, in the first set of experiments (shown in Figure 8.2) there are no

failures and all messages are delivered reliably. For network sizes 214, 216 and 218, we

performed 50, 10 and 4 independent experiments, respectively. The plots show the results

of each individual experiment, ending when perfect convergence is obtained.

From the left plot of Figure 8.2 we observe that the time required to reach a desired

quality of the leaf sets increases by an additive constant despite a four-fold increase in

the network size. This is a strong indication that the time needed for convergence is

logarithmic in network size. In addition to being logarithmic, the actual convergence

times are also rather small. Convergence of the leaf sets clearly follows an exponential

behavior.

The convergence of the prefix tables is rather surprising (right plot of Figure 8.2): the

network of 218 nodes converges faster in the final phase than a network that is four times

smaller, with the same parameters. Note that in this final phase, the vast majority of the

entries are already available (less than 1 out of 1000 entries are missing). This slight

difference has to do with the scarcity of suitable IDs for the remaining positions to fill.

In the second set of experiments we tested the robustness of our protocol by dropping

messages with a uniform probability (Figure 8.3). This failure model is appropriate for

study because we designed the protocol with a cheap, unreliable transport layer in mind

(UDP). The drop probability was chosen to be 20%, which is unrealistically large. Since

the protocol is based on message-answer pairs, if the first message is dropped, then the

answer is not sent either. Taking this effect into account, elementary calculation shows
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Figure 8.3: Results with 20% of the messages dropped. When a curve ends, the corre-

sponding tables are perfect at all nodes.

that the expected overall loss of messages is 28%.

The main conclusion of these experiments is that the behavior of the protocol is very

similar to the case when there are no failures, only convergence is slowed down propor-

tionally.

The protocol is not sensitive to churn either (not shown). In short, the quality of

the routing tables generated by our protocol is similar to that obtained by known routing

substrates in the presence of similar churn. Furthermore, since our protocol is based on

cheap UDP messages and can be completed in a small number of cycles, the effect of

churn during this short time is naturally limited.

8.5 Conclusions

We proposed a P2P architecture that relies on a robust peer sampling service and a boot-

strapping service. Although the functionality of the sampling service is basic, its imple-

mentation is more robust and flexible than those of currently available structured overlays.

The architecture we presented here, and in particular, the bootstrapping service, bridges

the robustness and flexibility of the sampling service and the functionality of structured

overlays.

Based on our simulation results, the proposed instantiation of the bootstrapping ser-

vice can build a perfect prefix table and leaf set at all nodes, in a logarithmic number

of cycles, even in the presence of message delivery failures. This performance, in com-

bination with the support of the sampling layer, enables the on-demand deployment of

complex (multi-layered) P2P applications in short time-slices over large pools of shared

resources, in addition to allowing large pools of resources to be merged or split temporar-

ily. Note that (as presented in Chapter 7) the bootstrapping service can be instantiated by

T-CHORD as well, in which case a finger table is produced instead of a prefix table. Also

note that the finger table can also be fed back to the construction process like the prefix

table in this chapter; a possibility we have not used in our presentation in Chapter 7.
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