
Towards an open data ecosystem
without clouds

Róbert Ormándi
István Hegedűs

Márk Jelasity

University of Szeged, Hungary

ICT and the Society of the Future (FuturICT.hu)
TÁMOP-4.2.2.C-11/1/KONV-2012-0013

22013/06/03 BBN, Boston

Outline

● Motivation: the open data ecosystem
● Brief notes on the systems issues
● Massively distributed machine learning: the

gossip learning framework (GoLF), illustration
through linear SVM

● Low rank matrix factorization in GoLF

32013/06/03 BBN, Boston

42013/06/03 BBN, Boston

Number of smart
phones
has passed
one billion
last October

52013/06/03 BBN, Boston

Private
Cloud
Infrastructure

Big Data
today

Data is owned privately
(“closed source”)

Storage and
processing is costly
and problematic
(privacy)

So data can serve
limited applications
(advertising,
recommendation, etc)

62013/06/03 BBN, Boston

Sci-Fi (as of today)

● Anyone can work with comprehensive global “big” data
available in billions of smart phones, and create data
models (arbitrary features or predictive models)

● Privacy is fully respected

● Efficient and easy-to-use libraries and schemes are
available to support this

● These models are shared and can be used to build
further models (like in open source model)

● The cost of entry and cost of maintenance is zero

72013/06/03 BBN, Boston

So, what if data was open?

● Science (e.g. health)
– E.g. test the influence of physical activity on chance

of getting the flu (building on models for recording
physical activity and probability of flu infection)

● Business
– E.g. car accident prediction (training data based on

accident detection, features can include flu
infection, current mood (see below), etc)

● Fun
– Sky is the limit... E.g. mood predictor, etc

82013/06/03 BBN, Boston

Outline

● Motivation: the open data ecosystem
● Brief notes on the systems issues
● Massively distributed machine learning: the

gossip learning framework (GoLF), illustration
through linear SVM

● Low rank matrix factorization in GoLF

92013/06/03 BBN, Boston

System model

● Large number (millions or more) computers (nodes)

● Packet switched communication

– Every node has an address

– Any node can send a message to any given address
● That is, almost: in reality, NATs, firewalls

– Delay tolerant networks, ad hoc networks, etc are also
interesting, but here we will assume any-to-any

● Messages can be delayed or lost, nodes can crash
(unreliable asynchronous communication)

102013/06/03 BBN, Boston

Fully distributed data

● Horizontal data distribution
● Every node has very few records, we assume

they have only one
● Data can change (data streams from sensors,

or concept drift)
● We do not allow for moving (uploading,

collecting, sharing) data, only local processing
(helps privacy preservation)

112013/06/03 BBN, Boston

BlueSky middleware

122013/06/03 BBN, Boston

Outline

● Motivation: the open data ecosystem
● Brief notes on the systems issues
● Massively distributed machine learning: the

gossip learning framework (GoLF), illustration
through linear SVM

● Low rank matrix factorization in GoLF

132013/06/03 BBN, Boston

Massively distributed data
mining
● The massively distributed model is limited in

computing abilities, but not as much as it seems!

● Asynchronous distributed numeric algorithms exist that

– Are very fast

– Are very simple to implement and reason about

– Provide almost exact, or often exact results in the face
of chaotic communication

● E.g. chaotic power method, gossip based aggregation

● Our ambition is to achieve this for data mining
algorithms (we focus on classification now)

142013/06/03 BBN, Boston

Classification problem in
machine learning
● We are given a set of (x

i
,y

i
) examples, where y

i

is the class of x
i
 (y

i
 is eg. -1 or 1)

● We want a model f(), such that for all i, f(x
i
)=y

● f() is very often a parameterized function f
w
(),

and the classification problem becomes an
error minimization problem in w.
– Neural net weights, linear model parameters, etc

● The error is often defined as a sum of errors
over the examples

152013/06/03 BBN, Boston

Illustration of classification
with a linear model

+
+

++
+

+

+

+

++

+

-

-

-
-

-

-

-
-

-
-

-

+
+

++
+

+

+

+

+

+

+

+

-

-

-
-

-

--
-

-
-
-

+
-

162013/06/03 BBN, Boston

Learning scheme: Walking
models, static data
● So, the problem is to find an optimization method that

fits into our system and data model

● Most distributed methods build local models and then
combine these through ensemble learning: but we don't
have enough local data

● Online algorithms
– They update the model based on one data record at a time

● Idea 1: models walk over overlays and get updated at
local nodes using a suitable online algorithm

● Idea 2: we can combine models that visit the same node

172013/06/03 BBN, Boston

Stochastic gradient descent

● Assume the error is
defined as

● Then the gradient is

● So the full gradient
method looks like

● But one can take only
one example at a time
iterating in random
order over examples

Err (w)=∑
i=1

n

Err (w ,x i)

∂Err (w)

∂w
=∑
i=1

n ∂Err (w , x i)

∂w

w t1=w t − t ∑
i=1

n ∂Err w , x i

∂w

w t1=w t − t
∂ Errw , xi

∂w

182013/06/03 BBN, Boston

Gossip learning

192013/06/03 BBN, Boston

The merge function for
linear models
● Let z=merge(x,y)=(x+y)/2 (x and y are linear models)

● In the case of linear regression (a.k.a. Adaline perceptron)

– Updating z using an example has the same effect as
updating x and y with the same example and then averaging
these two updated models

● Update is distributive over merge
– Making predictions using z is the same as calculating the

weighted average of the predictions of x and y
● Prediction is distributive over weighted vote

– So, we effectively propagate an exponential number of
models, and the voting of these is our prediction

● For other linear models, like the linear SVM, this is only a
heuristic argument

202013/06/03 BBN, Boston

Local prediction
● We use only local

models

– The current
model

– Or voting over
a number of
recent models

212013/06/03 BBN, Boston

Linear SVM
● We plugged in a linear SVM with stochastic gradient

(Pegasos by Shalev-Shwartz et al (2010))

● We theoretically proved convergence under merging

● We used several benchmark data sets for evaluations

– Data is fully distributed: one data point per node
● We used extreme scenarios

– 50% message drop rate

– 1-10 cycles of message delay

– Churn modeled after the FileList.org trace from Delft

222013/06/03 BBN, Boston

Data sets

● Statistics of data sets
● The performance of some known algorithms

232013/06/03 BBN, Boston

Without merge

242013/06/03 BBN, Boston

With merge

252013/06/03 BBN, Boston

Outline

● Motivation: the open data ecosystem
● Brief notes on the systems issues
● Massively distributed machine learning: the

gossip learning framework (GoLF), illustration
through linear SVM

● Low rank matrix factorization in GoLF

262013/06/03 BBN, Boston

Low rank matrix approximation

● Work in progress!

● Given matrix R, we want to
find U and I such that UI is
close to R

● Dimension k is very small:
we want compression (eg
topic models)

● R is not fully defined (eg non-
rated items if R is user-item
matrix for recommendation)

● We assume one node has
one row of R: private
information, eg item ratings

Um x k Rm x n

U
i

I
j

R
ij

Ik x n

Credits: Levente Kocsis (main idea)
and András Benczúr, Inst. for CS and
Control, Budapest

272013/06/03 BBN, Boston

Low rank matrix approximation

Um x k Rm x n

Ik x n

● The model that walks is mx. I

● Rows of U (and R) are local to
nodes, they do not move

● Q
i
 contains rated item indices.

Ignoring regularization:

Err (U i , I)=
1

∣Qi∣
∑
j∈Q i

(R i , j−U i I j)
2

∂Err (U i , I)

∂U i

=
2

∣Qi∣
∑
j∈Qi

(Ri , j−U i I j) I j
T

∀ j∈Qi :
∂Err (U i , I)

∂ I j

=
2

∣Q i∣
(Ri , j−U i I j)U i

T Gossip matrix I

282013/06/03 BBN, Boston

Low rank matrix approximation
● Matrix I is relatively small, but

we might do better

– propagate only those
columns that change

– Merge received columns to
local version of I

● So, here we have a local
complete version of I, in which
we merge incoming columns
as they arrive

Um x k Rm x n

Ik x n

Gossip updated
columns only

292013/06/03 BBN, Boston

Small MovieLens (1000 users, 1700 movies, 100,000 ratings)

302013/06/03 BBN, Boston

Publications

● Róbert Ormándi, István Hegedűs, and Márk Jelasity. Asynchronous peer-to-
peer data mining with stochastic gradient descent. In Emmanuel Jeannot,
Raymond Namyst, and Jean Roman, editors, Euro-Par 2011, volume 6852
of Lecture Notes in Computer Science, pages 528–540. Springer-Verlag,
2011.

● Róbert Ormándi, István Hegedűs, and Márk Jelasity. Gossip learning with
linear models on fully distributed data. Concurrency and Computation:
Practice and Experience,25(4):556–571, 2013. (doi:10.1002/cpe.2858)

● István Hegedűs, Róbert Busa-Fekete, Róbert Ormándi, Márk Jelasity, and
Balázs Kégl. Peer-to-peer multi-class boosting. In Euro-Par 2012, volume
7484 of Lecture Notes in Computer Science, pages 389-400. Springer-
Verlag, 2012.

● István Hegedűs, Róbert Ormándi, and Márk Jelasity. Gossip-based learning
under drifting concepts in fully distributed networks. In Sixth IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2012), pages 79–88. IEEE Computer Society, 2012.

312013/06/03 BBN, Boston

Additional results

● We implemented multiclass boosting in the
gossip framework

● We developed techniques for dealing with
concept drift
– The algorithm is running continuously

– We keep the age distribution of models fixed

– At any point in time we have good models

322013/06/03 BBN, Boston

The Drifting problem

332013/06/03 BBN, Boston

How to set the TTL

● We want to control the distribution of model
ages at time t (A

t
)

● But we can control only the distribution of TTL
(X)

● The relationship between the two is given by

342013/06/03 BBN, Boston

352013/06/03 BBN, Boston

Concept Drift Conclusions

● If the sampling rate is rare relative to drift
speed, then our algorithm is favorable
– Many improvements are possible, this is the

“vanilla” version that uses only a single example in
each cycle for update and uses no model merging

● Some results we did not discuss
– Robustness to failure is good, a slowdown can be

observed due to slower random walks

– The algorithm is very insensitive to system size

362013/06/03 BBN, Boston

Remarks regarding
convergence
● If uniformity of random walk is guaranteed, then all the

models converge to the true model eventually,
irrespective of all failures

● If no uniformity can be guaranteed, but the local data
is statistically independent of the visiting probability,
then we will have no bias, but variance will increase
(effectively we work with fewer samples)

● If no uniformity and no independence could be
guaranteed, convergence to a good model is still
ensured provided that the data is separable, and all
misclassified examples are visited “often enough”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

