SISO
Gossip beyond broadcasting:
gossip based aggregation

Mark Jelasity

Department of Computer Science
University of Bologna

ltaly

Outline

m The gossip based communication model
m An example protocol: average calculation

m Components: characterization and
combination

m Future work

Outline

m The gossip based communication model

Basic Concepts

m Nodes

= have state
m perform computations
m Communication Topology

m Neighbors (“knows about”
relation)

s Maintained by specific
protocols

ay Push-Pull Gossip based

S ON Communication Model

#
D

// active thread
do forever
walt (T time units)
peer = selectRandomNeilghbor ()
send state to peer
recelve peer.state from peer
state = updateState(state, peer.state)

// passive thread

do forever
(peer, peer.state) = waitMessage ()
send state to peer
state = updateState(state, peer.state)

Gossip as Communication
Model

m Gossip iIs a communication model, like eg
the client-server model (as opposed to
protocol)

m |lts main properties are
m proactive
m democratic

m potentially (depends on application)
 scalable
* robust
* reliable

Gossip as Cellular Automaton

m Similarities:
m Cycles (each T time units interval)
m State updates based on neighborhood state
m Differences:
m Only one neighbor is used in a cycle
m Not ‘generational’ but “steady state’
m [opology can be arbitrary
m [opology can dynamically change over time

Expressivity

m |t supports lots of very different protocols
and design philosophies, not only
Information dissemination

m epidemics
* infomation dissemination, aggregation (max)

m diffusion
e aggregation (avg), load balancing

m topology management
m synchronization
m efc.

Outline

m An example protocol: average calculation
L]

The Protocol

m We apply diffusion for calculating the
average

m state: current approximation of average in
the whole system

B updateState(sl, s2):= (sl+s2)/2

m Diffusion has lots of other applications (we
will discuss them later) including

m network size estimation

m calculating variance (or any moments)

m load balancing

10

Basic operation

16 4

11

Basic operation

16 4

(10+2)/2=6

12

Basic operation

PFolll
SE=0

13

Basic operation

10 10

(16+4)/2=10

14

Applications

BISON
The averaging protocol can compute any means in the form

_ a)+...+ J(a
n
These include the following means

average f(x)=x
quadratic f(x)=x"

harmonic f(x)= !

X
geometric f(x)=Inx

15

Applications

The averaging protocol can compute any aggregate
that can be expressed by a function of some means.
For instance

m variance: using avg. and avg. of squares

m network size: 1/average if only one node holds 1 the
rest O

®m sum: network size times average
= any n-th moment: using n-th power averages

m coefficients of mathematical models like linear
regression

m statistical tests
m etc...

16

N Some Observations and
3ISON Questions

m The procedure is convergent if the graph is
connected

m Each node converges to the average of the
original values

m How fast is convergence on different
topologies?
m \Which topology is optimal?

m What are the key features of a topology that
determine the speed of convergence?

S = What are the effects of node/link failure?

17

Some Answers

m On the fully connected topology
convergence speed is exponential.

m On a random topology it is practically
exponential.

m Node failure is not critical.
m Link failure is not critical.

18

o
Z °®

A local
protocol

A global
translation

Framework

do forever
walt (getWaitingTime ())
nj = selectRandomNeighbor ()
// perform elementary aggregation step
send a[i1i] to nj
receive al[j] from nj
ali] = (al[i] + al3j])/2

do N times

(1, J) = getPair ()
// perform elementary aggregation step
ali] = alJjl = (ali]l + aljl)/2

19

The base theorem

IF:

m Each pair of values selected by the index pairs returned
by each call to getPair are uncorrelated,

m the random variables @,,..., @, are identically
distributed. Let ¢ denote a random variable with this
common distribution,

m After (i, J) is returned by getPair the number of times |
and | will be selected by the remaining calls to
getPair has identical distribution.

THEN:
E(c’.)=EQ2?)E(oc;)

i+1

20

Convergence factor

BISON

m getPair defined by the local protocol when
each node contacts a peer regularly

m A local corresponding protocol exists

P oy _ L
Plo== ¢ DEC)=

21

convergence factor

| | | +u||y connected —o—
036 1 20-regular random —8—
0.34
032 r
028
0.26 |

1000 10000 100000
network size

fully connected —&—
20-regular random —8—

P O e W i O s
uuuuuuu’_@

T
o

oy

R A Y N e e O e P O
L W L W L S W L

—r

036

]
=
g
2

|
J AP
AP o
o

J01JE]} anuablaauo?

028

026

30

25

20

15

10

cycle

Link Failure

m Any given link fails with probability P,

m [he effect of this is only slowdown. In
particular the rate can be bounded as follows

it E(o.,)=pE(c’) then

1 1-P,
pd S(ej =epd_1

24

Outline

m Components: characterization and
combination

25

Topology (Ipbcast, newscast)

m State: neighbor list: constant sized list of peer
adddresses

m updateState (sl, s2) : select new list randomly
or based on some additional information

B selectRandomNeighbor () can be biased
based on (partial) information on the state of the
peers

m based on particular implementation details,
generates different topologies

26

Broadcasting

State: infected’ or not, ie received information or
not

updateState (sl, s2) : If received state is
infected, set state to infected

pull brodcast is also possible: efficient, not
adaptive

selectRandomNeighbor () can be biased
based on (partial) information on the state of the
peers

not flooding, even with random neighbor selection

27

Aggregation

m State: current approximation of aggregate
B updateState (sl, s2) : elementary aggregation
step, examples include
m (s1+s2)/2 for average
m (s1s2)'2 for geometric mean
m max(s1,s2) for maximum
® min(s1,s2) for minimum
m combining elementary aggregations more complex

functions can be computed such as sum, set size,
variance, etc.

28

Synchronization

State: current epoch. The synchronization point is
the beginning of each epoch.

An epoch has a fixed time length, and incremented
based on a local clock

updateState (sl1, s2) : the maximal epoch
identifier: max(s1,s2)

solves problems of clock drift, joinings, failures,
message delays

General building block to be used by all
applications needing synchronization

29

sson Characterization of Components

A component or building block is a protocol defining a self
organizing system that provides a function through a
standard interface. (Eg average calculation.)

m topology or function
m fast or slow

* self organizing systems need time to converge or
adapt; this process can be fast ot slow

* slow protocols may rely on fast ones
m adaptive or convergent (static)

» a self organizing system can converge to a
stable state or it can react to the environment

30

Combination of Components

BISON

m The goal is reusability to facilitate research
(simpler problems) and development (off-the-shelf
components)

m Some rules of thumb for combination

m slow functions can utilize fast functions on the
fly (topology, aggregation)

m expensive functions can utilize cheap functions
for optimization

m At the root there is always a topology
(membership) protocol

31

ON Combination of components

Random | R
impl andom Broadcasting
/
Broadcasting .
impl Monitoring
Aggregation| | .
impl Aggregation Monitoring
impl
Superpeer|
impl Superpeer Search
|
Search
impl

32

Optimal Load Balancing

Random

Aggregation

Gossip Based
Aggregation
impl

Load Balancing

™ Balancing

Load

impl

m Fast average calculation
provides optimal load
(fast, not optimal, cheap)

m Slow load balancing
optimized based on the
knowledge of optimal
load (slow, optimal,
expensive)

33

SISON Outline

m [he gossip based communication model
m An example protocol: average calculation

m Components: characterization and
combination

m Future work

34

Future Work

= New functions

m More formal framework for composition

m Security
m security of components: mutual auditing
m security component?

m Simulation

m realism vs. scalability: the study of the simplifying
assumptions of peersim

m Visulization
L AHN, sensor networks?

35

Conclusions

m Gossip comunication model is a general
paradigm

m Gossip based aggregation is shown to be
m scalable (results independent of N)
m fast
m robust

m Possibility to combine functions

m topology management

m information processing/control

36

