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Basic Concepts

� Nodes

� have state

� perform computations

� Communication Topology

� Neighbors (“knows about’’ 

relation)

� Maintained by specific 

protocols
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Push-Pull Gossip based 
Communication Model

// active thread
do forever

wait(T time units)
peer = selectRandomNeighbor()
send state to peer
receive peer.state from peer
state = updateState(state,peer.state)

// passive thread
do forever

(peer,peer.state) = waitMessage()
send state to peer
state = updateState(state,peer.state)
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Gossip as Communication 
Model

� Gossip is a communication model, like eg 
the client-server model (as opposed to 
protocol)

� Its main properties are
� proactive
� democratic
� potentially (depends on application)

• scalable
• robust
• reliable
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Gossip as Cellular Automaton

� Similarities:
� Cycles (each T time units interval )
� State updates based on neighborhood state

� Differences:
� Only one neighbor is used in a cycle
� Not `generational’ but `steady state’
� Topology can be arbitrary
� Topology can dynamically change over time
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Expressivity
� It supports lots of very different protocols 

and design philosophies, not only 
information dissemination
� epidemics

• infomation dissemination, aggregation (max)

� diffusion
• aggregation (avg), load balancing

� topology management
� synchronization
� etc.
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The Protocol
� We apply diffusion for calculating the 

average
� state: current approximation of average in 

the whole system
� updateState(s1, s2):= (s1+s2)/2

� Diffusion has lots of other applications (we 
will discuss them later) including
� network size estimation
� calculating variance (or any moments)
� load balancing
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Basic operation

16

10

4

36
2

8



12

Basic operation

16

6

4

36
6

8(10+2)/2=6



13

Basic operation

16

6

4

36
6

8



14

Basic operation

10

6

10

36
6

8(16+4)/2=10



15

Applications
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Applications
� The averaging protocol can compute any aggregate 

that can be expressed by a function of some means. 
For instance
� variance: using avg. and avg. of squares
� network size: 1/average if only one node holds 1 the 

rest 0
� sum: network size times average
� any n-th moment: using n-th power averages
� coefficients of mathematical models like linear 

regression
� statistical tests
� etc...
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Some Observations and 
Questions

� The procedure is convergent if the graph is 
connected

� Each node converges to the average of the 
original values

� How fast is convergence on different 
topologies?

� Which topology is optimal?
� What are the key features of a topology that 

determine the speed of convergence?
� What are the effects of node/link failure?
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Some Answers

� On the fully connected topology 
convergence speed is exponential.

� On a random topology it is practically 
exponential.

� Node failure is not critical.
� Link failure is not critical.
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Framework

do forever
wait(getWaitingTime())
nj = selectRandomNeighbor()
// perform elementary aggregation step
send a[i] to nj
receive a[j] from nj
a[i] = (a[i] + a[j])/2

A local
protocol

do N times
(i, j) = getPair()
// perform elementary aggregation step
a[i] = a[j] = (a[i] + a[j])/2

A global
translation
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The base theorem

� Each pair of values selected by the index pairs returned
by each call to getPair are uncorrelated,

� the random variables                  are identically 
distributed. Let     denote a random variable with this 
common distribution,

� After (i, j) is returned by getPair the number of times i 
and j will be selected by the remaining calls to 
getPair has identical distribution.

IF:
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Convergence factor

� getPair defined by the local protocol when 
each node contacts a peer regularly

� A local corresponding protocol exists
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Link Failure

� Any given link fails with probability Pd 

� The effect of this is only slowdown. In 
particular the rate can be bounded as follows
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Topology (lpbcast, newscast)

� State: neighbor list: constant sized list of peer 
adddresses

� updateState(s1,s2): select new list randomly 
or based on some additional information

� selectRandomNeighbor() can be biased 
based on (partial) information on the state of the 
peers

� based on particular implementation details, 
generates different topologies



27

Broadcasting

� State: `infected’ or not, ie received information or 
not

� updateState(s1,s2): if received state is 
infected, set state to infected

� pull brodcast is also possible: efficient, not 
adaptive

� selectRandomNeighbor() can be biased 
based on (partial) information on the state of the 
peers

� not flooding, even with random neighbor selection
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Aggregation

� State: current approximation of aggregate
� updateState(s1,s2): elementary aggregation 

step, examples include
� (s1+s2)/2  for average
� (s1s2)1/2 for geometric mean
� max(s1,s2)  for maximum
� min(s1,s2) for minimum

� combining elementary aggregations more complex 
functions can be computed such as sum, set size, 
variance, etc.
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Synchronization

� State: current epoch. The synchronization point is 
the beginning of each epoch.

� An epoch has a fixed time length, and incremented 
based on a local clock

� updateState(s1,s2): the maximal epoch 
identifier: max(s1,s2)

� solves problems of clock drift, joinings, failures, 
message delays

� General building block to be used by all 
applications needing synchronization
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Characterization of Components

� topology or function
� fast or slow

• self organizing systems need time to converge or 
adapt; this process can be fast ot slow

• slow protocols may rely on fast ones
� adaptive or convergent (static)

• a self organizing system can converge to a 
stable state or it can react to the environment

A component or building block is a protocol defining a self 
organizing system that provides a function through a 
standard interface. (Eg average calculation.)
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Combination of Components

� The goal is reusability to facilitate research 
(simpler problems) and development (off-the-shelf 
components)

� Some rules of thumb for combination
� slow functions can utilize fast functions on the 

fly (topology, aggregation)
� expensive functions can utilize cheap functions 

for optimization
� At the root there is always a topology 

(membership) protocol
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Combination of components

Random Broadcasting

Aggregation

SearchSuperpeer

Monitoring

Random
impl

Broadcasting
impl

Aggregation
impl

Search
impl

Superpeer
impl

Monitoring
impl
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Optimal Load Balancing

Random

Aggregation

Random
impl

Gossip Based
Aggregation

impl

Load Balancing Load
Balancing

impl

� Fast average calculation 
provides optimal load 
(fast, not optimal, cheap)

� Slow load balancing 
optimized based on the 
knowledge of optimal 
load (slow, optimal, 
expensive)
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Future Work
� New functions
� More formal framework for composition
� Security

� security of components: mutual auditing
� security component?

� Simulation
� realism vs. scalability: the study of the simplifying 

assumptions of peersim
� Visulization
� AHN, sensor networks?
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Conclusions

� Gossip comunication model is a general 
paradigm

� Gossip based aggregation is shown to be
� scalable (results independent of N)
� fast
� robust

� Possibility to combine functions
� topology management
� information processing/control


