
Project funded by the Future and Emerging Technologies arm of the IST Programme

Gossip beyond broadcasting:
gossip based aggregation

Márk Jelasity
Department of Computer Science
University of Bologna
Italy

2

Outline

� The gossip based communication model
� An example protocol: average calculation
� Components: characterization and

combination
� Future work

3

Outline

� The gossip based communication model
� An example protocol: average calculation
� Components: characterization and

combination
� Future work

4

Basic Concepts

� Nodes

� have state

� perform computations

� Communication Topology

� Neighbors (“knows about’’

relation)

� Maintained by specific

protocols

5

Push-Pull Gossip based
Communication Model

// active thread
do forever

wait(T time units)
peer = selectRandomNeighbor()
send state to peer
receive peer.state from peer
state = updateState(state,peer.state)

// passive thread
do forever

(peer,peer.state) = waitMessage()
send state to peer
state = updateState(state,peer.state)

6

Gossip as Communication
Model

� Gossip is a communication model, like eg
the client-server model (as opposed to
protocol)

� Its main properties are
� proactive
� democratic
� potentially (depends on application)

• scalable
• robust
• reliable

7

Gossip as Cellular Automaton

� Similarities:
� Cycles (each T time units interval)
� State updates based on neighborhood state

� Differences:
� Only one neighbor is used in a cycle
� Not `generational’ but `steady state’
� Topology can be arbitrary
� Topology can dynamically change over time

8

Expressivity
� It supports lots of very different protocols

and design philosophies, not only
information dissemination
� epidemics

• infomation dissemination, aggregation (max)

� diffusion
• aggregation (avg), load balancing

� topology management
� synchronization
� etc.

9

Outline

� The gossip based communication model
� An example protocol: average calculation
� Components: characterization and

combination
� Future work

10

The Protocol
� We apply diffusion for calculating the

average
� state: current approximation of average in

the whole system
� updateState(s1, s2):= (s1+s2)/2

� Diffusion has lots of other applications (we
will discuss them later) including
� network size estimation
� calculating variance (or any moments)
� load balancing

11

Basic operation

16

10

4

36
2

8

12

Basic operation

16

6

4

36
6

8(10+2)/2=6

13

Basic operation

16

6

4

36
6

8

14

Basic operation

10

6

10

36
6

8(16+4)/2=10

15

Applications

�
�

�
�
�

� ++= −

n
afaf

fm n)()(11 �

The averaging protocol can compute any means in the form

These include the following means

xxf =)(
2)(xxf =

x
xf

1
)(=

xxf ln)(=

average

quadratic

harmonic

geometric

16

Applications
� The averaging protocol can compute any aggregate

that can be expressed by a function of some means.
For instance
� variance: using avg. and avg. of squares
� network size: 1/average if only one node holds 1 the

rest 0
� sum: network size times average
� any n-th moment: using n-th power averages
� coefficients of mathematical models like linear

regression
� statistical tests
� etc...

17

Some Observations and
Questions

� The procedure is convergent if the graph is
connected

� Each node converges to the average of the
original values

� How fast is convergence on different
topologies?

� Which topology is optimal?
� What are the key features of a topology that

determine the speed of convergence?
� What are the effects of node/link failure?

18

Some Answers

� On the fully connected topology
convergence speed is exponential.

� On a random topology it is practically
exponential.

� Node failure is not critical.
� Link failure is not critical.

19

Framework

do forever
wait(getWaitingTime())
nj = selectRandomNeighbor()
// perform elementary aggregation step
send a[i] to nj
receive a[j] from nj
a[i] = (a[i] + a[j])/2

A local
protocol

do N times
(i, j) = getPair()
// perform elementary aggregation step
a[i] = a[j] = (a[i] + a[j])/2

A global
translation

20

The base theorem

� Each pair of values selected by the index pairs returned
by each call to getPair are uncorrelated,

� the random variables are identically
distributed. Let denote a random variable with this
common distribution,

� After (i, j) is returned by getPair the number of times i
and j will be selected by the remaining calls to
getPair has identical distribution.

IF:

Nϕϕ ,,1 �ϕ

THEN:
)()2()(22

1 ii EEE σσ ϕ−
+ ≈

21

Convergence factor

� getPair defined by the local protocol when
each node contacts a peer regularly

� A local corresponding protocol exists

e
Ee

j
jP

2
1

)2(
)!1(

1
)(1 =→

−
== −− ϕϕ

22

23

24

Link Failure

� Any given link fails with probability Pd

� The effect of this is only slowdown. In
particular the rate can be bounded as follows

)()(22
1 ii EE σρσ =+if then

1
1

1 −
−

=�
�

�
�
�

�≤ d

d
P

P

d e
e

ρ

25

Outline

� The gossip based communication model
� An example protocol: average calculation
� Components: characterization and

combination
� Future work

26

Topology (lpbcast, newscast)

� State: neighbor list: constant sized list of peer
adddresses

� updateState(s1,s2): select new list randomly
or based on some additional information

� selectRandomNeighbor() can be biased
based on (partial) information on the state of the
peers

� based on particular implementation details,
generates different topologies

27

Broadcasting

� State: `infected’ or not, ie received information or
not

� updateState(s1,s2): if received state is
infected, set state to infected

� pull brodcast is also possible: efficient, not
adaptive

� selectRandomNeighbor() can be biased
based on (partial) information on the state of the
peers

� not flooding, even with random neighbor selection

28

Aggregation

� State: current approximation of aggregate
� updateState(s1,s2): elementary aggregation

step, examples include
� (s1+s2)/2 for average
� (s1s2)1/2 for geometric mean
� max(s1,s2) for maximum
� min(s1,s2) for minimum

� combining elementary aggregations more complex
functions can be computed such as sum, set size,
variance, etc.

29

Synchronization

� State: current epoch. The synchronization point is
the beginning of each epoch.

� An epoch has a fixed time length, and incremented
based on a local clock

� updateState(s1,s2): the maximal epoch
identifier: max(s1,s2)

� solves problems of clock drift, joinings, failures,
message delays

� General building block to be used by all
applications needing synchronization

30

Characterization of Components

� topology or function
� fast or slow

• self organizing systems need time to converge or
adapt; this process can be fast ot slow

• slow protocols may rely on fast ones
� adaptive or convergent (static)

• a self organizing system can converge to a
stable state or it can react to the environment

A component or building block is a protocol defining a self
organizing system that provides a function through a
standard interface. (Eg average calculation.)

31

Combination of Components

� The goal is reusability to facilitate research
(simpler problems) and development (off-the-shelf
components)

� Some rules of thumb for combination
� slow functions can utilize fast functions on the

fly (topology, aggregation)
� expensive functions can utilize cheap functions

for optimization
� At the root there is always a topology

(membership) protocol

32

Combination of components

Random Broadcasting

Aggregation

SearchSuperpeer

Monitoring

Random
impl

Broadcasting
impl

Aggregation
impl

Search
impl

Superpeer
impl

Monitoring
impl

33

Optimal Load Balancing

Random

Aggregation

Random
impl

Gossip Based
Aggregation

impl

Load Balancing Load
Balancing

impl

� Fast average calculation
provides optimal load
(fast, not optimal, cheap)

� Slow load balancing
optimized based on the
knowledge of optimal
load (slow, optimal,
expensive)

34

Outline

� The gossip based communication model
� An example protocol: average calculation
� Components: characterization and

combination
� Future work

35

Future Work
� New functions
� More formal framework for composition
� Security

� security of components: mutual auditing
� security component?

� Simulation
� realism vs. scalability: the study of the simplifying

assumptions of peersim
� Visulization
� AHN, sensor networks?

36

Conclusions

� Gossip comunication model is a general
paradigm

� Gossip based aggregation is shown to be
� scalable (results independent of N)
� fast
� robust

� Possibility to combine functions
� topology management
� information processing/control

