
A case study on
gossip beyond gossip: Sorting

Márk Jelasity
MTA and University of Szeged, Hungary



2

Outline

● Generalizing gossip 
● Example non-dissemination applications

– Peer sampling

– Topology management, eg sorted ring

● Sorting data along a sorted ring
– Algorithm description

– Some results



3

Generalizing gossip

● Gossip: periodically do the following
– Select peer to gossip with

– Send some information to peer (push)

– Optionally receive information from peer (pull)

– Process new information (update own state)

● Dissemination
– Peer is selected at random

– Information is an update or news

– Processing is simple storage



4

Peer sampling
● Peer sampling service

– Peer is selected from local partial view

– Information to gossip is the partial view itself

– Processing is creating the new partial view

● Topology management (T-Man)
– Peer is selected from partial view that defines the 

topology of the overlay we are building (T-Man view)

– Information is a subset of T-Man view

– Processing is creating the new partial view: bias 
towards “close” peers creates a wide range of 
topologies



5

“layering” gossip protocols
● Gossip protocols at a node 

can use each other's state 
(local view) for peer selection 
and perhaps other things too

● For example

– The local view of the peer 
sampling protocol contains 
random samples: huge 
number of applications 
(among others, topology 
building)

● Much more complicated 
scenarios work too

T-Man local view

Peer sampling local view

init
T-Man 
peer 
selection



6

Initial state Cycle 3 Cycle 5

Cycle 15Cycle 12Cycle 8



7

Sorting

● Sorted topology
– Generic overlay 

builder T-Man can 
create ring sorted by 
ID

– Starts with random 
topology

– View gradually 
converges to right 
neighborhood, while it 
is exponentially 
“shrinking”



8

Sorting

● Another sorting problem
– Sort data along some node ID-s (or any node 

attribute)

– Analogous to sorting an array
● Array cell index is the index along which we sort
● But in our case the index can be arbitrary

– Note that no overlay is needed by this problem 
statement

● Approach
– Three layer approach: use T-Man to build a sorted 

ring using the ID-s and in parallel sort the data too



9

Main idea

● Select peers from 
shrinking T-Man 
view

● When possible, 
swap values
– Possible when 

index is smaller and 
value is larger or 
vice versa

x2

r2

r1

x1

x2

r1

r2

x1



10

Three gossip layers
● Three gossip protocols 

cooperate
– Usual T-Man + peer 

sampling unit

– Sorting uses T-Man for peer 
selection

– Sorting controls 
convergence speed of T-
Man to get the right pace of 
shrinking

● T-Man gossips only when 
sorting no longer finds 
good peers

T-Man

Peer sampling

sorting

P
e

er
se

le
ct

io
n

F
eed

back fo
r

sp
eed control



11

Preliminary simulator-
implementation and model

● All protocols start at once, “more or less” in synch
● No failure and concurrency is implemented, but

– No bottlenecks and hot spots can occur due to ideal 
load balancing

– We already know that at least peer sampling and T-
Man is modeled closely enough; so very likely sorting 
too

● In case of node or message failure or long delay 
we can loose data even with reliable transport
– In target applications (data mining, self-organization) it 

is often tolerated to some extent



12

Parameters
● Peer sampling view size is 20, message size 

also 20
● T-Man view size is 100, message size 10
● In one gossip round, sorting takes the 20 

entries from the T-Man view that are closest in 
the forming ring
– Probes them in a random order

– If a suitable peer is found, an exchange is 
performed and rest of the 20 is not probed (often 2nd 
, 3rd try works)

– If no peer is found, a T-Man gossip step is 
performed to get new entries in the view



13

Animation with N=10,000



14

Measure of performance

● A variance like measure to characterize 
goodness of sorting



15

Logarithmic speed



16

Summary

● Experimentally O(log N) speed to achieve 
perfect sorting
– Very simple

– In the lack of failure potentially competitive to 
sorting networks (constant within O can most likely 
be reduced significantly)

– In the presence of failure potentially graceful 
degradation

● Remotely similar to Shell sort, only probabilistic
● Lots of open questions


