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Introduction

● Gossip-like phenomena are commonplace

– human gossip

– epidemics (virus spreading, etc)

– computer epidemics (malicious agents: worms, viruses, 
etc)

– phenomena such as forest fires, branching processes 
and diffusion are all similar mathematically

● In computer science, epidemics are relevant

– for security (against worms and viruses)

– for designing useful protocols (we look at this here)
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Outline

● Seminal work by Demers at al, that first coined 
the term gossip and epidemic protocols

● Other examples of gossip protocols for
– peer sampling

– topology maintenance

– data aggregation
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● Problem
– Xerox corporate Internet, replicated databases
– Each database has a set of keys that have values (along 

with a time stamp)
– Goal: all databases are the same, in the face of key 

updates, removals and additions
– Updates are made locally and have to be replicated at all 

sites (300 sites)
● Solution in 1986

– Anti-entropy and remailing
– Didn’t work due to huge amount of traffic

Epidemic Database Updates
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Anti-Entropy
● Basic idea: periodic pairwise exchange of new 

updates

● State: the local database

● In each cycle select a random peer from the members

● resolve differences between the two databases

● some theoretical notes

– easy to see that eventually all databases get all 
updates

– expected time to achieve full coverage is 
logarithmic (pushpull is fastest)



6SICS, Stockholm2007/09/20

End-phase convergence of
anti-entropy

● Pull
– pi is the proportion of not infected nodes in cycle i

p i1=p i
2

p i1=p i 1− 1
N 

N 1−p i 

≈p i e
−1

● Push (slower in the end phase)
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● Rumor spreading
– Push gossiping, but 

stop spreading info 
with probability 1/k if 
unsuccessful infection 
attempt (become 
removed)

– s: susceptible, i: 
infective, r: removed

● Eg if k=1, 20% miss the 
gossip, if k=2, 6% miss 
it

ds
dt

=−si

di
dt

=si−
1
k
1−s  i

 s=e−k1 1−s 

Rumor spreading
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Some other rumor mongering 
algorithms

● Some modifications
– Blind vs feedback: blind is removed with pr. 1/k irrespective 

of success
– Counter vs random: counter counts k unsuccessful 

attempts, random is removed with 1/k probability after each 
unsuccessful attempt

– Push vs pull
● Push: always s=e-m where s is residue and m is avg number of 

messages sent by a node (Nm messages are sent altogether, 
to random targets)

● Pull: better residue, but generates traffic even when there are 
no updates
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Some empirical results 
(1000 nodes)

Feedback+
Counter+
pull

Blind+
Random+
push

Feedback+
Counter+
push
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Combining anti-entropy and rumor 
mongering

● Rumor mongering is used to spread updates
● Anti-entropy is run infrequently to make sure 

all updates are spread with pr. 1
● When anti-entropy finds an undelivered 

update: redistribution
– Redistribution is done via rumor mongering

● [Originally, both primary spreading and 
redistribution was by email, but costs are 
prohibitive]
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● So far: random contacts
– This is not good for underlying network traffic
– Need to take proximity into account

● Spacial gossip: getPeer is biased according to 
distance of the peer: selecting node i is proportional 
to d-a where d is the distance of i

● If underlying topology is linear, then expected traffic 
per link:

Spacial Gossip
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● a=2 is the best
– Best tradeoff between speed and traffic
– Probability is proportional to 1/d2

● Generalize to non-linear case
– Q(d): cumulative number of sites at most at distance d
– Probability proportional to 1/Q(d)2

● Smoothing out pathological topologies
– Order all sites according to distance
– Treat it as a linear structure

Spatial Gossip
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A Gossip Skeleton

● originally for information dissemination in a very 
simple but efficient and reliable way

● later the term has been extended to many local 
probabilistic and periodic protocols

● we will introduce a simple common skeleton 
and look at
– information dissemination

– topology construction

– aggregation
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A Gossip Skeleton

● the push-pull model is 
sown

● the active thread 
initiates 
communication 
(push) and receives 
peer state (pull)

● the passive thread 
mirrors this behavior

do once in each T time units at
a random time

p = selectPeer()
send state to p
receive state

p
 from p

state = update(state
p
)

do forever
receive state

p
 from p

send state to p
state = update(state

p
)

active thread

passive thread
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Information dissemination 
(broadcast)

● state: set of updates
● selectPeer: a random peer from the network

– very important component, we get back to this soon

● update: add the received updates to the local 
set of updates

● some notes
– implementations take care of details to optimize bandwidth 

usage (check which updates are needed, etc)

– propagation of one given update can be limited (max k times 
or with some probability, etc)
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Performance of gossip

● various mathematical results are available
– epidemiological models (virus spreading)

– percolation theory, complex networks, etc

● underlying network (that is, the implementation 
of selectPeer) plays a key role

● in a random network
– push-pull gossip spreads approximately exponentially 

fast

– gossip (that is, random networks...) is extremely robust 
to benign failure (node failure and link failure) 
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Peer Sampling

● A key method is selectPeer in all gossip 
protocols (determines performance and 
reliability)

● In earliest works all nodes had a global view to 
select a random peer from
– scalability and dynamism problems

● Scalable solutions are available to deal with this
– random walks on fixed overlay networks

– dynamic random networks
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Random walks on networks

● if we are given any fixed network, we can 
sample the nodes with any arbitrary distribution 
with the Metropolis algorithm:

● This Markov chain has stationary distribution 
where d

i
 is the degree of node i (undirected 

graph)
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Gossip based peer sampling

● basic idea: random peer samples are provided by a 
gossip algorithm: the peer sampling service

● The peer sampling service uses itself  as peer 
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of random overlay links to peers

● selectPeer: select a peer from the known set of 
random peers

● update: for example, keep a random subset of the 
union of the received and the old link set
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Gossip protocols for topology 
management

A
D
E

S
X

W

A E
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Gossip protocols for topology 
management

A
D
E

S
X

W

A E

SelectPeer
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Gossip protocols for topology 
management

A E

Exchange 
of views
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Gossip protocols for topology 
management

A E
Both sides 
apply update

thereby 
redefining 
topology
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Gossip based peer sampling

● in reality a huge number of variations exist
– timestamps on the overlay links can be taken into 

account: we can select peers with newer links, or in 
update we can prefer links that are newer

● these variations represent important differences 
w.r.t. fault tolerance and the quality of samples
– the links at all nodes define a random-like overlay 

that can have different properties (degree 
distribution, clustering, diameter, etc)

– turns out actually not really random, but still good 
for gossip
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Gossip based topology 
management

● We saw we can build random networks. Can 
we build any network with gossip?

● Yes, many examples

– proximity networks
– DHT-s (Bamboo DHT: maintains Pastry 

structure with gossip inspired protocols)
– semantic proximity networks
– etc
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T-Man

● T-MAN is a protocol that captures many of 
these in a common framework, with the help of 
the ranking method:
– ranking is able to order any set of nodes according 

to their desirability to be a neighbor of some given 
node

– for example, based on hop count in a target 
structure (ring, tree, etc)

– or based on more complicated criteria not 
expressible by any distance measure
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Gossip based topology 
management

● basic idea: random peer samples are provided by a 
gossip algorithm: the peer sampling service

● The peer sampling service uses itself  as peer 
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of overlay links to peers

● selectPeer: select the peer from the known set of 
peers that ranks highest according to the ranking 
method

● update: keep those links that point to nodes that rank 
highest
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Initial state Cycle 3 Cycle 5

Cycle 15Cycle 12Cycle 8
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Aggregation

● Calculate a global function over distributed data
– eg average, but more complex examples include 

variance, network size, model fitting, etc

● usual structured/unstructured approaches exist
– structured: create an overlay (eg a tree) and use 

that to calculate the function hierarchically

– unstructured: design a stochastic iteration algorithm 
that converges to what you want (gossip)

● we look at gossip here
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Implementation of aggregation

● state: current approximation of the average
– initially the local value held by the node

● selectPeer: a random peer (based on peer 
sampling service)

● updateState(s
1
,s

2
)

– (s
1
+s

2
)/2: result in averaging

– (s
1
s

2
)1/2: results in geometric mean

– max(s
1
,s

2
): results in maximum, etc
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Illustration of averaging
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Illustration of averaging
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Illustration of averaging
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Improvements

● Tolerates asymmetric message loss (only push 
or pull) badly

● Tolerates overlaps in pairwise exchanges badly
● [Kempe et al 2003] propose a slightly different 

version
– all nodes maintain s (sum estimate) and w (weight)

– estimate is s/w

– only push: send (s/2,w/2), and keep s=s/2, w=w/2

● several other variations exist
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Initial state Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Illustration of averaging
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Outlook

● Gossip is similar to many other fields of 
research that also have some of the following 
features:
– periodic, local, probabilistic, symmetric

● examples include
– swarm systems, cellular automata, parallel 

asynchronous numeric iterations, self-stabilizing 
protocols, etc
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● Organizes hosts into a domain hierarchy (like DNS)
● Provides online monitoring service based on 

aggregation; a sort of data mining
● Fully decentralized through gossip
● Allows online configuration of monitoring capabilities 

(new things to observe, etc)
● Provides an API to applications
● Actually implemented

– Security, firewalls, etc taken care of

Astrolabe (middleware)
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● DNS
– Directory service based on hierarchical domains
– Lately more functionality

● Round robin DNS, server records, etc
– Updates are slow, and vulnerable

● Astrolabe also hierarchical but
– More efficient
– More robust
– More generic

● arbitrary info about a domain
● Collected online real time, in a configurable way

Analogy with DNS
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● Aggregation is summarizing info
– Over the entire system or within domains
– It is of small size (not listing, only summary (O(1)))

● For example
– Average, maximum, count, etc of some values

● Info is stored in (small) databases: MIBs
– Management information base

● Aggregation is expressed by a simplified SQL 
language

● Aggregates are proactively updated at each level

Aggregation as Key Abstraction
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Schematic view of Astrolabe
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● Can be accessed locally at an Astrolabe host or 
remotely through RPC

● scope: well defined subset of the tree
● zone: subtree (or leaf)
● updates only on leaf (virtual child zone)

Astrolabe API
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● P2P information diffusion: selectCast
– Multicast to multicast groups
– Each zone aggregates members of a group

● eg SELECT FIRST(2,game) AS game ORDER BY rate

– This way an overlay is superimposed that is used to 
multicast

– Having two selected members at each zone allows for 
redundancy

● Note that the underlying Astrolabe infrastructure 
takes care of keeping all this up-to-date, scalable and 
robust

Example Applications
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Schematic view of SelectCast
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● Each agent maintains 
a copy of the chain 
MIBs up to the root

● It also replicates the 
MIBs of all child 
zones of all the zones 
in this chain

● So zones are purely 
virtual and are 
replicated over all 
members

Implementation
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● ID

– the local zone name within the parent zone

● Issued

– the timestamp of last update of this MIB

● Contacts

– Representatives for this zone (who will gossip)

● Nmembers

– Number of members in the zone

● Servers

– Small set of agents that implement the API

Compulsory Attributes
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● This set of MIBs is replicated (refreshed) through 
gossip

● For all zones separately
– There is a gossip rate (cycle length)
– Contacts for a zone pick a sibling zone at random
– Initiate gossip with a contact of the selected zone
– They run an anti-entropy step (regarding their own level 

and up)
● Note that most communication is done between 

sibling leaf nodes

Gossip
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● Membership management
– If a given zone’s MIB is not refreshed for some time, it is 

removed
– Joins are dealt with

● Setting a contact node explicitly
● Or doing IP broadcast, etc

● Communication
– Issues with firewalls

● Application level gateways (ALGs), etc
● Security

– Through certificates
● Each zone has a certificate authority (CA)

Other issues
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