
Gossip Protocols

Márk Jelasity

Hungarian Academy of Sciences and
University of Szeged, Hungary

2SICS, Stockholm2007/09/20

Introduction

● Gossip-like phenomena are commonplace

– human gossip

– epidemics (virus spreading, etc)

– computer epidemics (malicious agents: worms, viruses,
etc)

– phenomena such as forest fires, branching processes
and diffusion are all similar mathematically

● In computer science, epidemics are relevant

– for security (against worms and viruses)

– for designing useful protocols (we look at this here)

3SICS, Stockholm2007/09/20

Outline

● Seminal work by Demers at al, that first coined
the term gossip and epidemic protocols

● Other examples of gossip protocols for
– peer sampling

– topology maintenance

– data aggregation

4SICS, Stockholm2007/09/20

● Problem
– Xerox corporate Internet, replicated databases
– Each database has a set of keys that have values (along

with a time stamp)
– Goal: all databases are the same, in the face of key

updates, removals and additions
– Updates are made locally and have to be replicated at all

sites (300 sites)
● Solution in 1986

– Anti-entropy and remailing
– Didn’t work due to huge amount of traffic

Epidemic Database Updates

5SICS, Stockholm2007/09/20

Anti-Entropy
● Basic idea: periodic pairwise exchange of new

updates

● State: the local database

● In each cycle select a random peer from the members

● resolve differences between the two databases

● some theoretical notes

– easy to see that eventually all databases get all
updates

– expected time to achieve full coverage is
logarithmic (pushpull is fastest)

6SICS, Stockholm2007/09/20

End-phase convergence of
anti-entropy

● Pull
– pi is the proportion of not infected nodes in cycle i

p i1=p i
2

p i1=p i 1− 1
N

N 1−p i

≈p i e
−1

● Push (slower in the end phase)

7SICS, Stockholm2007/09/20

● Rumor spreading
– Push gossiping, but

stop spreading info
with probability 1/k if
unsuccessful infection
attempt (become
removed)

– s: susceptible, i:
infective, r: removed

● Eg if k=1, 20% miss the
gossip, if k=2, 6% miss
it

ds
dt

=−si

di
dt

=si−
1
k
1−s i

 s=e−k1 1−s

Rumor spreading

8SICS, Stockholm2007/09/20

Some other rumor mongering
algorithms

● Some modifications
– Blind vs feedback: blind is removed with pr. 1/k irrespective

of success
– Counter vs random: counter counts k unsuccessful

attempts, random is removed with 1/k probability after each
unsuccessful attempt

– Push vs pull
● Push: always s=e-m where s is residue and m is avg number of

messages sent by a node (Nm messages are sent altogether,
to random targets)

● Pull: better residue, but generates traffic even when there are
no updates

9SICS, Stockholm2007/09/20

Some empirical results
(1000 nodes)

Feedback+
Counter+
pull

Blind+
Random+
push

Feedback+
Counter+
push

10SICS, Stockholm2007/09/20

Combining anti-entropy and rumor
mongering

● Rumor mongering is used to spread updates
● Anti-entropy is run infrequently to make sure

all updates are spread with pr. 1
● When anti-entropy finds an undelivered

update: redistribution
– Redistribution is done via rumor mongering

● [Originally, both primary spreading and
redistribution was by email, but costs are
prohibitive]

11SICS, Stockholm2007/09/20

● So far: random contacts
– This is not good for underlying network traffic
– Need to take proximity into account

● Spacial gossip: getPeer is biased according to
distance of the peer: selecting node i is proportional
to d-a where d is the distance of i

● If underlying topology is linear, then expected traffic
per link:

Spacial Gossip

12SICS, Stockholm2007/09/20

● a=2 is the best
– Best tradeoff between speed and traffic
– Probability is proportional to 1/d2

● Generalize to non-linear case
– Q(d): cumulative number of sites at most at distance d
– Probability proportional to 1/Q(d)2

● Smoothing out pathological topologies
– Order all sites according to distance
– Treat it as a linear structure

Spatial Gossip

13SICS, Stockholm2007/09/20

A Gossip Skeleton

● originally for information dissemination in a very
simple but efficient and reliable way

● later the term has been extended to many local
probabilistic and periodic protocols

● we will introduce a simple common skeleton
and look at
– information dissemination

– topology construction

– aggregation

14SICS, Stockholm2007/09/20

A Gossip Skeleton

● the push-pull model is
sown

● the active thread
initiates
communication
(push) and receives
peer state (pull)

● the passive thread
mirrors this behavior

do once in each T time units at
a random time

p = selectPeer()
send state to p
receive state

p
 from p

state = update(state
p
)

do forever
receive state

p
 from p

send state to p
state = update(state

p
)

active thread

passive thread

15SICS, Stockholm2007/09/20

Information dissemination
(broadcast)

● state: set of updates
● selectPeer: a random peer from the network

– very important component, we get back to this soon

● update: add the received updates to the local
set of updates

● some notes
– implementations take care of details to optimize bandwidth

usage (check which updates are needed, etc)

– propagation of one given update can be limited (max k times
or with some probability, etc)

16SICS, Stockholm2007/09/20

Performance of gossip

● various mathematical results are available
– epidemiological models (virus spreading)

– percolation theory, complex networks, etc

● underlying network (that is, the implementation
of selectPeer) plays a key role

● in a random network
– push-pull gossip spreads approximately exponentially

fast

– gossip (that is, random networks...) is extremely robust
to benign failure (node failure and link failure)

17SICS, Stockholm2007/09/20

References
– Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,

Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry.
Epidemic algorithms for replicated database maintenance. In
Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing (PODC'87), pages 1–12, Vancouver, British
Columbia, Canada, August 1987. ACM Press.

– Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Massoulie, L.
2004. Epidemic information dissemination in distributed systems.
IEEE Computer 37, 5 (May), 60–67.

– A.-M. Kermarrec and M. van Steen, editors, Special issue of ACM
SIGOPS Operating Systems Review on Gossip Protocols, (probably
2007, in press).

18SICS, Stockholm2007/09/20

Peer Sampling

● A key method is selectPeer in all gossip
protocols (determines performance and
reliability)

● In earliest works all nodes had a global view to
select a random peer from
– scalability and dynamism problems

● Scalable solutions are available to deal with this
– random walks on fixed overlay networks

– dynamic random networks

19SICS, Stockholm2007/09/20

Random walks on networks

● if we are given any fixed network, we can
sample the nodes with any arbitrary distribution
with the Metropolis algorithm:

● This Markov chain has stationary distribution
where d

i
 is the degree of node i (undirected

graph)

20SICS, Stockholm2007/09/20

Gossip based peer sampling

● basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

● The peer sampling service uses itself as peer
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of random overlay links to peers

● selectPeer: select a peer from the known set of
random peers

● update: for example, keep a random subset of the
union of the received and the old link set

21SICS, Stockholm2007/09/20

Gossip protocols for topology
management

A
D
E

S
X

W

A E

22SICS, Stockholm2007/09/20

Gossip protocols for topology
management

A
D
E

S
X

W

A E

SelectPeer

23SICS, Stockholm2007/09/20

Gossip protocols for topology
management

A E

Exchange
of views

24SICS, Stockholm2007/09/20

Gossip protocols for topology
management

A E
Both sides
apply update

thereby
redefining
topology

25SICS, Stockholm2007/09/20

Gossip based peer sampling

● in reality a huge number of variations exist
– timestamps on the overlay links can be taken into

account: we can select peers with newer links, or in
update we can prefer links that are newer

● these variations represent important differences
w.r.t. fault tolerance and the quality of samples
– the links at all nodes define a random-like overlay

that can have different properties (degree
distribution, clustering, diameter, etc)

– turns out actually not really random, but still good
for gossip

26SICS, Stockholm2007/09/20

References
– Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and

Maarten van Steen. The peer sampling service: Experimental
evaluation of unstructured gossip-based implementations. In Hans-
Arno Jacobsen, editor, Middleware 2004, volume 3231 of Lecture
Notes in Computer Science, pages 79–98. Springer-Verlag, 2004.
(journal version: ACM TOCS 2007 aug)

– Zhong, M., Shen, K., and Seiferas, J. 2005. Non-uniform random
membership management in peer-to-peer networks. In Proc. of the
IEEE INFOCOM. Miami, FL.

27SICS, Stockholm2007/09/20

Gossip based topology
management

● We saw we can build random networks. Can
we build any network with gossip?

● Yes, many examples

– proximity networks
– DHT-s (Bamboo DHT: maintains Pastry

structure with gossip inspired protocols)
– semantic proximity networks
– etc

28SICS, Stockholm2007/09/20

T-Man

● T-MAN is a protocol that captures many of
these in a common framework, with the help of
the ranking method:
– ranking is able to order any set of nodes according

to their desirability to be a neighbor of some given
node

– for example, based on hop count in a target
structure (ring, tree, etc)

– or based on more complicated criteria not
expressible by any distance measure

29SICS, Stockholm2007/09/20

Gossip based topology
management

● basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

● The peer sampling service uses itself as peer
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of overlay links to peers

● selectPeer: select the peer from the known set of
peers that ranks highest according to the ranking
method

● update: keep those links that point to nodes that rank
highest

30SICS, Stockholm2007/09/20

Initial state Cycle 3 Cycle 5

Cycle 15Cycle 12Cycle 8

31SICS, Stockholm2007/09/20

32SICS, Stockholm2007/09/20

References
– Márk Jelasity and Ozalp Babaoglu. T-Man: Gossip-based overlay topology

management. In Sven A. Brueckner, Giovanna Di Marzo Serugendo, David
Hales, and Franco Zambonelli, editors, Engineering Self-Organising
Systems: Third International Workshop (ESOA 2005), Revised Selected
Papers, volume 3910 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2006.

– Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz.
Handling Churn in a DHT. Proceedings of the USENIX Annual Technical
Conference, June 2004.

– Laurent Massoulie, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh.
Network awareness and failure resilience in self-organising overlay
networks. In Proceedings of the 22nd Symposium on Reliable Distributed
Systems (SRDS 2003), pages 47–55, Florence, Italy, 2003.

– Spyros Voulgaris and Maarten van Steen. Epidemic-style management of
semantic overlays for content-based searching. In Jose C. Cunha and Pedro
D.Medeiros, editors, Proceedings of Euro-Par, number 3648 in Lecture
Notes in Computer Science, pages 1143–1152. Springer, 2005.

http://srhea.net/papers/bamboo-usenix.pdf

33SICS, Stockholm2007/09/20

Aggregation

● Calculate a global function over distributed data
– eg average, but more complex examples include

variance, network size, model fitting, etc

● usual structured/unstructured approaches exist
– structured: create an overlay (eg a tree) and use

that to calculate the function hierarchically

– unstructured: design a stochastic iteration algorithm
that converges to what you want (gossip)

● we look at gossip here

34SICS, Stockholm2007/09/20

Implementation of aggregation

● state: current approximation of the average
– initially the local value held by the node

● selectPeer: a random peer (based on peer
sampling service)

● updateState(s
1
,s

2
)

– (s
1
+s

2
)/2: result in averaging

– (s
1
s

2
)1/2: results in geometric mean

– max(s
1
,s

2
): results in maximum, etc

35SICS, Stockholm2007/09/20

Illustration of averaging

12

8

7

2

6

3

36SICS, Stockholm2007/09/20

Illustration of averaging

12

8

7

2

6

3

(12+6)/2=9

37SICS, Stockholm2007/09/20

Illustration of averaging

9

8

7

2

9

3

38SICS, Stockholm2007/09/20

Improvements

● Tolerates asymmetric message loss (only push
or pull) badly

● Tolerates overlaps in pairwise exchanges badly
● [Kempe et al 2003] propose a slightly different

version
– all nodes maintain s (sum estimate) and w (weight)

– estimate is s/w

– only push: send (s/2,w/2), and keep s=s/2, w=w/2

● several other variations exist

39SICS, Stockholm2007/09/20

Initial state Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Illustration of averaging

40SICS, Stockholm2007/09/20

References
– Kempe, D., Dobra, A., and Gehrke, J. 2003. Gossip-based

computation of aggregate information. In Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS’03). IEEE Computer Society, 482–491.

– Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Transactions on
Computer Systems, 23(3):219–252, August 2005.

– Robbert van Renesse, Kenneth P. Birman, and Werner Vogels.
Astrolabe: A robust and scalable technology for distributed system
monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21(2):164–206, May 2003.

41SICS, Stockholm2007/09/20

Outlook

● Gossip is similar to many other fields of
research that also have some of the following
features:
– periodic, local, probabilistic, symmetric

● examples include
– swarm systems, cellular automata, parallel

asynchronous numeric iterations, self-stabilizing
protocols, etc

42SICS, Stockholm2007/09/20

● Organizes hosts into a domain hierarchy (like DNS)
● Provides online monitoring service based on

aggregation; a sort of data mining
● Fully decentralized through gossip
● Allows online configuration of monitoring capabilities

(new things to observe, etc)
● Provides an API to applications
● Actually implemented

– Security, firewalls, etc taken care of

Astrolabe (middleware)

43SICS, Stockholm2007/09/20

● DNS
– Directory service based on hierarchical domains
– Lately more functionality

● Round robin DNS, server records, etc
– Updates are slow, and vulnerable

● Astrolabe also hierarchical but
– More efficient
– More robust
– More generic

● arbitrary info about a domain
● Collected online real time, in a configurable way

Analogy with DNS

44SICS, Stockholm2007/09/20

● Aggregation is summarizing info
– Over the entire system or within domains
– It is of small size (not listing, only summary (O(1)))

● For example
– Average, maximum, count, etc of some values

● Info is stored in (small) databases: MIBs
– Management information base

● Aggregation is expressed by a simplified SQL
language

● Aggregates are proactively updated at each level

Aggregation as Key Abstraction

45SICS, Stockholm2007/09/20

Schematic view of Astrolabe

46SICS, Stockholm2007/09/20

● Can be accessed locally at an Astrolabe host or
remotely through RPC

● scope: well defined subset of the tree
● zone: subtree (or leaf)
● updates only on leaf (virtual child zone)

Astrolabe API

47SICS, Stockholm2007/09/20

● P2P information diffusion: selectCast
– Multicast to multicast groups
– Each zone aggregates members of a group

● eg SELECT FIRST(2,game) AS game ORDER BY rate

– This way an overlay is superimposed that is used to
multicast

– Having two selected members at each zone allows for
redundancy

● Note that the underlying Astrolabe infrastructure
takes care of keeping all this up-to-date, scalable and
robust

Example Applications

48SICS, Stockholm2007/09/20

Schematic view of SelectCast

49SICS, Stockholm2007/09/20

● Each agent maintains
a copy of the chain
MIBs up to the root

● It also replicates the
MIBs of all child
zones of all the zones
in this chain

● So zones are purely
virtual and are
replicated over all
members

Implementation

50SICS, Stockholm2007/09/20

● ID

– the local zone name within the parent zone

● Issued

– the timestamp of last update of this MIB

● Contacts

– Representatives for this zone (who will gossip)

● Nmembers

– Number of members in the zone

● Servers

– Small set of agents that implement the API

Compulsory Attributes

51SICS, Stockholm2007/09/20

● This set of MIBs is replicated (refreshed) through
gossip

● For all zones separately
– There is a gossip rate (cycle length)
– Contacts for a zone pick a sibling zone at random
– Initiate gossip with a contact of the selected zone
– They run an anti-entropy step (regarding their own level

and up)
● Note that most communication is done between

sibling leaf nodes

Gossip

52SICS, Stockholm2007/09/20

● Membership management
– If a given zone’s MIB is not refreshed for some time, it is

removed
– Joins are dealt with

● Setting a contact node explicitly
● Or doing IP broadcast, etc

● Communication
– Issues with firewalls

● Application level gateways (ALGs), etc
● Security

– Through certificates
● Each zone has a certificate authority (CA)

Other issues

53SICS, Stockholm2007/09/20

References

– Robbert van Renesse, Kenneth P. Birman, and Werner Vogels.
Astrolabe: A robust and scalable technology for distributed system
monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21(2):164–206, May 2003.
(doi:10.1145/762483.762485)

– Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry.
Epidemic algorithms for replicated database maintenance. In
Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing (PODC'87), pages 1–12, Vancouver,
British Columbia, Canada, August 1987. ACM Press.

