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Motivation
● Explosive growth of smart phone platforms, and
● Availability of sensor and other contextual data 
● Makes collaborative data mining possible

– Health care: following and predicting epidemics, 
personal diagnostics

– Smart city: traffic optimization, accident forecasting

– (predicting earthquakes, financial applications, etc) 

● P2P networks, grid, etc, are also relevant 
platforms
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P2P system model

● Large number (millions or more) computers 
(nodes)

● Packet switched communication
– Every node has an address

– Any node can send a message to any given 
address

● Not actually true: NATs, firewalls
● Messages can be delayed or lost, nodes can 

crash (unreliable asynchronous 
communication)
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Fully distributed data

● Horizontal data distribution
● Every node has very few records, we assume 

they have only one
● We do not allow for moving data, only local 

processing (privacy preservation)
● We require that the models are cheaply 

available for all the nodes
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P2P or Servers (cloud)?

● The cloud is flexible and scalable but it is not free and not 
public: business model needed

– It is cheap but with LOTS of data and communication it 
will get expensive

● Privacy is a concern

● P2P is more limited in what it can do

– But not as much as it seems at first!
● Smart phones (unlike motes) are increasingly powerful 

devices

● P2P and cloud hybrids possible (the network can act as a 
sensor!)
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Illustration: averaging
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Illustration: averaging
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Illustration: averaging
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Illustration: averaging
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The Point

● Asynchronous distributed numeric algorithms 
exist that
– Are very fast

– Are very simple to implement (but not always 
simple to analyze)

– Provide almost exact, or often exact results in the 
face of chaotic communication

● Eg power method, gossip based aggregation
● Our ambition is to achieve this for data mining 

algorithms (we focus on classification now)
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Classification problem in 
machine learning
● We are given a set of (x

i
,y

i
) examples, where y

i
 

is the class of x
i
 (y

i
 is eg.  -1 or 1)

● We want a model f(), such that for all i, f(x
i
)=y

● f() is very often a parameterized function f
w
(), 

and the classification problem becomes an 
error minimization problem in w.
– Neural net weights, linear model parameters, etc

● The error is often defined as a sum of errors 
over the examples
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Illustration of classification 
with a linear model
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Stochastic gradient descent

● Assume the error is 
defined as

● Then the gradient is

● So the full gradient 
method looks like

● But one can take only 
one example at a time 
iterating in random 
order over examples

Err w =∑
i=1

n

Err w , x i

∂ Errw

∂ w
=∑
i=1

n ∂ Err w , xi 

∂w

w t1=w  t − t ∑
i=1

n ∂Err w , x i

∂w

w t1=w  t − t 
∂ Errw , xi 

∂w
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Fully distributed classification
● So the problem is to find an optimization method that 

fits into our system and data model

● Most distributed methods build local models and then 
combine these through ensemble learning: but we 
don't have enough local data

● Online algorithms

– Need only one data record at a time

– They update the model using this record
● The stochastic gradient method is a popular online 

learning algorithm (we apply it to the primal form of the 
SVM error function)
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Gossip learning
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The merge function

● Let z=merge(x,y)=(x+y)/2 (x and y are linear models)

● In the case of the Adaline perceptron

– Updating z using an example has the same effect as 
updating x and y with the same example and then 
averaging these two updated models

– Making predictions using z is the same as calculating 
the weighted average of the predictions of x and y

● This means we effectively propagate an exponential 
number of models, and the voting of these is our prediction

● For the linear SVM algorithm this is only a heuristic 
argument



192012/06/19 Stockholm, Sweden

Local prediction
● We use only local 

models

– The current 
model

– Or voting over 
a number of 
recent models
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Experiments

● We implemented a support vector machine with 
stochastic gradient (Pegasos alg.)

● We used several benchmark data sets for 
evaluations
– Data is fully distributed: one data point per node

● We used extreme scenarios
– 50% message drop rate

– 1-10 cycles of message delay

– Churn modeled after the FileList.org trace from Delft



212012/06/19 Stockholm, Sweden

Data sets

● Statistics of data sets
● The performance of some known algorithms
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Without merge
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With merge
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Additional results

● We implemented multiclass boosting in the 
gossip framework

● We developed techniques for dealing with 
concept drift
– The algorithm is running continuously

– We keep the age distribution of models fixed

– At any point in time we have good models
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Adaptivity
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Remarks regarding the 
chaotic model
● If uniformity of random walk is guaranteed, then all the 

models converge to the true model eventually, 
irrespective of all failures

● If no uniformity can be guaranteed, but the local data 
is statistically independent of the visiting probability, 
then we will have no bias, but variance will increase 
(effectively we work with fewer samples)

● If no uniformity and no independence could be 
guaranteed, convergence to a good model is still 
ensured provided that the data is separable, and all 
misclassified examples are visited “often enough”
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