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Introduction

C omputer vision refers to a variety of ap-
plications involving one or more cameras

(or any other sensing devices) and computer
algorithms for restoring or interpreting the im-
age. The sensed data is transformed to an ar-
ray of measured light intensities, each element
corresponding to a small patch in the scene
(a pixel). The obtained digitized image is the
starting point of any kind of computer analy-
sis. In some applications, the sensing device
may be more specific responding to other form
of light: infrared imaging, photon emission to-
mography, radar imaging, ultrasonic imaging,
etc. . .

We can separate two levels in image pro-
cessing: High level processing aims at extract-
ing symbolic features (for example recognition
of a character in a handwritten letter) while
low level vision deals with extraction of image
attributes needed for higher level processing.

The first step in almost every computer
vision process, called early vision, involves a
variety of digital image processing [103, 52]
tasks dealing directly with massive amounts
of pixel data. The goal of such a process
is to transform the digitized image data into
more meaningful tokens (edges, texture fea-
tures, regions, etc. . . ) for higher level process-
ing.

Herein, we deal with a statistical approach
of such early vision processes. In real scenes,
neighboring pixels usually have similar inten-
sities. In a probabilistic framework, such reg-
ularities are well expressed mathematically by
Markov Random Fields. On the other hand,
the local behavior of Markov Random Fields
permits to develop highly parallel algorithms
in the resolution of the combinatorial opti-
mization problem associated with such a model.
We also discuss parameter estimation meth-
ods in order to develop completely data-driven
algorithms.

In Chapter 2, we propose a new hierar-
chical Markov Random Field model and in
Chapter 4, we present a parameter estima-
tion method for computing the model param-
eters. In Chapter 3, a new Multi-Temperature
Annealing scheme is proposed and a rigorous
mathematical study of the convergence is pro-
vided. We also propose a deterministic variant
of the Metropolis algorithm, called Modified
Metropolis Dynamics, with a detailed conver-
gence study. All models and algorithms pre-
sented in this thesis have been tested on image
segmentation problems. The algorithms have
been implemented in parallel on a Connection
Machine CM200 and the appropriate compar-
ative tests are presented at the end of each
chapter.

1



2 Introduction

Image Processing

One of the first applications of image processing dates back to the early 20’s when
digitized images of news events were transmitted by a submarine cable between New
York and London [52]. Pictures were coded to cable transmission and then decoded at
the receiving end. The initial problem was related to improving the visual quality of
these images.

With the construction of the third-generation digital computers in the mid 60’s,
applications of digital image processing become widespread. Since image processing
usually require large speed and storage capabilities, it was the motivating application
for the design of several parallel computers [71, 65].

The goal of computer vision is the processing of image data for autonomous machine
perception. A computer vision system involves a sensing device (usually a camera)
and computer algorithms to interpret the picture. The term image (more precisely,
monochrome image) refers to a two dimensional light intensity function whose value at
any point is proportional to the brightness (grey-level) of the image at that point [52].
A digital image is a discretized image both in spatial coordinates and in brightness. It
is usually represented as a two dimensional matrix, the elements of such a digital array
are called pixels.

Basically, there are two levels of image processing: Low level (or early vision) tasks
deal with large amount of pixel data, transforming a digitized image into a form that
can be used in high level processing. Herein, we are interested in early vision processes,
in particular in the probabilistic modelization of such problems using Markov Random
Fields.

Early Vision and Markov Random Fields

Early vision deals directly with raw pixel data involving [2] image compression, restora-
tion [25, 46, 66, 115, 118, 114], edge detection [47, 108, 115, 118, 114], segmenta-
tion [42, 79, 70, 43, 34, 106, 107, 35, 60, 56, 116], texture analysis [28, 48, 61], motion
detection [64], optical flow, etc. . . Most of these problems can be formulated in a gen-
eral framework, called image labeling, where we associate a label to each pixel from
a finite set. The meaning of this label depends on the problem that we are trying
to solve. For image restoration, it means a grey-level; for edge detection, it means
the presence or the direction of an edge; for image segmentation, it means a class (or
region); etc. . . The problem here is how to chose a label for a pixel, which is optimal in
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Introduction 3

a certain sense. Relaxation Labeling [67, 38] is a classical, non-probabilistic1 solution
of the problem.

Our approach is probabilistic: at each pixel, we want to select the most likely
labeling. To achieve this goal, we need to define some probability measure on the
set of all possible labelings. In real scenes, neighboring pixels have usually similar
intensities; edges are smooth and often straight. In a probabilistic framework, such
regularities are well expressed by Markov Random Fields (MRF). Another reason for
dealing with MRF models is of course the Hammersley-Clifford theorem [14, 94] which
allows to define MRF’s through clique-potentials. In the labeling problem, this leads
to the following Bayesian formulation: we are looking for the Maximum A Posteriori
(MAP) estimate of the label field yielding to the minimization of a usually non-convex
energy function.

Unfortunately, finding such an estimate is a heavy com-

Figure 1: Pyramidal
representation.

putational problem. For example, if we consider a 16 × 16
image with only two possible labels at each pixel, we obtain
a configuration space of 2256 elements. It is then impossible
to find the optimum by computing the possible values of the
cost function. On the other hand, due to the non-convexity,
classical gradient descent methods cannot be used since they
get stuck in a local minimum. In the early 80’s, a Monte-Carlo
algorithm, called Simulated Annealing, has been proposed in-
dependently by Černy [24] and Kirkpatrick et al. [82] to
tackle the optimization. However, with the first substantial
mathematical results [46, 58], it becomes clear that successful
applications of Simulated Annealing (SA) require a very slow
temperature cooling schedule and thus large computing time.
To avoid this drawback, two solutions have been proposed:
One of them deals with the possible parallelization of SA algorithms [5]. The other
solution is to use deterministic algorithms, which are suboptimal, but converge within
a few iterations requiring therefore less computing time [13, 79].

On the other hand, multigrid (or pyramidal) [17, 88, 98, 71] models can also sig-
nificantly improve the convergence rate and the quality of the final result of iterative
relaxation techniques. Multigrid methods have a long existence in numerical analysis
(partial differential equations, for instance). In image processing, they have also been
used in various context from the mid 70’s [71]. Herein, we are interested in pyramidal
methods applied to MRF image modelization. We use the word pyramidal to designate
multigrid and hierarchical schemes. The essence of such an approach is to represent an
image at multiple resolutions, arranging the coarse images in a pyramid as shown in

1There are probabilistic approaches of RL, but the original formulation in [67] is not probabilistic.
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4 Introduction

Figure 1.

We are talking about multigrid methods, if the layers in the pyramid are not con-
nected. In this case, the optimization algorithm is usually parallelizable only on the
layers, but it is still sequential between layers. The layout of a multigrid model can be
represented by a stack of smaller and smaller image lattices. An important question in
multigrid modelization is how to define the cliques and their potentials at coarse reso-
lutions. There are various ideas [85] including the Renormalization Group approach of
Gidas [50, 95], a consistent multiscale approach of Perez et al. [64, 63, 99], or Bouman’s
causal pyramidal model [16, 18].

If there is an inter-level communication, the model is called hierarchical [75, 74, 73].
While the optimization algorithms associated with such models can be parallelized on
the whole pyramid, the underlying MRF model becomes more complicated requiring
more computation.

Image Segmentation

Throughout this thesis, the proposed models and algorithms are tested on image seg-
mentation (or image classification) problems. Herein, we briefly review the goals of
such a processing.

First of all, let us define what are image segmentation and classification. Practi-
cally, they refer to the same task. However, we prefer to use the name segmentation
because classification is a more general term. Classification [37] supposes a feature ex-
tractor, whose purpose is to reduce the data by measuring properties that distinguish
picture elements (for example, the sea and the cities in Figure 2). Then the problem of
classification is basically to partition the feature space into regions, one region for each
category. Let us see an example. We have a satellite image shown on Figure 2, and
we have to detect the urban areas. Using only grey-level values, we cannot distinguish
between cities and agricultural areas since they are located in the same spectrum. The
only feature which makes the difference between them is the texture. The feature space
is then contains texture and grey-level values. A more complicated feature space could
be obtained by considering geometrical properties, or it might involve the grey-levels
of more than one channels (XS1, XS2, XS3 channels for SPOT images).

In our terminology, segmentation can be viewed as a special case of classification
where the feature space only consists of grey-level values. The objective of segmen-
tation is to partition an image into homogeneous regions. It may be done by finding
boundaries between regions or by finding the regions directly without detecting edges
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between them. Herein, we are interested in the latter approach. The segmentation
process aims at partitioning the image into regions such that [52]:

• The segmentation must be complete (i.e. every pixel must be in a region).

• The pixels in a region must be connected.

• The regions must be disjoint.

Classical segmentation processes can be found in [103, 52], such as region growing
algorithms or split and merge algorithms.

Notice, that the second item in the above list
Urban areas Agricultural areasSea

Figure 2: A SPOT image.

means that nearby pixels must be in the same re-
gion. This constraint can be well expressed in terms
of a Markov Random Field. To be more precise, let
us associate a label to each pixel. This label sim-
ply means the type of region containing the pixel.
Then, we define a MRF over these labels favor-
ing similar labels at neighboring pixels by the def-
inition of some potential functions. However, this
would result in a segmentation where the entire im-
age is a whole region. We need another constraint:
a link between the observed grey-level values and
the regions. The most natural model is to con-
sider each class as a Gaussian distribution over the
possible grey-levels. In this way, the regions are
characterized by the mean value and the variance
of the corresponding normal density function. On
the other hand, we can introduce these distributions into the MRF model as the poten-
tial of the first order cliques (singletons). The resulting model is now able to correctly
segment a grey-level image.

We remark that, in a Markovian framework, one could detect region boundaries and
regions at the same time by introducing a line process [46] in the model. It consists of
placing an edge element between two neighboring pixels (see [46, 115], for an example).
However, we did not use such a process because our goal was not to establish a so-
phisticated, environment-specific model but to construct an easily applicable universal
model and then study its multi-scale and hierarchical implementations.
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6 Introduction

Summary by Chapters

In Chapter 1, we discuss the basics of Markov Random Fields from a mathematical
and physical point of view. We briefly describe the Ising and Potts models. We
also present the Bayesian decision theory and define some standard notions such as
probability, random variables, distribution, probability density function, probability
mass function, different types of convergence of random variables, stochastic processes,
etc. . . The Gaussian distribution is discussed in details because of its important role in
statistical image analysis.

In Chapter 2, we establish Markovian image models in a general framework, called
image labeling. We also present some related non-Markovian model such as relaxation
labeling and the weak membrane model2. Of course, we discuss Bayesian estimation
methods coupled with Markovian modelization. Then, we explain some multigrid tech-
niques in order to reduce the computing time required by the MAP estimation and also
to increase the quality of the obtained estimates. Finally, we propose a new hierarchical
Markovian model which aims at incorporating cliques with far apart sites in order to
get better estimates. While the computing time radically increases3, the reached esti-
mates are the best among the studied models, especially for deterministic relaxation
algorithms.

In Chapter 3, we discuss combinatorial optimization algorithms. Since all of the
presented models result in a non-convex energy function, the final result is strongly
dependent on the effectiveness of the optimization algorithm. We explain the classi-
cal stochastic and deterministic relaxation algorithms with a detailed mathematical
background and review some parallelization techniques. Then, we propose a new an-
nealing scheme: the Multi-Temperature Annealing which exhibits faster convergence
on hierarchical models than classical annealing schemes. The convergence towards a
global optimum has been proved [73] with a generalization of the well known annealing
theorem of Geman and Geman [46]. We also propose a new deterministic algorithm:
Modified Metropolis Dynamics. It seems to be a good compromise between quality
and rapidity. The mathematical study of the convergence towards a local minima is
provided in a theorem.

2We notice that the weak membrane model has also been used in a Markovian context but originally,
as proposed by Blake and Zisserman [15], it was a non-Markovian model

3Although, we believe that on a pyramid architecture better computing times could be achieved.
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Introduction 7

In Chapter 4, we review some parameter estimation methods in order to define a
completely data-driven process. If we have a realization of the label field then the
problem is relatively easy, we have many classical methods to do parameter estima-
tion. Unfortunately, such a realization is not known in real life applications, so the
direct use of such an estimation algorithm is impossible. We have to deal with iter-
ative estimation methods consisting of subsequently generating a labeling, estimating
parameters from it, then generating a new labeling using these parameters, etc . . . The
initialization of such methods is very important because of its influence on subsequent
labelings and hence on the final estimates. Since classes are mostly represented by
a Gaussian distribution, we discuss in details a few methods to compute the modes
of a Gaussian mixture without any a priori information. The algorithms have been
applied to monogrid and hierarchical MRF models and tested on image segmentation
problems.
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1.
Fundamentals

H erein, we discuss the principal funda-
ments of Markov Random Fields (MRF)

from a mathematical and physical point of
view. The physical one is very important be-
cause MRF theory was inspired by statistical
mechanics (Ising model). In image processing,
we use the same terminology as in statistical
mechanics: energy, potential, temperature. . .
Of course, the meaning of these terms differs
from the ones used in statistical mechanics.

We are also interested in the theory of de-
cision (mainly in the Bayesian sense) as the
theoretical basis of the Maximum a Poste-

riori (MAP) estimates has widely been ap-
plied in image labeling. We define some stan-
dard notions such as probability, random vari-
ables, distribution, probability density func-
tion, probability mass function, different types
of convergence of random variables, stochas-
tic processes, etc. . .The Gaussian distribution
is discussed in details because of its important
role in statistical image analysis: It is the most
broadly used tool to take into account the ob-
servations in a probabilistic model. The mate-
rial in this chapter is mainly based on the book
of Papoulis on the theory of probability [96].
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10 Chapter 1. Fundamentals

1.1 Probability and Random Variables

We have various definitions of probability: one can define it as a ratio of favorable to
total number of outcomes (classical) or in an axiomatic way (as a measure). We shall
use the last one. However, we remark that the classical definition is a useful tool in the
solution of physical problems. On the other hand, one can prove that this definition
implicitly assumes that the axioms, which we will define in the next paragraph, are
valid.

Let us denote by I the certain event (the one that occurs in every trial). Given two
events A and B, A∪B denotes the event that occurs whenever A or B or both occur.
A and B are mutually exclusive if the occurrence of one at a given trial excludes the
other. Now, we can define the probability of an event by three postulates:

Definition 1.1.1 (Probability) The probability of an event A is a number P (A)
assigned to this event satisfying the following axioms:

(i) P (A) is positive: P (A) ≥ 0

(ii) The probability of the certain event equals 1: P (I) = 1

(iii) If A and B are mutually exclusive, then P (A ∪B) = P (A) + P (B)

Now, let us examine what is an event. Since events may be combined in various ways
to form other events, events are best described by the set theory. The outcomes of a
single experiment are well defined objects (the elementary events) forming a set I called
space. Events are various subsets of this space containing one or more elementary
events. An event occurs when one of its elementary event occurs. Two events are
mutually exclusive, if they have no common elements. It is clear that I is the certain
event since it always occurs. The empty set ∅ corresponds to the impossible event
which never occurs. Mathematically, we define an experiment in the following way:

Definition 1.1.2 (Borel Field) B is a Borel Field if the sets A1, . . . , An belongs to
the field then

n⋃

i=1

Ai and
n⋂

i=1

Ai (1.1)

also belong to it.
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1.1. Probability and Random Variables 11

Definition 1.1.3 (Experiment) An experiment E = (I,B, P ) is specified by the
three following concepts:

(i) A set I of outcomes called space or certain event.

(ii) A Borel field B consisting of certain subsets of I called events.

(iii) A number P (A) is assigned to every event A, it is called probability satisfying
the axioms in Definition 1.1.1.

In the following, we deal with random variables. Random variables are functions,
satisfying some general conditions, which assign a number X(ξ) to every outcome
ξ ∈ I. What does this number mean? It could be the gain or loss in a game, the length
of a manufactured product, etc. . .

Example 1.1.1 Let us consider the rolling of a die and note the faces by f1, . . . f6. Then,
we could define the random variable X(fi) = 10i as our gain in a game of die.

Definition 1.1.4 (Random Variable) A random variable X is a function whose
domain is the space I assigning a number X(ξ) to every outcome ξ ∈ I of the
experiment E = (I,B, P ) such that:

(i) The set {X ≤ x} is an event for any number x or, in other words, X is measurable
in the field B.

(ii) The probability of the events {X = +∞} and {X = −∞} equals zero.

In the following, we define some functions to characterize a random variable:

Definition 1.1.5 (Distribution) Given a random variable X, we call the function

FX(x) = P{X ≤ x} (1.2)

the distribution function of X defined for any number x ∈ (−∞,∞).

Clearly, F (−∞) = 0 and F (∞) = 1.

Example 1.1.2 Let us consider again the rolling of a die with the random variable X
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12 Chapter 1. Fundamentals

defined in Example 1.1.1. Since P{fi} = 1/6, F (x) is a staircase function with steps equals
to 1/6.

Definition 1.1.6 (Density) Given a random variable X, we call the derivative of
its distribution FX(x)

f(x) =
dF (x)

dx
(1.3)

the density function of X.

From the monotonicity of F (x) follows that f(x) ≥ 0 and:
∫ ∞

−∞
f(x)dx = F (∞)− F (−∞) = 1 (1.4)

Since F (x) might not have a derivative for every x, we can’t associate a density function
to all random variables. For example, the distribution defined in Example 1.1.2 is not
differentiable in the ordinary sense. However, we shall define a density even for this
discrete type random variable by allowing f(x) to contain impulses. δ(x) is an impulse
function if ∫ ∞

−∞
φ(x)δ(x)dx = φ(0) (1.5)

holds for any function φ(x) continuous at 0. Shifting the origin, we get:
∫ ∞

−∞
φ(x)δ(x− x0)dx = φ(x0) (1.6)

Using the above equation, one can show that the derivative of a discontinuous function
F (x) at a discontinuity point x0 equals to

(F (x+
0 )− F (x−0 ))δ(x− x0) (1.7)

From this property follows that the density function of a discrete random variable
consists of impulses at the points xi:

f(x) =
dF (x)

dx
=

d

dx

∑

i

pi =
∑

i

piδ(x− xi) (1.8)

The function f(x) can be considered as a probability mass. If f(x) is finite then the mass
in the interval (x, x + dx) equals f(x)dx. The impulses piδ(x − xi) can be considered
as point masses pi placed at xi. The total mass on the entire x axis equals 1 (see
Equation (1.4)). The distribution F (x) equals the mass in the interval (−∞, x).

Now, let us discuss one of the most important parameter of a random variable: the
expected value or mean.
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Definition 1.1.7 (Expected Value) The expected value of a random variable X
is the integral

E{X} =
∫ ∞

−∞
xf(x)dx (1.9)

where f(x) is the density of X.

We remark that a random variable not necessarily equals its expected value for any
experimental outcome. If f(x) is interpreted as a probability mass then the expected
value is the center of gravity of this mass. If X is discrete then E{X} is given by the
sum

∑
xnpn which is expressed in terms of its values xn and the probability P{X = xn}.

In the continuous case, we could express it by a Lebesgue integral:

E{X} =
∫

I
xdP (1.10)

Another important parameter is the variance giving some notion about the concentra-
tion of the density function near the expected value.

Definition 1.1.8 (Variance) The variance of a random variable with mean µ is
given by:

σ2 = E{(X − µ)2} =
∫ ∞

−∞
(x− µ)2f(x)dx (1.11)

Its square root σ is called standard deviation.

From Equation (1.11), we obtain the important relationship

σ2 = E{X2− 2Xµ+µ2} = E{X2}− 2µE{X}+µ2 = E{X2}−µ2 = E{X2}−E2{X}
(1.12)

To specify the statistics of a random variable, we can use its moments:

Definition 1.1.9 (Moments) Given a random variable X, its moments mk are
given by:

mk = E{Xk} =
∫ ∞

−∞
xkf(x)dx

It is clear that m0 = 1 and m1 = E{X}.
Definition 1.1.10 (Central Moments) The constant

ηk = E{(X − µ)k} =
∫ ∞

−∞
(x− µ)kf(x)dx (1.13)

are called central moments.
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14 Chapter 1. Fundamentals

We have η0 = 1, η1 = 0 and η2 = σ2. We can express the central moments in terms of
the moments mk:

ηk =
k∑

r=0

(
k
r

)
(−1)rµrmk−r (1.14)

and similarly determine mk from the central moments:

mk =
k∑

r=0

(
k
r

)
µrηk−r (1.15)

We have also the absolute moments Mk = E{|X|k} and the generalized moments amk =
E{(X − a)k} and aMk = E{|X − a|k} with respect to a.

In the following, we consider two random variables and define their joint distribu-
tion and density functions. We remark that these definitions can be extended for an
arbitrary number of random variables.

Definition 1.1.11 (Joint Distribution) The joint distribution function of the ran-
dom variable X and Y is defined by

FXY (x, y) = P{X ≤ x, Y ≤ y}.

The distributions FX(x) and FY (y) are called marginals.

In general, the joint distribution cannot be determined from the marginals but it is
related to them. Indeed,

FXY (x,∞) = FX(x) and FXY (∞, y) = FY (y) (1.16)

since {y ≤ ∞} (resp. {x ≤ ∞}) is the certain event.

Definition 1.1.12 (Joint Density) Assuming that FXY (x, y) is partially differen-
tiable up to order two, the joint density function is given by

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
(1.17)

As in the one dimensional case, we could define f(x,y) as a probability mass function,
extending it to random variables whose joint distribution is not differentiable (see
Equation (1.8)).
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1.2. Assigning Probabilities 15

Definition 1.1.13 (Covariance) The covariance of two random variables is de-
fined by

covXY = E{(X − µX)(Y − µY )} (1.18)

and the ratio

r =
E{(X − µX)(Y − µY )}√

E{(X − µX)2}E{(Y − µY )2}
=

covXY

σXσY

(1.19)

is called the correlation coefficient.

Two random variables X and Y are independent if the events {X ≤ x} and {Y ≤ y}
are independent. This yields FXY (x, y) = FX(x)FY (y) and fXY (x, y) = fX(x)fY (y).
Furthermore, X and Y are uncorrelated if E{XY } = E{X}E{Y } and they are or-
thogonal if E{XY } = 0. Independence is a stronger condition than uncorrelatedness.

1.2 Assigning Probabilities

In Definition 1.1.1, we defined the probability in an axiomatic way as a measure. We
said that the probability is a number assigned to an event satisfying some axioms.
But we didn’t tell how to assign these numbers! One possibility would be to use the
classical definition which says that the probability of an event A is found by counting
the total number N of the possible outcomes of the experiment. If NA is the number
of outcomes when A occurs then

P (A) =
NA

N
(1.20)

While this would be a reasonably good definition in physical applications such as the die
experiment in Example 1.1.1, in statistical image processing, we will assign probabilities
to propositions such as ”The image X is a better description of the observations than
Y ” or ”The image was affected by an additive Gaussian noise with parameters µ and
σ” etc. . . On the other hand, if in the die example the rolling is not fair then the above
definition is not usable since we implicitly assumed that the outcomes are equally likely.
Thus, we need a definition which allows to incorporate information that one actually
possesses. The maximum entropy principle is one of the possibilities. The entropy is a
measure of the information content of (or the uncertainty about) a random variable:

Definition 1.2.1 (Entropy) Given a discrete random variable X with distribution
P (x), its entropy is defined by

H(X) = −∑
x

P (x) log P (x) (1.21)
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16 Chapter 1. Fundamentals

This definition is often referred to as Shannon’s formula since it was first developed
by Shannon in information theory. A detailed work about information theory is [30].
The maximum entropy principle says that one can assign a probability to an event
by maximizing the entropy subject to some constraints (ie. the information that we
actually possess). In the following example, we will demonstrate this principle on the
die experiment [20]:

Example 1.2.1 Suppose that nothing is known about the die, except that the probability
distribution should be normalized:

1−
6∑

i=1

pi = 0

We can multiply the above constraint by c and add it to the entropy without changing the
value of H since it equals 0:

H = −
6∑

i=1

pi log pi + c

(
1−

6∑

i=1

pi

)

To assign the probabilities pi to the faces, H is maximized with respect to the unknowns
pi (i = 1, . . . , 6) and c. Differentiating H with respect to the variables, we obtain seven
equations

−(log pi + 1) + c = 0 i = 1, . . . 6

1−
6∑

i=1

pi = 0

from which we get pi = 1/6 and c = 1− log 6.

What we can see is that the maximum entropy principle reduces to the uniform prior
if the only information is that the probabilities should total one. However, we could
obtain a nonuniform distribution in the above example if information were available
that the rolling of die is not fair. Another example of the maximum entropy principle
can be found in [20] for parameter estimation.

1.3 Bayesian Probability Theory

While it is relatively easy to estimate the distribution of a random variable within
an ensemble of data sets, this is not the problem faced in image processing. We have
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1.3. Bayesian Probability Theory 17

typically only one data set and we are trying to determine the parameters. To solve this
problem a wider interpretation is needed within probability theory. This interpretation
is called Bayesian probability theory. It is named after Rev. Thomas Bayes, an 18th

century mathematician. He derived the Bayes theorem which is the starting point for
all Bayesian calculations.

The basic concept in Bayesian probability theory is that all probabilities are con-
ditional. The use of P (A) does not make sense until the evidence on which it is based
is given. Nevertheless, we shall use this notation for brevity with the remark that it
stands for P (A|.) where ’.’ is the event upon which A is based.

Definition 1.3.1 (Conditional Probability) Given an event C with nonzero prob-
ability, the conditional probability of A given C is defined by

P (A|C) =
P (A ∩ C)

P (C)
(1.22)

Indeed, if A and C are mutually exclusive then P (A|C) = 0 and if A ⊂ C then
P (A ∩ C) = P (A). Given an event C, the conditional probabilities P (.|C) satisfy the
axioms in Definition 1.1.1. This fact enables us to define a new experiment:

Definition 1.3.2 (Bayesian Experiment) Given an experiment (I,B, P (A)) and
an event C with nonzero probability, we define a new experiment by (I,B, P (A|C))
which we call Bayesian experiment.

This experiment has the same outcomes and the same events but a new probability
measure.

There are two basic rules for manipulating probabilities: The product rule and the
sum rule:

Product rule: P (A,B|C) = P (A|C)P (B|A,C) (1.23)

Sum rule: P (A ∪B|C) = P (A|C) + P (B|C)− P (A,B|C) (1.24)

The sum rule has an important role in the following theorem on total probability (For
simplicity, we shall write P (A) instead of P (A|C)). This theorem is used to evaluate
P (B) in terms of P (B|Ai) and P (Ai).
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Theorem 1.3.1 (Total Probability) Given n mutually exclusive events A1, . . . , An

whose sum is the certain event:

Ai ∩ Aj = ∅ ∀i 6= j, i = 1, . . . n

n⋃

i=1

Ai = I

The following equation holds for any arbitrary event B:

P (B) =
n∑

i=1

P (B|Ai)P (Ai) (1.25)

We remark that the above theorem is still valid even if the sum of the events Ai is not
the certain event, provided that

n⋃

i=1

Ai ⊃ B.

Now, we present the Bayes theorem, which is the most important theorem in the
Bayesian probability theory. As we mentioned earlier, it is the basis of all Bayesian
calculations.

Theorem 1.3.2 (Bayes)

P (A|B) =
P (B|A)P (A)

P (B)

The probability P (A|B) is called a posteriori probability and P (A) is the a priori
probability of A.

In the following, we define the conditional distribution and density. This is nothing
else but the interpretation of the corresponding definitions in the Bayesian experiment
(I,B, P (A|C)). As an example, we redefine the distribution:

Definition 1.3.3 (Conditional Distribution) Given an event C with nonzero prob-
ability, the conditional distribution of a random variable X is given by

FX(x|C) = P{X ≤ x|C} =
P{X ≤ x,C}

P (C)
(1.26)

The conditional density is the derivative of the distribution as in the classical case.
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1.3. Bayesian Probability Theory 19

Let us consider now the condition C. If it is expressed in terms of the random variable
X (suppose C = {b < X ≤ a}) then the above distribution can be given in terms of
FX(x):

F (x|b < X ≤ a) =





1 if x ≥ a
F (x)
F (a)

if b ≤ x < a

0 if x < b

(1.27)

The total probability can also be expressed in terms of the distribution:

F (x) =
n∑

i=1

F (x|Ai)P (Ai) (1.28)

The conditional probability P (A|C) is undefined if P (C) = 0. If C is expressed as a
random variable, namely C = {X = x} then one can define P (A|C) as the following
limit assuming that f(x) 6= 0:

P (A|X = x) = lim
∆x→0

P (A|x < X ≤ x + ∆x) =
f(x|A)P (A)

f(x)
(1.29)

From the above equation, we can deduce the continuous version of the total probability
theorem (Theorem 1.3.1)

P (A) =
∫ ∞

−∞
P (A|X = x)f(x)dx (1.30)

and the Bayes theorem (Theorem 1.3.2)

f(x|A) =
P (A|X = x)f(x)∫∞

−∞ P (A|X = x)f(x)dx
(1.31)

The conditional moments are defined as in Section 1.1 but the density function is
replaced by the conditional density. We define the conditional mean as an example:

Definition 1.3.4 (Conditional Expected Value) The conditional expected value
of a random variable X assuming C is given by

E{X|C} =

{ ∫∞
−∞ xf(x|C)dx for the continuous case∑

n xnP (X = xn|C) for the discrete case
(1.32)

Now, we deal with two random variables and define their conditional distribution,
density and expected value. We defined the conditional distribution of a random vari-
able in Definition 1.3.3. In the following, we examine this definition in the case where
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20 Chapter 1. Fundamentals

the condition C is expressed in terms of another random variable. First, let us assume
that C = {x1 < X ≤ x2}. In this case P (C) = FX(x2)− FX(x1) and we have

FY (y|x1 < X ≤ x2) =
P{x1 < X ≤ x2, Y ≤ y}

P{x1 < X ≤ x2} =
FXY (x2, y)− FXY (x1, y)

FX(x2)− FX(x1)
(1.33)

Differentiating FY (y|x1 < X ≤ x2), the density is of the following form

fY (y|x1 < X ≤ x2) =

∫ x2
x1

fXY (x, y)dx

FX(x2)− FX(x1)
(1.34)

Next, we discuss a single point C = {X = x} and, using Equation (1.33), define the
conditional distribution as the limit:

FY (y|X = x) = lim
∆x→0

FY (y|x < X ≤ x + ∆x) (1.35)

= lim
∆x→0

FXY (x + ∆x, y)− FXY (x, y)

FX(x + ∆x)− FX(x)
(1.36)

=
∂FXY (x, y)/∂x

dFX(x)/dx
(1.37)

Finally, we give the distribution if C is specified in terms of both random variables
(C = {X ≤ a, Y ≤ b}):

FY (y|X ≤ a, Y ≤ b) =

{
1 if y ≥ b
FXY (a,y)
FXY (a,b)

if y < b
(1.38)

One can also define joint conditional distributions. For example, let C = {a < X ≤ b}:

FXY (x, y|a < X ≤ b) =





FXY (b,y)−FXY (a,y)
FX(b)−FX(a)

if x > b
FXY (x,y)−FXY (a,y)

FX(b)−FX(a)
if a < x ≤ b

0 if x ≤ a

(1.39)

An important concept is the conditional independence.

Definition 1.3.5 (Conditional Independence) We say that X1 is conditionally
independent of X2, assuming X3, if

f(x1, x2|x3) = f(x1|x3)f(x2|x3) (1.40)

Independence and conditional independence does not imply each other. Clearly, from
the above equation, does not follow that f(x1, x2) = f(x1)f(x2) and from independence
does not follow the above equation.
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Figure 1.1: Density function of a normal
random variable.

Figure 1.2: Joint density function of two
normal random variables.

1.4 Normal Distribution

Normal or Gaussian distribution is the most frequently used probability distribution
in image processing. For example, it is a standard assumption about a noise that it
follows a Gaussian distribution.

Definition 1.4.1 (Normal Distribution) We say that a random variable is nor-
mally distributed if its density function is a Gaussian curve (see Figure 1.1)

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(1.41)

where µ is the mean (Definition 1.1.7) and σ is the standard deviation (Defini-
tion 1.1.8).

The distribution function is given by the integral of the above density:

F (x) =
∫ x

−∞
f(x)dx =

∫ ∞

0
f(x)dx +

∫ x

0
f(x)dx (1.42)

=
1

2
+ erf

(
x− µ

σ

)
(1.43)

with erf (x) =
1√
2π

∫ x

0
exp

(
−t2

2

)
dt (1.44)

Now, let us consider two random variables.
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22 Chapter 1. Fundamentals

Definition 1.4.2 (Jointly Normal Distribution) Two random variables X and
Y are jointly normal, if their density is of the form (see Figure 1.2)

f(x, y) =
1

2πσXσY

√
1− r2

exp


−

(
(x−µX)2

σ2
X

− 2r(x−µX)(y−µY )
σXσY

+ (y−µY )2

σ2
Y

)

2(1− r2)


 . (1.45)

where µX , µY are the means and σX , σY are the standard deviations of X and Y
respectively. r is the correlation coefficient (see Definition 1.1.13).

One can show that if two random variables are jointly normal then they are marginally
normal. Obviously, if they are independent then the converse is true. However, it is
not necessarily true if they are not independent!

In the n-dimensional case, we can simply express the joint distribution by the
covariance matrix Σ and the mean vector ~µ.

f(x1, . . . , xn) = f(~x) =
1√

(2π)n|Σ|
exp

(
−1

2
(~x− ~µ)Σ−1(~x− ~µ)T

)
(1.46)

where

Σ =




σ11 . . . σ1n

. . . . . . . . .
σn1 . . . σnn


 , µ =




µ1
...

µn


 (1.47)

If the random variables Xi are uncorrelated then their

E{X}

E{Y}

E{Y|X=x}

f(x,y)=C

Figure 1.3: Set of points
where f(x, y) is constant.

covariance matrix is diagonal and the joint density func-
tion can be factorized:

f(x1, . . . , xn) = f(x1) · · · f(xn) (1.48)

Furthermore, we remark that if X1 and X2 are indepen-
dent of X3 and they are normal then the group (X1, X2)
is also independent of X3:

f(x1, x3) = f(x1)f(x3)
and

f(x2, x3) = f(x2)f(x3)





then

f(x1, x2, x3) = f(x1, x2)f(x3) (1.49)

For the parameter estimation methods discussed in Chapter 4, it will be useful to
examine the graph of a jointly normal density function from a geometrical point of
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1.4. Normal Distribution 23

view: The focus of points in the XY plane such that f(x, y) is constant is given by the
following equation

(x− µX)2

σ2
X

− 2r(x− µX)(y − µY )

σXσY

+
(y − µY )2

σ2
Y

= C (1.50)

which defines an ellipse with center (µX , µY ) (see Figure 1.3). The density has the
maximum at this point. Moreover, E{Y |X = x} is a straight line passing through this
center.

The conditional density of Y assuming X = x can be derived from Equation (1.45):

fY (y|X = x) =
fXY (x, y)

fX(x)
=

1

σY

√
2π(1− r2)

exp


−

(
y − µY − rσY

σX
(x− µX)

)2

2σ2
Y (1− r2)




(1.51)
which is also normal with mean and variance given by

E{y|X = x} = µY +
rσY

σX

(x− µX), σ = σ2
Y (1− r2)

In the following, we discuss some recursion formulas to compute various kind of mo-
ments of normal random variables. These formulas are used in a parameter estimation
algorithm called method of moments (cf. Chapter 4). The next formula gives the
moments of a zero-mean normal random variable:

E{Xn} =

{
1 · 3 · · · (n− 1)σn for n even
0 for n odd

(1.52)

E{|X|n} =

{
1 · 3 · · · (n− 1)σn for n = 2k√

2
π
2kk!σ2k+1 for n odd

(1.53)

In the general case, we have a recursion formula as a function of its mean µ and variance
σ2:

mk = E{Xn} =
k(k − 1)

2

∫ σ2

0
mk−2dσ2 + µk with m0 = 1 and m1 = µ (1.54)

For the central moments ηk, we can deduce a similar formula:

ηk = E{(x− µ)k} =
k(k − 1)

2

∫ σ2

0
ηk−2dσ2 with η0 = 1 and η1 = 0 (1.55)

The joint moments of two jointly normal random variables with covariance ς (see
Definition 1.1.13) can also be obtained by a recursion formula:

E{XkY l} = kl
∫ ς

0
E{Xk−1Y l−1}dς + E{Xk}E{Y l} (1.56)

PhD thesis, 1994



24 Chapter 1. Fundamentals

Finally, one can prove the following useful relationships:

E{XY } = rσXσY (1.57)

E{X2Y 2} = E{X2}E{Y 2}+ 2E2{XY } (1.58)

E{|XY |} =
2σXσY

π
(cos(α) + α sin(α)) (1.59)

where sin(α) = r − π

2
< α ≤ π

2
(1.60)

Theorem 1.4.1 If two jointly normal random variable are uncorrelated (r = 0),
then they are independent.

1.4.1 White Noise

A useful noise model in image processing is

Figure 1.4: Noisy image (3dB).

the white noise model [68]. A white random se-
quence {X1, X2, . . .} is a Markov sequence1 with

P (Xk | Xl, l < k) = P (Xk). (1.61)

That is, they are mutually independent which
means that a white noise is completely random.
If we assume that the Xk’s are normally dis-

tributed, the sequence {X1, X2, . . .} is called a white Gaussian random sequence. In
practice, we usually deal with such noises. The probability density of the sequence is
determined by the mean vector ~µ and the covariance matrix Σ:

∀n ≥ 1 : ~µn = E{Xn} (1.62)

∀n,m ≥ 1 : Σnm = E{(Xn − E{Xn})(Xm − E{Xm})T}. (1.63)

Since the sequence is white, the covariance matrix is diagonal and positive semidefinite.
The most often used noise model is a zero mean white Gaussian noise with deviation
σ with the following representation:

~µ =




0
0
...
0




and Σ =




σ2

σ2 0
. . .0 σ2




. (1.64)

1Markov processes will be discussed later in Section 1.7.
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A noise is generally characterized by the Signal to Noise Ratio (SNR). The SNR is
measured in dB according to the following formula:

SNR in dB = 10 lg

(
σ2

image

σ2
noise

)
, (1.65)

where σimage is the variance of the image. In Figure 1.4, we show an image corrupted
by a 3dB zero mean white Gaussian noise.

1.5 Convergence and the Law of Large Numbers

We say, that a sequence of numbers xn tends to a limit x if for any ε > 0, there exists
an integer n0 such that

∀n > n0 : |xn − x| < ε (1.66)

The above (analytical) meaning of convergence is too restrictive in many cases in the
theory of probability. This is why we shall redefine this notion in some weaker sense:

Definition 1.5.1 (Convergence with Probability 1) The sequence Xn converges
to X with probability 1 if the set of outcomes ξ such that

lim
n→∞Xn(ξ) = X(ξ) (1.67)

has a probability equal to 1. This is written in the form

P{Xn → X} = 1 for n →∞ (1.68)

Definition 1.5.2 (Convergence in the Mean-Square Sense) The sequence Xn

tends to X in the mean-square sense if

lim
n→∞E{|Xn −X|2} = 0 (1.69)

Definition 1.5.3 (Convergence in Probability) Consider the probability that |Xn−
X| > ε, given the number ε > 0: P{|Xn −X| > ε}. If it converges to zero for every
ε,

∀ε > 0 : lim
n→∞P{|Xn −X| > ε} = 0 (1.70)

then the sequence Xn tends to X in probability.
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Definition 1.5.4 (Convergence in Distribution) Let Fn(x) and F (x) denote the
distribution of the random variables Xn and X, respectively. If

lim
n→∞Fn(x) = F (x) (1.71)

for every point x in which F (x) is continuous, then Xn converges to X in distribution.

As we can see, we have various definitions of conver-
no convergence

mean−
square

prob.
1

in

probability
in

distribution

Figure 1.5: Relation between
different convergence modes.

gence in a more or less weak sense. Figure 1.5 shows the
relation between them. For example, if Xn converges
to X in the mean-square sense then it converges also in
probability. If the limit X is not known, one can use the
Cauchy criterion to test convergence:

∀m > 0 : lim
n→∞ |Xn −Xn+m| = 0. (1.72)

If the above limit exists in one of the four sense defined
earlier then Xn converges in the same sense.

An important theorem in statistics is the law of large
numbers:

Theorem 1.5.1 (Law of Large Numbers) If the probability of an event A in a
given experiment is p and the experiment is repeated n times, then for any ε > 0,

lim
n→∞P{| k

n
− p |≤ ε} = 1 (1.73)

where k equals the number of successes of A

Borel showed a stronger statement, namely that it converges not only in probability
but also with probability 1. Another related theorem is the central-limit theorem.
Considering a sequence Xn of independent random variables with densities fi(x), the
law of large numbers says that the variance of X̄ =

∑
i Xi/n is small for large n. The

essence of the central-limit theorem is that as n increases, fX̄(x) tends to a normal
(Gaussian) curve regardless of the shape of the densities fi(x).
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1.6 Decision Theory

Decision theory is an approach to treat problems of mathematical statistics (see [39] for
details on the subject). Not all parts of statistical theory could be justified from this
view-point. For instance, maximum likelihood estimates (widely used in parameter
estimation of statistical image models) are based on large sample theory. Decision
theory is strongly related to the theory of games founded by John von Neumann2,
one of the outstanding mathematicians of the 20th century. Decision theory may be
considered as a theory which takes the role of one of the players in a two-person game.
Thus, let us first define a game:

Definition 1.6.1 (Game) A zero-sum two-person game consists of the following
three elements:

(i) Θ – a nonempty set of possible states. Sometimes referred to as the parameter
space.

(ii) A – a nonempty set of actions available.

(iii) L(ϑ, a) – a real valued loss function defined on Θ×A.

A game is just such a triplet (Θ,A, L).

We suppose that before making a decision, we can look at the observed value of a (one
or more dimensional) random variable X. The distribution of this random variable
depends on the true state ϑ ∈ Θ. Using the notions of Section 1.1, X is defined
on the Borel field B of X (X is the sample space, and for each ϑ ∈ Θ there is a
probability measure P (.|ϑ) on B). The corresponding distribution function is denoted
by FX(x|ϑ). A statistical decision problem is nothing else but a game coupled with
an observable random variable whose distribution depends on the true state ϑ ∈ Θ:
Given the observed value of X is x (X = x), one chooses an action d(x) ∈ A. Such a
function d is an elementary strategy in this situation. The loss is the random quantity
L(ϑ, d(X)).

Definition 1.6.2 (Risk Function) The expected value of L(ϑ, d(X)), when ϑ is
the true state is called the risk function

R(ϑ, d) = E{L(ϑ, d(X))|ϑ} =
∫

L(ϑ, d(X))dP (x|ϑ) (1.74)

2His original name was Neumann János. He was born in Hungary and emigrated to the USA before
the Second World War.
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Definition 1.6.3 (Decision Rule) The function d(x) : X −→ A is a non-randomized
decision rule if the risk function is finite for all ϑ ∈ Θ.

In the following example, we define the risk function and the possible decision rules
in an “odd or even” game [39].

Example 1.6.1 Two players simultaneously put up either one or two fingers. Player 1
wins if the sum is odd and player 2 wins if it is even. In all cases, the winner receives the sum
of the digits showed (see Table 1.1 for the loss function of player 2). Now, let us consider the

Θ \ A 1 2
1 -2 3
2 3 -4

Θ d1 d2 d3 d4

1 −2 −3/4 7/4 3
2 3 −9/4 5/4 −4

Table 1.1: Loss function of the “odd or
even” game.

Table 1.2: Risk function of the “odd or
even” game.

strategy of this player (remember, that decision theory may be considered as a theory which
takes the role of one of the players). Suppose that before putting up the fingers, player 2
is allowed to ask player 1 how many fingers he intends to put up and that player 1 answers
truthfully with probability 3/4. Therefore player 2 observes a random variable X taking
the values 1 or 2. Indeed, P (X = 1|ϑ = 1) = 3/4 and P (X = 1|ϑ = 2) = 1/4 (ϑ means
the number showed by player 1, that is the true state). Player 2 has four possible functions
(decision rules) from X = {1, 2} into A = {1, 2}:

d1(1) = 1, d1(2) = 1;
d2(1) = 1, d2(2) = 2;
d3(1) = 2, d3(2) = 1;
d4(1) = 2, d4(2) = 2;

d1 and d4 ignore the value of X, d2 guesses that player 1 is telling truth, and d3 that he is
not telling truth. The risk function is given by Table 1.2.

It is not always a good idea to use a deterministic rule. Sometimes it is more convenient
to choose an action with a certain probability (depending on the observed value of X,
for example). Such a decision rule is called randomized decision. Let Y be a random
variable over A with distribution FY (y). The expected loss associated with FY (y) is
then given by:

L(ϑ, FY (y)) = E{L(ϑ, Y )} (1.75)
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We have various types of randomized decision rules. The most interesting one for us is
the so called behavioral decision rule. It is a function δ which gives for each x in the
sample space a probability distribution over A.

Definition 1.6.4 (Behavioral Risk Function) Given a behavioral decision rule
δ, the risk function is defined as

R̂(ϑ, δ) = E{L(ϑ, δ(X))|ϑ}, (1.76)

where L is the loss function defined by Equation (1.75).

Definition 1.6.5 (Behavioral Decision Rule) The function δ(x) : X −→ A∗ is
called behavioral decision rule if the risk function is finite for all ϑ ∈ Θ. A∗ denotes
the space of randomized decisions, δ, for which L(ϑ, δ) is finite for all ϑ ∈ Θ.

The fundamental problem of decision theory is to find optimal decision rules. Since
a best rule usually does not exists, methods are needed for arriving at a reasonable
decision rule. Here, we deal with the Bayesian principle, but other methods exist like
unbiasedness or the minimax principle. Bayesian principle leads to an ordering of the
available decision rules. First, we need a prior distribution on the parameter space Θ
(sometimes referred to as world model).

Definition 1.6.6 (Bayes Risk) The Bayes risk of a decision rule δ with respect to
a prior distribution P is given by

r(P, δ) = E{R(Y, δ)}, (1.77)

where Y is a random variable over Θ with distribution P .

We also need the joint and conditional distribution of Y and X. The conditional
distribution is also called the posterior distribution of the parameter given the obser-
vations. In using the Bayes principle, the parameter space is considered as a random
variable whose distribution is known. For a fixed distribution, a rule is prefered to
another one if it has a smaller Bayes risk. This relation sets up an ordering. The best
rule with respect to this ordering is called a Bayes decision rule.

Definition 1.6.7 (Bayes Decision Rule) Given a prior distribution P , δ0 is a
Bayes decision rule with respect to P if

r(P, δ0) = inf
δ

r(P, δ). (1.78)

The value r(P, δ0) is known as the minimum Bayes risk.
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If a Bayes rule does not exist, one must be satisfied with a rule whose risk is close to the
minimum. The basic theorem of decision theory states that every really good decision
rule is practically Bayesian. This is why Bayes procedures are the most broadly used
tools.

1.7 Stochastic Processes and Markov Chains

First, we deal with stochastic processes3 defining basic notions to the study of Markov
chains. Markov chains will be extensively used in Chapter 3 in the convergence study
of Simulated Annealing. Let us begin with the definition of a stochastic process.

Definition 1.7.1 (Stochastic Process) We are given an experiment E = (I,B, P ).
To every outcome ξ ∈ I, we assign a time function X(t, ξ). Thus, we have created a
function for each outcome ξ ∈ I. The family of these functions is called a stochastic
process. The notation X(t) is also used.

We remark that if t is fixed then X(t, ξ) is a random variable. If these random variables
are discrete (resp. continuous) then we say that the process has a discrete (resp.
continuous) state space. If the time parameter t is discrete (resp. continuous) then the
process is called discrete (resp. continuous) parameter process. If we regard X(t) as a
random variable, it is clear that its distribution will depend on t: F (x; t) = P{X(t) ≤
x}. This function is called first order distribution of the process X(t). Higher order
distributions are defined similarly by the joint distributions of the random variables
X(t1), . . . , X(tn):

F (x1, . . . , xn; t1, . . . , tn) = P{X(t1) ≤ x1, . . . , X(tn) ≤ xn} (1.79)

The corresponding nth-order density of X(t) is obtained by differentiating the above
distribution. We can define in the same way the mean µ(t) of a stochastic process as the
expected value of the random variable X(t) (see Definition 1.1.7). The autocorrelation
of a process is the joint moments of the random variables X(t1) and X(t2):

R(t1, t2) = E{X(t1)X(t2)} (1.80)

The auto-covariance is the covariance of X(t1) and X(t2):

C(t1, t2) = E{(X(t1)− µ(t1))(X(t2)− µ(t2))} (1.81)

3The terms stochastic processes and random processes are synonyms, the former is used generally
when a time parameter is present.
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Combining the above equations, we get:

C(t1, t2) = R(t1, t2)− µ(t1)µ(t2) (1.82)

Definition 1.7.2 (Strict Stationarity) A stochastic process is strictly stationary
if its transition probabilities are not affected by a shift in the time. In other words,
the processes X(t) and X(t + ε) have the same statistics for any ε.

Indeed, if X(t) is strictly stationary then its nth-order density must have the following
form:

∀ε,∀n : f(x1, . . . , xn; t1, . . . , tn) = f(x1, . . . , xn; t1 + ε, . . . , tn + ε) (1.83)

If the above equation holds only for n ≤ k then the process is said stationary of order k.
As a special case of Equation (1.83), the first order density f(x, t) is independent of t
and consequently the expected value E{X(t)} is constant. For the second order density,
one concludes that it is a function of r = t1 − t2 and the autocorrelation depends only
on the parameter r.

Definition 1.7.3 (Weak Stationarity) A stochastic process is weakly stationary
if its expected value is constant and its autocorrelation depends only on r = t1− t2:

E{X(t)} = µ, E{X(t + r)X(t)} = R(r) (1.84)

1.7.1 Markov Chains

Markov property states that the future of a process depends only on the current state
regardless how the process arrived at the given state. As a classical example of Markov
processes, we mention the random walk.

Example 1.7.1 Considering the tossing of a fair coin, we take a step to the right if heads
shows, to the left if tails shows. X(t) denotes our position after t tossing. Indeed, X(t) is a
stochastic process satisfying the Markov principle.

Definition 1.7.4 (Markov Process) A stochastic process X(t) is called Markov
process if for every n and t1 < t2 < · · · < tn we have

P{X(tn) ≤ xn|X(tn−1), . . . , X(t1)} = P{X(tn) ≤ xn|X(tn−1)} (1.85)
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Let X(t) be a continuous random variable and let f(x|x0) t ≥ t0 denote its conditional
density given X(t0) = x0. If t > t1 > t0 then we have the following equation called
Chapman-Kolmogorov equation:

f(x|x0) =
∫ ∞

−∞
f(x|x1)f(x1|x0)dx1 (1.86)

Now, we discuss an important special case of Markov processes, the so-called Markov
chains.
Definition 1.7.5 (Markov Chain) A discrete parameter Markov process with dis-
crete state space is called a Markov chain. In other words, let {Xi} = X1, X2, . . . , Xn, . . .
be a sequence of random variables taking the values a1, . . . , aN . If the Markov prop-
erty is satisfied:

P{Xn = ain |Xn−1 = ain−1 , . . . , X1 = ai1} = P{Xn = ain |Xn−1 = ain−1} (1.87)

then {Xi} is a Markov chain.

Let us denote the unconditional and conditional probabilities in the following way:

pi(n) = P{Xn = ai} (1.88)

Pij(n, s) = P{Xn = ai|Xs = aj} (1.89)

The conditional probabilities Pij(n, s) are also called the probabilities of transition.The
following equations are obvious:

pi(n) =
N∑

j=1

Pij(n, s)pj(s) (1.90)

N∑

i=1

pi(n) = 1 (1.91)

N∑

i=1

Pij(n, s) = 1 (1.92)

The discrete Chapman-Kolmogorov equation is of the form:

Pij(n, s) =
N∑

k=1

Pik(n, r)Pkj(r, s) (1.93)

The transition probabilities Pij(n, s) could be arranged in a matrix and the uncondi-
tional probabilities pi(n) in a vector:

P (n, s) =




P11(n, s) P12(n, s) . . .
P21(n, s) P22(n, s) . . .

...
...

. . .


 , pi(n) =




p1(n)
p2(n)

...


 (1.94)
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In this context, Equation (1.92) means that P (n, s) has unit row sums (and non-
negative elements, indeed). Such a matrix is called a stochastic matrix. Homogeneity is
an important property of Markov chains, we shall use it in Chapter 3 in the convergence
study of Simulated Annealing.

Definition 1.7.6 (Homogeneous Chains) If the conditional probabilities Pij(n, n+
1) do not depend on the time parameter n, then the chain is called homogeneous.
We shall denote the transition probabilities Pij(n, n + 1) by Pij.

Assuming an homogeneous chain, let us examine the transition probability from aj to
ak in exactly l steps. This can occur via various paths aj → aj1 → · · · → ajl−1

→ ak.
The probability of such a path is Pjj1Pj1j2 · · ·Pjl−1k. The sum P l

jk of these particular
probabilities gives the probability of finding the system in state ak after l transitions,
given the initial state aj. Obviously, P 1

jk = Pjk and

P n+1
jk =

∑

i

PjiP
n
ik, (1.95)

or more generally
P n+m

jk =
∑

i

Pm
ji P n

ik. (1.96)

Introducing a matrix-notation, the above equations can be rewritten as P n+1 = PP n

and P n+m = P nPm. The unconditional probability of having state ak after n transitions
is given by

pn
k =

∑

j

pjP
n
jk (1.97)

A state ak can be reached from aj if there exists some n such that P n
jk > 0.

Definition 1.7.7 (Stationary Distribution) If the unconditional probabilities pn
k

are independent of n, that is if
∀n: pn

k = pk (1.98)

then the probability distribution pk is called stationary.

Definition 1.7.8 (Irreducibility) A Markov chain is irreducible if for all pairs of
states (aj, ak) there is a positive probability of reaching ak from aj in a finite number
of transitions:

∀aj, ak ∃n : P n
jk > 0. (1.99)

Definition 1.7.9 (Aperiodicity) A Markov chain is aperiodic if for all states ai,
the greatest common divisor of all integers n ≥ 1, such that P n

ii > 0 is equal to 1.

Now, let us discuss ergodic properties of inhomogeneous Markov chains.
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Definition 1.7.10 (Weak Ergodicity) An inhomogeneous Markov chain is weakly
ergodic if for all m ≥ 1:

lim
n→∞(Pik(m,n)− Pjk(m,n)) = 0 (1.100)

Definition 1.7.11 (Strong Ergodicity) An inhomogeneous Markov chain is strongly
ergodic if there exists a vector π, satisfying:

∑

i

πi = 1, ∀i : πi > 0, (1.101)

such that for all m ≥ 1:
lim

n→∞Pij(m,n) = πj. (1.102)

In other words, ergodicity means that the transition probabilities converge to a distri-
bution π. Weak ergodicity states only the convergence (remark that Equation (1.100)
is nothing else but the well known Cauchy-criterion) and strong ergodicity states that
they converge towards π. For a stationary distribution, π must coincide with the sta-
tionary distribution. In statistical physics, this convergence may be interpreted as a
tendency towards a state of equilibrium. However, such a state of equilibrium does not
always exist (for example in the case of a random walk presented in Example 1.7.1).
Ergodicity is used in Chapter 3 for the convergence study of Simulated Annealing.

1.8 Markov Random Fields

In the 20’s, mostly inspired by the Ising model, a new type of stochastic process
appeared in the theory of probability called Markov Random Field (MRF). MRF’s
become rapidly a broadly used tool in a variety of problems not only in statistical
mechanics. Its use in image processing became popular with the famous paper of
S. Geman and D. Geman [46] in 1984 but its first use in the domain dates in the early
70’s [14]. Here, we briefly give an introduction to the theory of MRF’s [81, 105, 94, 36,
57].

1.8.1 The Ising Model

Following Ising, we consider a sequence, 0, 1, 2, . . . , n on the line. At each point, there
is a small spin which is either up or down at any given moment (see Figure 1.6).
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Figure 1.6: One dimensional Ising model. Figure 1.7: Cayley tree model.

Now, we define a probability measure on the set Ω of all possible configurations ω =
(ω0, ω1, . . . , ωn). In this context, each spin is a function

δi(ω) =

{
1 if ωi is up

−1 if ωi is down
(1.103)

An energy U(ω) is assigned to each configuration:

U(ω) = −J
∑

i,j

δi(ω)δj(ω)−mH
∑

i

δi(ω) (1.104)

In the first sum, Ising made a simplifying assumption that only interactions of points
with one unit apart need to be taken into account. This term represents the energy
caused by the spin-interactions. The constant J is a property of the material. If J > 0,
the interactions tend to keep neighboring spins in the same directions (attractive case).
If J < 0, neighboring spins with opposite orientation are favored (repulsive case). The
second term represents the influence of an external magnetic field of intensity H and
m > 0 is a property of the material. The probability measure on Ω is then given by

P (ω) =
exp

(
− 1

kT
U(ω)

)

Z
, (1.105)

where T is the temperature and k is a universal constant. The normalizing constant
(or partition function) Z is defined by

Z =
∑

ω∈Ω

exp
(
− 1

kT
U(ω)

)
. (1.106)

The probability measure defined in Equation (1.105) is called a Gibbs distribution. One
could extend the model to two dimensions in a natural way. The spins are arranged
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on a lattice, they are represented by two coordinates and a point have 4 neighbors
unless it is on the boundary. In the two-dimensional case, the limiting measure P
is unstable, there is a phase transition. As it is pointed out in [81], considering the
attractive case and an external field h, the measure Ph converges to P− if h goes to zero
through negative values but it converges to P+ 6= P− if h goes to zero through positive
values. It has been shown, that there exists a critical temperature TC and below this
temperature phase transition always occurs. The temperature depends on the vertical
(J1) and horizontal (J2) interaction parameters.

As a special example, we mention the Cayley tree model [81], originally proposed by
Bethe [9] as an approximation to the Ising model. In this case, the points sit on a tree
(see Figure 1.7). The root is called the 0th level. From the root, we have q branches
(q = 2 in Figure 1.7). The q = 1 case simply gives a one dimensional Markov chain. A
configuration on a tree of n levels is an assignment of a label up or down to each point.
We can define a similar energy function as for the Ising model.

Another extension of the Ising model to

q=2 q=3 q=4

Figure 1.8: The Potts model.

more than two states per points is the Potts
model [111, 106]. The problem is to regard
the Ising model as a system of interacting
spins that can be either parallel or antipar-
allel. More generally, we consider a system of
spins, each spin pointing one of the q equally
spaced directions. These vectors are the lin-
ear combinations of q unit vectors pointing in
the q symmetric directions of a hypertetrahe-

dron in q−1 dimensions. For q = 2, 3, 4, examples are shown in Figure 1.8. The energy
function of the Potts model can be written as

U(ω) =
∑

i,j

J(Θij), (1.107)

where J(Θ) is 2π periodic and Θij is the angle between two neighboring spins in i and
j. The q = 2 case is equivalent to the Ising model.

1.8.2 Gibbs Distribution and MRF’s

The most natural way to define MRF’s [3, 105, 46] related to image models is to define
them on a lattice. However, here we will define MRF’s more generally on graphs. It
will be useful in Chapter 2 for the study of hierarchical models. Let G = (S, E) be a
graph where S = {s1, s2, . . . , sN} is a set of vertices (or sites) and E is the set of edges.
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Definition 1.8.1 (Neighbors) Two points si and sj are neighbors if there is an
edge eij ∈ E connecting them. The set of points which are neighbors of a site s (ie.
the neighborhood of s) is denoted by Vs.

Definition 1.8.2 (Neighborhood system) V = {Vs | s ∈ S} is a neighborhood
system for G if

(i) s 6∈ Vs

(ii) s ∈ Vr ⇔ r ∈ Vs

To each site of the graph, we assign a label λ from a finite set of labels Λ. Such an
assignment is called a configuration ω having some probability P (ω). The restriction
to a subset T ⊂ S is denoted by ωT and ωs ∈ Λ denotes the label given to the site s. In
the following, we are interested in the probability measures assigned to the set Ω of all
possible configurations. First, let us define the local characteristics as the conditional
probabilities P (ωs | ωr, r 6= s).

Definition 1.8.3 (Markov Random Field) X is a Markov Random Field (MRF)
with respect to V if

(i) for all ω ∈ Ω: P (X = ω) > 0,

(ii) for every s ∈ S and ω ∈ Ω:
P (Xs = ωs | Xr = ωr, r 6= s) = P (Xs = ωs | Xr = ωr, r ∈ Vs).

To continue our discussion about probability measures on Ω, the notion of cliques will
be very useful.

Definition 1.8.4 (Clique) A subset C ⊆ S is a clique if every pair of distinct sites
in C are neighbors. C denotes the set of cliques and deg(C) = maxC∈C | C |.

Using the above definition, we can define a Gibbs measure on Ω. Let V be a potential
which assign a number VT (ω) to each subconfiguration ωT . V defines an energy U(ω)
on Ω by

U(ω) = −∑

T

VT (ω). (1.108)
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Definition 1.8.5 (Gibbs distribution) A Gibbs distribution is a probability mea-
sure π on Ω with the following representation:

π(ω) =
1

Z
exp (−U(ω)) , (1.109)

where Z is the normalizing constant or partition function:

Z =
∑
ω

exp (−U(ω)) ,

If VT (ω) = 0 whenever T is not a clique then V is called a nearest neighbor Gibbs
potential. In the following, we will focus on such potentials. The next famous theorem
establish the equivalence between Gibbs measures and MRF’s [14, 94].

Theorem 1.8.1 (Hammersley-Clifford) X is a MRF with respect to the neigh-
borhood system V if and only if π(ω) = P (X = ω) is a Gibbs distribution with a
nearest neighbor Gibbs potential V , that is

π(ω) =
1

Z
exp

(
− ∑

C∈C
VC(ω)

)
(1.110)

The main benefit of this equivalence is that it provides us a simple way to spec-
ify MRF’s, namely specifying potentials instead of local characteristics (see Defini-
tion 1.8.3), which is usually very difficult.

1.8.3 Spatial Lattice Schemes

In this section, we deal with a particular subclass of MRF’s which are the most com-
monly used schemes in image processing. In this case, we consider S as a lattice L so
that ∀s ∈ S : s = (i, j) and define the so-called nth order homogeneous neighborhood
systems as

Vn = {Vn
(i,j) : (i, j) ∈ L}, (1.111)

Vn
(i,j) = {(k, l) ∈ L : (k − i)2 + (l − j)2 ≤ n}. (1.112)

Obviously, sites near the boundary have fewer neighbors than interior ones (free bound-
ary condition). Furthermore, V0 ≡ S and for all n ≥ 0 : Vn ⊂ Vn+1. Figure 1.9 shows a
first-order neighborhood corresponding to n = 1. The cliques are {(i, j)}, {(i, j), (i, j +
1)}, {(i, j), (i + 1, j)}. In practice, more than two order systems are rarely used since
the energy function would be too complicated and will require a lot of computation.
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Cliques:

Cliques:

Figure 1.9: First order neighborhood sys-
tem.

Figure 1.10: Second order neighborhood sys-
tem.
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2.
Image Models

E arly vision refers to a variety of digital
image processing tasks dealing directly

with massive amounts of pixel data. The goal
of such a process is to transform the digi-
tized image data into more meaningful tokens
(edges, texture features, regions, etc. . . ).

The variety of early vision tasks has re-
sulted in a variety of algorithms, sometimes
dedicated to a single application and often
tuned to a particular environment in which
they are implemented. A general framework
in low level vision is image labeling where we
want to associate to each pixel a label from a
finite set. The meaning of this label depends
on the problem that we are trying to solve. For
image restoration, it means a grey-level; for
edge detection, it means the presence or the
direction of an edge; for image segmentation,
it means a class (or region); etc. . . The prob-
lem here is how to choose a label for a pixel.
There may be various responses. Our ap-
proach consists of building probabilistic image
models and simply selecting the most likely
labeling. To do this, we need to define some

probability measure on the set of all possible
labelings. In real scenes, neighboring pixels
usually have similar intensities. In a proba-
bilistic framework, such regularities are well
expressed mathematically by Markov Random
Fields (MRF). Another reason for dealing with
MRF models is of course the Hammersley-
Clifford theorem which allows us to define
MRF’s through clique-potentials. In the label-
ing problem, this leads us to the Bayesian for-
mulation in which a prior distribution is needed
on the labels. In general, we try to find the
Maximum A Posteriori (MAP) estimate of the
label field.

Unfortunately, finding such an estimate is
a heavy computational problem. There are
many heuristics to make the minimization eas-
ier such as multi-scale approaches. In the next
sections, after introducing the classical mono-
grid model, we present some multiscale mod-
els proposed by a variety of authors. Finally,
we propose a new type of MRF model called
hierarchical MRF model. This model allows
to work with cliques with far apart sites for a
reasonable price.
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2.1 Related Non-Markovian Approaches

2.1.1 Relaxation Labeling

As we said in the introduction, many problems in computer vision can be formulated
in terms of the assignment of labels to objects. Processes are needed which select the
best label among several possible choices. A well known, non-Markovian approach of
the problem is the so-called Relaxation Labeling (RL) process [67, 38]. Although, there
are similarities with the Markovian approach, a fundamental difference is that RL is a
non-stochastic process.

Let us first briefly discuss RL. We are given a set of objects, a set of labels for each
object (or possibly a common set for all objects), a neighbor relation over the objects,
and a constraint relation over labels at pairs (or n-tuples) of neighboring objects. A
solution to the problem is a labeling which is consistent with respect to the constraint
relation. Let us denote the objects (or nodes if we consider the objects siting on a
graph) by i = 0, . . . n, and the corresponding set of labels by Λi. The constraints Λij

is the set of all pairs of labels in Λi × Λj which are compatible at the neighboring
objects i and j. Assuming discrete relaxation, a label is discarded at node i if there
is no compatible label at the neighboring nodes and we keep it if there is at least
one compatible label. In the continuous case, we use weights for label assignments.
Denoting the weight with which λ is assigned to node i by pi(λ), we require that

∀i, λ: 0 ≤ pi(λ) ≤ 1 (2.1)

and ∑

λ

pi(λ) = 1. (2.2)

Similarly, the constraints are generalized to real-value compatibility functions rij(λ, λ′)
signifying relative support of label λ at i given the label at j is λ′. The label weights can
be regarded as probabilities and describe the RL process in Bayesian terms. However
such tentations have been limited and unsuccessful within the RL framework. The goal
of all RL processes is to find a consistent labeling. In [67], consistency is defined by
a system of inequalities permitting the constraints to be ordered with respect to their
relative importance.

The similarities of the MRF approach with RL are obvious: We have a graph
(which is usually a lattice) and we have constraints on neighboring objects (pixels)
of the graph. However, in a Markovian model, the constraints are expressed by local
conditional probabilities through clique-potentials. The consistency of a labeling is also
expressed in a probabilistic way: we are looking for a Bayesian estimate of the label
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field. In summary, we can say that while there are shared goals and features (graph
structure, neighborhoods, locality, etc. . . ), RL and MRF models are still quite distinct
approaches.

2.1.2 Weak Membrane Model

The weak membrane model have been introduced in image reconstruction by A. Blake
and A. Zisserman [15]. The problem is to reconstruct surfaces which are continuous
almost everywhere or, in other words, continuous in patches. To reach a satisfactory
formalization of this principle, they have developed a membrane model: Imagine an
elastic membrane which we are trying to fit to a surface The edges will appear as tears
in the membrane. Depending on how elastic is the membrane, there may be more or
less edges. The membrane is described by an energy function (the elastic energy of
the membrane) which has to be minimized in order to find an equilibrium state. The
energy has three components:

D: A measure of faithfulness to the data:

D =
∫

(u− d)2dA (2.3)

where u(x, y) represents the membrane and d(x, y) represents the data.

S: A measure of how the function u(x, y) is deformed:

S = λ2
∫

(∇u)2dA. (2.4)

λ2 is a measure of elasticity of the membrane.

P: The sum of penalties α levied for each break in the membrane:

P = αZ, (2.5)

where Z is a measure of the set of contours along which u(x, y) is discontinuous
(see [15] for more details).

The elastic energy of the membrane is then given by

E = D + S + P =
∫

(u− d)2dA + λ2
∫

(∇u)2dA + αZ. (2.6)
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There is a strong relation between the weak membrane model and MRF models: An
elastic system can also be considered from a probabilistic view-point. The link between
the elastic energy E and probability P is

P ∝ exp
(−E

T

)
, (2.7)

that is the Gibbs distribution. However, the weak membrane model operates with
mechanical analogies, representing a priori knowledge from a mechanical point of view
while MRF modelization is purely probabilistic1.

2.2 A General Markovian Image Model

MRF models in computer vision has become popular with the famous paper of S. Ge-
man and D. Geman on image restoration [46]. The field has grown up rapidly in recent
years addressing a variety of low-level2 image tasks [2]:

Compression: Find a new image as close as possible to the original one but described
at a much smaller cost (MRF’s are used in other compression problems too).

Restoration: Observing a degraded image, one wants to approximately recover the
original one.

Edge Detection: Find smooth boundaries separating image regions.

Segmentation: Partition the image into homogeneous regions where homogeneity is
measured in terms of grey-levels or texture characteristics.

Motion Detection: In a sequence of images, try to find a field of velocities linking
one image to the next one.

We now turn to the mathematical formulation of a MRF image model. Let R =
{r1, r2, . . . , rM} be a set of sites and F = {Fr : r ∈ R} a set of image data (or
observations) on these sites. The set of all possible observations f = (fr1 , fr2 , . . . , frM

)
is denoted by Φ. Furthermore, we are given another set of sites S = {s1, s2, . . . , sN},
each of these sites may take a label from Λ = {0, 1, . . . , L−1}. The configuration space
Ω is the set of all global discrete labeling ω = (ωs1 , . . . , ωsN

), ωs ∈ Λ. The two set of

1We notice that the weak membrane model has also been used in a Markovian context but originally,
as proposed by Blake and Zisserman [15], it was a non-Markovian model

2Low-level is a traditional terminology for preliminary tasks to image understanding.
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sites R and S are not necessarily disjunct, they may have common parts (for example
Geman’s image restoration model involving a line process [46]) or refer to a common
set of sites. Our goal is to modelize the labels and observations with a joint random
field (X ,F) ∈ Ω×Φ. The field X = {Xs}s∈S is called the label field and F = {Fr}r∈R
is called the observation field.

2.2.1 Bayesian estimation

First, we construct a Bayesian estimator for the label field. Using the results from Sec-
tion 1.3, we can define both the joint and conditional probabilities in terms of the a
priori and a posteriori distributions:

PX ,F(ω, f) = PF|X (f | ω)PX (ω) (2.8)

PX|F(ω | f) =
PX ,F(ω, f)

PF(f)
=

PF|X (f | ω)PX (ω)

PF(f)
(2.9)

Since the realization of the observation field is known, P (f) is constant and we can
write:

PX|F(ω | f) ∝ PF|X (f | ω)PX (ω) (2.10)

The estimator is the following decision function δ (see Section 1.6):

δ : Φ −→ Ω (2.11)

f 7→ δ(f) = ω̂ (2.12)

and the corresponding Bayes risk is given by

r(PX , δ) = E{R(ω, δ(f))} (2.13)

where R(ω, δ(f)) is a cost function. According to the Definition 1.6.7, our estimator
must have the minimum Bayes risk:

ω̂ = arg min
ω′∈Ω

∫

ω∈Ω
R(ω, ω′)PX|F(ω | f)dω (2.14)

We explain hereafter the three best known Bayesian estimators [89].

2.2.1.1 Maximum A Posteriori (MAP)

The MAP estimator is the most frequently used estimator in image processing. Its cost
function is defined by

R(ω, ω′) = 1−∆ω′(ω), (2.15)
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where ∆ω′(ω) is the Dirac mass in ω′. Clearly, this function has the same cost for all
configurations different from ω′. From Equation (2.14) and Equation (2.15), the MAP
estimator of the label field is given by

ω̂MAP = arg max
ω∈Ω

PX|F(ω|f). (2.16)

This estimator gives for a given observation f , the modes of the posterior distribution,
that is the most likely labelings given the observation f . Equation (2.16) is a com-
binatorial optimization problem which requires special algorithms such as Simulated
Annealing (see Chapter 3).

2.2.1.2 Marginal A Posteriori Modes (MPM)

We define the cost function of the MPM estimator as

R(ω, ω′) =
∑

s∈S
(1−∆ω′s(ωs)). (2.17)

Remark that the above function is related to the number of sites s ∈ S such that
ωs 6= ω′s. The solution of Equation (2.14) is given by

∀s ∈ S : ω̂MPM
s = arg max

ωs∈Λ
PXs|F(ωs | f), (2.18)

which gives the configuration which maximizes at each site the a posteriori marginal
PXs|F(. | f).

2.2.1.3 Mean Field (MF)

Here, we have the following cost function:

R(ω, ω′) =
∑

s∈S
(ωs − ω′s)

2. (2.19)

From Equation (2.14) and Equation (2.19), we have

∀s ∈ S : ω̂MF
s =

∫

ω∈Ω
ωsPX|F(ω | f)dω, (2.20)

which is nothing else but the conditional expected value of X given F = f that is the
mean field of X .
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2.2.2 Defining a Priori and a Posteriori Distributions

In the Bayesian framework, our knowledge about the “world” is represented by a priori
probabilities. However, in practice, it is extremely difficult to define such probabilities
globally, even if we focus on a specific area of image processing. But there are some
well defined properties if we are considering images locally: Usually, neighboring pixels
have similar intensities, edges are smooth and often straight and textures have also well
defined local properties. It is then a better idea to represent our knowledge in terms
of some local random variables. This kind of knowledge is best described by means of
MRF’s.

2.2.2.1 Prior Distribution

Let us suppose that X is a MRF with some neighborhood system V ′ = {V ′s : s ∈ S}
and distribution

P (X = ω) =
1

Z
exp (−U ′(ω)) , (2.21)

U ′(ω) =
∑

C∈C′
V ′

C(ω) (2.22)

where U ′(ω) is the energy function (see Section 1.8). The above equations give another
good reason using MRF priors, namely their Gibbs representation through clique-
potentials, which are more convenient than working directly with probabilities.

2.2.2.2 Degraded Image Model and Posterior Distribution

The observations are related to the label process through a degradation model which
models the relation between the label field X and the observation process F . In image
restoration [46] for example, what we observe is a blurred noisy image and we want
to restore the original one. So, the label process represents grey-levels here. We are
now considering a similar model but in a more general manner. Most of the problems
result in the following function [97]:

F = Ψ(H(X ), N), (2.23)

or at the pixel level:
∀r ∈ R : Fr = Ψ(Hr(Xψ(r)), Nr) (2.24)

where Ψ(a, b) is an invertible function in a. Hr is a local function defined on a small
part ψ(r) of S such that ψ(r) ∈ S, | ψ(r) |¿| S | and ψ−1(s) = {r ∈ R | s ∈ ψ(r)}.
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N is a random component (usually a Gaussian white noise but in tomography Nr are
Poisson variables whose means are related to X ). In [46], for instance, H is a blurring
matrix and N is an additive Gaussian noise. If we assume that the distribution of N
is given by

PN(.) =
∏

r∈R
PNr(.) (2.25)

then we obtain
PF|X (f | ω) =

∏

r∈R
PNr(Ψ

−1(Hr(ωψ(r)), fr)). (2.26)

The conditional distribution of the observation field F given X can be written as

PF|X (f | ω) = exp

(∑

r∈R
− ln(PNr(Ψ

−1(Hr(ωψ(r)), fr)))

)
, (2.27)

assuming that PNr(.) > 0 at each site r in R. Combining the above equation with
Equation (2.10) and Equation (2.21), the posterior distribution is of the following
form:

PX|F(ω | f) ∝ 1

Z
exp


∑

r∈R
− ln(PNr(Ψ

−1(Hr(ωψ(r)), fr))) +
∑

C∈C′
V ′

C(ω)


 (2.28)

Notice that the posterior distribution is also a Gibbs distribution with the smallest
neighborhood system V containing all the cliques in C ′ and the sets {ψ(r), r ∈ R}:

∀s ∈ S : Vs =


 ⋃

r∈ψ−1(s)

ψ(r) \ {s}

 ∪ V ′s (2.29)

Let us denote the corresponding energy function by U(ω, f):

U(ω, f) =
∑

r∈R
− ln(PNr(Ψ

−1(Hr(ωψ(r)), fr))) +
∑

C∈C′
V ′

C(ω)

=
∑

r∈R
Vr(ωψ(r)), fr) +

∑

C∈C′
V ′

C(ω) (2.30)

In the following, we will be more specific about Vr(ωψ(r)), fr) and suppose that it is of
the form [97]:

Vr(ωψ(r)), fr) = Vr(ωψ(r)) +
∑

s∈ψ(r)

Vs,r(ωs, fr). (2.31)

This restriction is less severe than it might be expected. As we will see, most of the
nowadays used models have this kind of energy function. The above equation can be
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rewritten as

∑

r∈R
Vr(ωψ(r)), fr) =

∑

r∈R
Vr(ωψ(r)) +

∑

r∈R

∑

s∈ψ(r)

Vs,r(ωs, fr) (2.32)

=
∑

r∈R
Vr(ωψ(r)) +

∑

s∈S

∑

r∈ψ−1(r)

Vs,r(ωs, fr)

︸ ︷︷ ︸
Vs(ωs,fψ−1(s))

(2.33)

(2.34)

Finally, we have the following energy function associated with the posterior distribution
of the label field X :

U(ω, f) =
∑

s∈S
Vs(ωs, fψ−1(s)) +

∑

C∈C
VC(ω) (2.35)

= U1(ωs, fψ−1(s)) + U2(ω). (2.36)

where the clique-potentials VC(ω) are defined as

VC(ω) =





V ′
C(ω) if C ∈ C ′ and C 6∈ {ψ(r), r ∈ R}

Vr(ωψ(r)) if C = ψ(r) and ψ(r) 6∈ C ′
V ′

C(ω) + Vr(ωψ(r)) if C = ψ(r) and ψ(r) ∈ C ′
(2.37)

If we assume that the observed image F is affected at site s only by the pixel s itself
then Equation (2.35) can be further simplified: ψ(r) reduces to s and the neighborhood
system of the posterior distribution is equivalent to the one of the prior distribution.

2.2.3 Some Examples of Markov Models

Herein, we explain some models applied to a variety of image processing tasks. Most
of them uses the general model discussed in the previous section (see Equation (2.35)).
Let us begin this discussion with the restoration model proposed by D. Geman and
S. Geman in [46].

2.2.3.1 Image Restoration

We observe a blurred noisy image F and we want to restore the original one. The
components of the degraded model in Equation (2.23) have the following meanings: N
is supposed to be a white Gaussian noise with mean µ and variance σ2. H is a shift-
invariant blurring matrix. First of all, we define the lattices on which the label process
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and the observation process are defined. The observation process simply consists of the
grey-level at each pixel of the given image. Thus R is a lattice, each site corresponds
to a pixel. The label process is more sophisticated involving both pixel sites and line
sites. X is then a “mixed” process having two subprocesses: a pixel process and a line
process. The lattice S contains R (pixel sites) and another lattice with sites siting
between each vertical and horizontal pair of pixels representing a possible location of
edge elements (line sites, see Figure 2.1).

We now turn to the posterior distribution and its energy

pixel process

line process

Figure 2.1: Geman’s
image restoration model

function. Let us denote the line process by X l and the pixel
process by X p. We assume that X p is a MRF over a homo-
geneous neighborhood system (see Section 1.8.3) V on R and
X l is also a MRF over a neighborhood system shown on Fig-
ure 2.1. (the neighbors of the black site are the grey sites). X
has a prior distribution of

P (X p = ωp,X l = ωl)

=
1

Z
exp(−U ′(ωp, ωl)) =

1

Z
exp

(
− ∑

C∈C
VC(ω)

)
, (2.38)

where ω = (ωp, ωl). ωp takes values among the available grey-
levels and ωl among the line states. If we choose V such that

it is large enough to encompass the dependencies caused by the blurring H then the
posterior distribution also defines a MRF with energy function

U(ωp, ωl) = U ′(ωp, ωl) +
‖~µ−Ψ−1(H(ωp), f)‖2

2σ2
(2.39)

The optimal labeling ω̂ is found by the MAP estimate minimizing the above energy
function. The restored image is then given by the pixel process ω̂p.

2.2.3.2 Texture Segmentation

The observations consist of a set of various texture features describing spatial statis-
tics of the image. These features are computed on local windows around each pixel
including mean, variance, correlation, entropy, contrast, homogeneity, etc [61, 48, 47,
33, 28, 29]. . . Here, both the observation process and the label process are defined on
the same lattice S with sites corresponding to image pixels. The terms U1 and U2 from
Equation (2.36) are defined in the following way: The prior energy U2 usually favors
spatially homogeneous regions assigning lower potentials to homogeneous cliques. The
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term U1 does not have such a “standard” definition. It has various form in the liter-
ature. In [61], it measures the distance, at a given point s, between the distribution
of the texture features in a small block Bs centered at s and the one in the whole
(candidate) region Rs to which we want to assign s. This technique, as claimed in [61],
permits to automatically determine the number of regions. The energy function is
defined as

U1(ω, ~f) =
∑

s∈S
Vs(Bs, Rs) (2.40)

Vs(Bs, Rs) =
m∑

i=1

(2∆(d(~f i
Rs

, ~f i
Bs

) > ci)− 1) (2.41)

where m is the number of considered features. ~fBs and ~fRs denote the set of fea-
ture vectors on block Bs and on the region Rs respectively. d(a, b) stands for the
Kolmogorov-Smirnov distance and ci is a threshold given by statistical tables associ-
ated to the Kolmogorov limit distribution (see [61]). The function ∆ returns 1 if its
argument is true, 0 otherwise.

2.2.3.3 Edge Detection

MRF models for edge detection are often compound Gauss-Markov random fields (CGMRF)
[69, 115]. The local characteristics of a CGMRF is given by

P (fs | fr, r ∈ S) =
1√
2πς

exp




1

2ς2


fs − µm −

∑

r∈Vs

ϑr(fr − µm)




2

 , (2.42)

where ς is the deviation, µm is the mean and ϑr is the model parameter. The supporting
graph is similar to the one reported in [46] (cf. Figure 2.1). The observations F are
considered to be corrupted by an additive Gaussian noise with zero mean and variance
σ2. The label field is again a mixed process containing both a pixel process X p and a
line process. Assuming a first order neighborhood system (cf. Figure 1.9) and denoting
the horizontal and vertical line process by X h and X v respectively, a possible form of
the energy function is given by [115]:

U(ω, f) =
1

2σ2

∑

s=(i,j)∈S

(
(fi,j − ωp

i,j)
2 + β2(1− 2(ϑh + ϑv))f

2
i,j

+ ϑh(β
2(fi,j − fi−1,j)

2(1− ωh
i,j) + αωh

i,j)

+ ϑv(β
2(fi,j − fi,j+1)

2(1− ωv
i,j) + αωv

i,j)
)

(2.43)
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with 1 − 2(ϑh + ϑv) > 0. ϑv and ϑh are the model parameters for the vertical and
horizontal cliques. β2 corresponds to a regularization term reflecting the confidence
in the data. In [115], β2 = σ2/ς2 expressing that when F is very noisy, we have no
confidence in the data (β2 is high). This model is related to the weak membrane model
presented in [15]. The estimation of the line process is done by a Mean Field approach
(see Section 2.2.1).

2.2.3.4 Motion Analysis

In [99], a MRF model for motion detection is presented. The observation process is
defined both on the image-lattice S and on a time axis t. The detection of moving
objects relies on the analysis of the variation of the intensity distribution in time. At
each pixel, we have a two-element observation vector:

~f 1
s (t) =| ys(t)− ys(t− dt) |, (2.44)

where ys(t) stands for the intensity value at pixel s at time t. ~f 2 is a logical map of
temporal changes between time t and t − dt. It equals to 1 if a temporal change of
the intensity is valid at site s and 0 otherwise (for more details, see [64]). The label
process is binary valued (Xs(t) = 1 if s is on a mask of a mobile object at time t). The
energy function U consists of three terms. Two of them related to the observations
and labels simultaneously (taking the role of U1 in Equation (2.36)). One of them is
used to reconstruct the mask of a mobile object at a given time:

U2
1 (ω, ~f 2

s ) =
∑

s∈S
V1(ωs(t), ~f 2

s (t), ~f 2
s (t + dt)), (2.45)

the other expresses consistency between the current labeling and the intensity variation:

U1
1 (ω, ~f 1

s ) =
∑

s∈S

(
1

2σ2
(~f 1

s (t)− µωs(t))
2 + (~f 1

s (t + dt)− µωs)
2
)

(2.46)

where µ and σ are model parameters. The third term of the energy function U corre-
sponds to U2 with potentials favoring homogeneous masks.

2.3 An Image Segmentation Model

In this section, we discuss the image segmentation model used in our experiments. The
model is very simple without any line process or texture. Our goal was not to establish
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a sophisticated, environment-specific model but to construct an easily applicable uni-
versal model for non-textured images and then study its multi-scale and hierarchical
implementations.

Let us suppose that the observations consist of the grey-levels. A very general
problem is to find the labeling ω̂ which maximizes the a posteriori probability P (ω | F).
According to the results reported in Section 2.2.1, ω̂ is the MAP estimate of the label
field. Bayes theorem tells us that

P (ω | F) =
1

P (F)
P (F | ω)P (ω). (2.47)

Actually P (F) does not depend on the labeling ω and we make the assumption that

P (F | ω) =
∏

s∈S
P (fs | ωs). (2.48)

It is then easy to see that the global labeling, which we are trying to find, is given by:

ω̂ = arg max
ω∈Ω

∏

s∈S
P (fs | ωs)

∏

C∈C
exp(−VC(ωC)) . (2.49)

It is obvious from this expression that the a posteriori probability also derives from a
MRF. The energies of cliques of order 1 directly reflect the probabilistic modeling of
labels without context, which would be used for labeling the pixels independently. Let
us assume that P (fs | ωs) is Gaussian, the class λ ∈ Λ = {0, 1, . . . , L−1} is represented
by its mean value µλ and its deviation σλ. We get the following energy function (using
Equation (2.36)):

U1(ω,F) =
∑

s∈S

(
ln(
√

2πσωs) +
(fs − µωs)

2

2σ2
ωs

)
(2.50)

and U2(ω) =
∑

C∈C
V2(ωC) (2.51)

where V2(ωC) = V{s,r}(ωs, ωr) =

{
−β if ωs = ωr

+β if ωs 6= ωr
(2.52)

where β is a model parameter controlling the homogeneity of the regions. As β in-
creases, the resulting regions become more homogeneous. Clearly, we have 2L + 1
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parameters. They are denoted by the vector Θ:

Θ =




ϑ0

ϑ1
...

ϑ2L



≡




µ0

µ1
...

µL−1

σ0
...

σL−1

β




(2.53)

If the parameters are supposed to be known, we say that

   1. 2. 3. 4.

classes:

Figure 2.3: Training
sets on a synthetic im-
age

the segmentation process is supervised. If they are unknown
(and hence they have to be estimated simultaneously during
the segmentation), the segmentation process is called unsuper-
vised. Unsupervised segmentation and parameter estimation
methods will be discussed later in Chapter 4.

For supervised segmentation, we are given a set of training
data (small sub-images), each of them representing a class
(see Figure 2.3). According to the law of large numbers (see
Section 1.5), we approach the statistics of the classes (mean
and variance) by the empirical mean and empirical variance:

∀λ ∈ Λ : µλ =
1

| Sλ |
∑

s∈Sλ

fs, (2.54)

σ2
λ =

1

| Sλ |
∑

s∈Sλ

(fs − µλ)
2, (2.55)

where Sλ is the set of pixels included in the training set of class λ. The parameter β is
initialized in an ad-hoc way (by trial and error). Typical values are between 0.5 and 1.

In Figure 2.2, we give an overview of a supervised segmentation process. We have
two inputs: the image itself and the parameters Θ. They yield an energy function as
defined in Equation (2.50)–Equation (2.52). To find the MAP estimate, an algorithm
is needed to minimize this energy function. In Chapter 3, we discuss a variety of such
algorithms. Here, we have used the Gibbs Sampler [46] to get the minimum. The
resulting image is just the labeling with minimum energy.
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Parameters Θ

MRF image segmentation model

Find MAP estimate
(Simulated Annealing, for instance)

Figure 2.2: Supervised image segmentation process
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2.4 Multigrid Approaches

Early vision (or low level vision) processes deal with massive amounts of data. Thus
such algorithms have two requirements in order to accomplish their tasks: they should
be highly parallel to handle the data in a short time and they should provide a struc-
ture simplifying the extraction of higher level image features such as edges, regions,
etc. . . Parallel multigrid (or pyramidal) schemes are one of the possible approaches sat-
isfying these demands. A recent book [71] on the subject is discussing various aspects
of multiresolution image processing. Computation on image data with pyramids has
importance not only in vision but also in the development of parallel computers (for
some examples, see [71]). From a biological point of view, they support algorithms that
share properties with the human vision (the human retina acquires visual information
at multiple resolution at the same time).

Multigrid methods have a long existence in numerical analysis (partial differential
equations, for instance). In image processing, they have also been used in various
contexts from the mid 70’s. Many vision problems have been formulated in terms of
the optimization of a cost function. The multigrid approach of such an optimization is
similar to the one used in numerical analysis (see [97] for a discussion about). Here, we
are interested in pyramidal methods applied to MRF image modelization [55]. We use
the notion pyramidal to designate multigrid and hierarchical schemes. We are talking
about multigrid methods, if the layers in the pyramid are not connected. In this case,
the optimization algorithm is usually parallelizable only on the layers, but it is still
sequential between layers. The layout of a multigrid model can be represented by a
stack of smaller and smaller image lattices. If there is an inter-level communication, the
model is called hierarchical. While the optimization algorithms associated with such
models can be parallelized on the whole pyramid, the underlying MRF model becomes
more complicated requiring more computation. The layout of the model is represented
by a tree.

As we explained in Section 2.2, we usually have two processes in a MRF model:
the observation process and the label process. In a multigrid scheme, we usually build
scales with different resolution using the label process and keep the whole observation
process [88, 16, 50, 17, 64, 18, 85, 99]. Herein, we briefly review some related techniques.

2.4.1 Renormalization Group Approach

Based on renormalization group ideas from statistical physics, this technique has been
adapted by B. Gidas [50] to image processing. The main advantage of the method is

Zoltan Kato



2.4. Multigrid Approaches 57

that it provides a mechanism for relating the processing at different scales with one
another. This mechanism is a nonlinear transformation—called the Renormalization
Group (RG) transformation. Following [50], let us briefly review the Renormalization
Group Algorithm (RGA):

The RGA consists of two major steps: a renormalization step

Figure 2.4: Renor-
malization group
approach.

and a processing step. In the former step, we iteratively build a
sequence of coarser and coarser grids

S ≡ S0 → S1 → S2 → . . . → SM (2.56)

and a corresponding sequence of energy functions

U0 → U1 → . . . → UM . (2.57)

The coarsening of the grid S0 is done by dividing it into blocks of
w × h (assuming that S0 is a lattice of size wM × hM) and then
identifying each block by one of its elements. The collection of
these sites will form S1. Proceeding in the same way, we obtain
the other grids. The Hamiltonians are obtained from the original
energy U iteratively as follows: for each m, 1 ≤ m ≤ M , we choose
a conditional probability

Pm(Xm = ωm | Xm−1 = ωm−1) (2.58)

which expresses the probability that the label field at Sm is ωm

given that the configuration at Sm−1 is ωm−1. The energy function
of coarser grids are computed by the next formula:

∀m: m = 1, . . . , M :

Um
K (ωm) = − ln

(∑

S
Pm(ωm | ωm−1) exp(−Um−1

K (ωm−1))

)
, (2.59)

where K is a positive constant and U0
K = 1

K
U . The above equation could be rewritten

as
∀m: m = 1, . . . ,M : Um

K = Rm(Um−1
K ). (2.60)

Rm is the RG transformation at stage m. We remark that other RG transformations
might also be defined (see [50] for more details). Now, we organize the grids into a
vertical cascade with the finest grid at the top as shown in Figure 2.4. The process-
ing step of RGA is essentially a multiscale, coarse-to-fine processing starting at the
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bottom level: First we solve the problem at the coarsest level then we move upwards
transmitting the obtained information at level m to the level m − 1 above. At level
m− 1, the processing is done under a constraint introduced by the level m below. Let
us examine this technique in the case of the Hamiltonians defined in Equation (2.59).
First, we find the global minimum of Um

K , then we are looking for the global minimum
ω̂m−1 of Um−1

K but searching only in a smaller subspace of configurations constrained
by the minimum ω̂m of Um

K via the equation

Pm(ω̂m | ωm−1) = max
ωm

Pm(ωm | ωm−1). (2.61)

Obviously, this reduces the computational complexity of each level. In [50], it has
been shown that if the above probabilities are properly chosen and if K is sufficiently
small, RGA computes the correct MAP estimate of the original image at level 0. The
parameter K could be interpreted as a temperature and thus we can use a Simulated
Annealing algorithm for the energy-minimization. Furthermore, the equilibrium prop-
erties of the field m − 1 at temperature K are related to the properties of the field
m at temperature one. In some simple problems, however, the use of such a stochas-
tic relaxation algorithm is not needed. The general formulation of the RGA is the
following [50]:

Algorithm 2.4.1 (Renormalization Group Algorithm)

©1 Generate a cascade of coarse grids from the original image, choose a set of con-
ditional probabilities Pm,m = 1, . . . ,M , and a positive constant K sufficiently
small and compute the coarse Hamiltonians Um

K , m = 1, . . . , M .

©2 Set m = M and find the global minimum ω̂M of UM
K .

©3 Find the global minimum ω̂m−1 of Um−1
K among all configurations satisfying Equa-

tion (2.61).

©4 Stop if m = 1, return to Step ©3 with m = m− 1 otherwise.

Finally, we give a very simple example of the conditional probabilities Pm mentioned
in Step ©1 of the above algorithm. Suppose that the sites of the grid Sm are also the
sites of the grid Sm−1 but not vice versa (as in Figure 2.4, for example). Then we
choose

Pm(ωm | ωm−1) =
∏

s∈Sm

δ(ωm
s , ωm−1

s ) (2.62)

where δ(a, b) = 1 if a = b and 0 otherwise.
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In summary, RGA is a quite consistent approach. The coarser grids and their
Hamiltonians are well defined, they are deduced from the original image. Another
important property is that RGA finds the MAP estimate of the original label field
which is not true for all multigrid approaches. It can be applied not only to MRF
models but also to any other model with a cost function and an underlying lattice
scheme. The major difficulty is the computation of the energy functions at coarser
grids. Usually, this computation cannot be done explicitly (except for some simple
models such as the Ising model), one has to approximate them. Another drawback is
the loss of Markovianity at coarser grids [97] since the coarser energy functions obtained
by the RG transformation cannot be decomposed as a sum of clique-potentials. In [50],
the Hamiltonians are approximated by a sum of clique-potentials and hence one can use
classical relaxation algorithms to minimize the energy at coarser grids. Unfortunately,
such approximations are available only for certain simple models, mainly in image
restoration [50, 95].

2.4.2 A Causal Hierarchical MRF Model

Another interesting model has been proposed by Bouman et al. [17, 18, 16]. His
model consists of a label-pyramid where each level is causally dependent on the coarser
layer above it. Bouman also defines a new optimization criteria called Sequential MAP
(SMAP) estimate. Let us briefly review this model.

First, we build a pyramid as shown on Figure 2.5. Each site

Figure 2.5: A
causal hierarchical
model.

at a coarse grid corresponds to a group of 2 × 2 sites at the grid
below it. The fundamental assumption of the model is that the
sequence of random fields from coarse to fine scale form a Markov
chain. Denoting the label field at level n by X n, this relation may
be stated as

P (X n = ωn | X l = ωl, l > n) = P (X n = ωn | X n+1 = ωn+1).
(2.63)

The observation field F depends only on the labeling at the finest
scale implying

P (F = f | X n, n > 0) = P (F = f | X 0). (2.64)

From the above equations, we can easily deduce the joint distribution of F and X :

P (F = f | X = ω) = P (f | ω0)

(
M−1∏

n=0

P (ωn | ωn+1)

)
P (ωM). (2.65)
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where M is the coarsest scale.

As pointed out in [16], the conventional MAP estimate is not satisfying since its
cost function (cf. Equation (2.15)) would assigns equal cost to a single mislabeled pixel
at n = 0 or to the mislabeling of hundreds of pixels at the coarsest scale. The proposed
solution is to define a cost function related to the width of the largest grouping of
mislabeled pixels. More precisely, let K be the coarsest scale containing a misclassified
pixel. Obviously, the error at scale K will influence the labeling at finer scales leading
to the misclassification of a group of pixels at the finest scale. The width of this group
will be approximately 2K . The new cost function is of the following form:

CSMAP (X , ω) =
1

2
+

M∑

n=0

2n−1Cn(X , ω) (2.66)

with Cn(X , ω) = 1−
M∏

i=n

δ(X i, ωi), (2.67)

where δ is the Dirac mass. The estimate ω̂ of the label field is obtained by minimizing
the risk:

ω̂ = arg min
ω

E{CSMAP} (2.68)

= arg min
ω

M∑

n=0

2n−1(1− P (ωi, i ≥ n | f)) (2.69)

= arg max
ω

M∑

n=0

2nP (ωi, i ≥ n | f) (2.70)

This estimate can be computed recursively since the fields X n form a Markov chain.
Denoting the estimate obtained at level i by ω̂i, we obtain the next procedure:

ω̂M = arg max
ωM

ln(P (ωM | f)) (2.71)

= arg max
ωM

ln(P (f | ωM)) (assuming that XM is uniform) (2.72)

ω̂n = arg max
ωn

ln(P (ωn | ω̂n+1, f)) (2.73)

= arg max
ωn

(ln(P (f | ωn)) + ln(P (ωn | ω̂n+1))), n = M − 1, . . . , 0 (2.74)

The procedure is initialized by the MAP estimate of the coarsest scale given the ob-
served data. At finer scales, we are looking for the MAP estimate of X n, given the
observations and the estimate ω̂n+1 at the scale above it. Due to this structure, this
estimator is called sequential MAP (SMAP).
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Algorithm 2.4.2 (Causal Hierarchical Algorithm)

©1 Build a pyramid from the label field X by dividing the original grid into coarser
scales. Each site corresponds to a block of 2× 2 sites at the level below it.

©2 Find the optimal labeling at the coarsest scale using Equation (2.72) and set
n = M − 1.

©3 Find the MAP estimate of the label field at scale n given the observations f and
the estimate ωn+1 at the coarser level above it using Equation (2.74).

©4 Stop if n = 0, go to Step ©3 with n = n− 1 otherwise.

The SMAP estimator has many advantages. The most important is that it can be
obtained with a single non-iterative pass in contrast to the MAP or MPM estimates
(for more details, see [16]).

2.5 A Multiscale MRF Model

This multiscale model has been proposed by Perez et al. in [64, 63] for motion analysis
using a second order neighborhood system shown in Figure 1.10 (see [97] for a more
general description of the model). Herein, we give a general description of this model.
Then we study it in the case of a first order neighborhood system (see Figure 1.9)
which is the most commonly used in image segmentation problems.

2.5.1 General Description

Let us suppose that S = {s1, s2, . . . , sN} is a W ×H lattice, so that:

S ≡ L = {(i, j) : 1 ≤ i ≤ W and 1 ≤ j ≤ H}, (2.75)

and3 W = wn, H = hm. Furthermore, we have some neighborhood system V on these
sites. Let X be a MRF over V with an energy function U and potentials {VC}C∈C. The
following procedure will generate the multigrid MRF corresponding to X :

1. Let B0 ≡ S and Ω0 ≡ Ω.

3This assumption introduces some restrictions on L but this is not crucial in practice since we work
mostly on images where both W and H is a power of 2.
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Figure 2.6: The isomorphism Φi between Bi and Si.

2. For all 1 ≤ i ≤ M (M = inf(n,m)), S is divided into blocks of size wi×hi. These
blocks will form the scale Bi = {bi

1, . . . , b
i
Ni
} (Ni = N/(wh)i).

The labels assigned to the sites of a block are supposed to be the same over the whole
block. The common label of the block bi

k is denoted by ωi
k ∈ Λ. This constraint yields

a configuration space Ωi which is a subset of the original set Ω. Obviously, for all
0 ≤ i ≤ M : Ωi ⊂ Ωi−1 ⊂ · · · ⊂ Ω0 ≡ Ω.

Now, let us consider the neighborhood system at scale i. It is clear, that bi
k and bi

l

are neighbors if and only if there exist two neighbors s ∈ S and r ∈ S such that s ∈ bi
k

and r ∈ bi
l. This yields the same cliques as in C. The cliques can be defined in the

following way: Let d = deg(C). For all 1 ≤ j ≤ d, the set of j blocks C i
j at scale i is a

clique of order j if there exists a clique C ∈ C (that is a clique at the finest scale) such
that:

1. C ⊆ ⋃

bi
k
∈Ci

j

bi
k

2. ∀bi
k ∈ Ci

j : C ∩ bi
k 6= ∅.

The set of cliques at scale i is denoted by Ci (C0 ≡ C). The set of all cliques satisfying
1 and 2 for a given Ci

j is denoted by DCi
j
⊆ C.
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Let us partition the original set C into the following disjoint subsets: For all 1 ≤
j ≤ d, let Ai

j be the set of cliques C ∈ C for which there exists a clique Ci
j (that is a

clique of order j at the scale i) satisfying 1 and 2. Then, it turns out from the definition
of DCi

j
and Ai

j, that

Ai
j =

⋃

Ci
j∈Ci

DCi
j
. (2.76)

Using this partition, the energy function U can be decomposed in the following way:

U(ω) =
∑

C∈C
VC(ω) =

∑

C∈Ai
1

VC(ω) + · · ·+ ∑

C∈Ai
d

VC(ω) (2.77)

=
∑

Ci
1∈Ci

∑

C∈D
Ci

1

VC(ω) + · · ·+ ∑

Ci
d∈Ci

∑

C∈D
Ci

d

VC(ω) (2.78)

The main benefit of this decomposition is that the potentials at coarser scales can be
derived by simple computation from the potentials at the finest scale. If we note the
potential corresponding to a clique Ci

j of order j at the scale i by V Bi

Ci
j
, we have the

following family of potentials at scale Bi:

V Bi

Ci
j
(ω) =

∑

C∈D
Ci

j

VC(ω) (2.79)

If we examine our model, we see that there is some redundancy at coarser scales: we
have the same label over the sites of a block. It seems then natural to associate a
unique site to each block. These sites have the common state of the corresponding
block and they form a coarser grid S i isomorphic to the corresponding scale Bi. The
coarser configuration space Ξi = {ξi

s : s ∈ S i, ξi
s ∈ Λ} is isomorphic to Ωi. Obviously,

Ξ0 ≡ Ω0 ≡ Ω. The isomorphism Φi from S i in Bi is just a projection of the coarser
label field to the fine grid S0 ≡ S:

Φi : Ξi −→ Ωi

ξi 7−→ ω = Φi(ξi). (2.80)

Φi keeps the same neighborhood structure on S i as on Bi and the cliques on S i inherit
the potentials from the cliques defined on Bi. These grids form a pyramid where level
i contains the grid S i. The energy function of level i (i = 0, . . . , M) is of the form:

U i(ξi) =
∑

Ci∈Ci

V i
Ci(ξi) i = 0, . . . , M (2.81)

where V i
Ci(ξi) = V Bi

Ci (Φi(ξi)). (2.82)
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The multiscale algorithm essentially follows a top-down strategy (see Figure 2.8).
First the highest layer of the pyramid is solved, then the next level is initialized by the
result. The general formulation of the multiscale algorithm is the following:

Algorithm 2.5.1 (Multiscale MRF Algorithm)

©1 Let B0 ≡ S, Ω0 ≡ Ω and divide S into blocks of size wi × hi (1 ≤ i ≤ M). Then
associate a unique site to each block forming a coarse grid.

©2 Compute the clique-potentials at coarse grids using Equation (2.82).

©3 Set i = M and find the global minimum ξ̂M of U i in Equation (2.81).

©4 Initialize the layer i− 1 by a projection of ξ̂i into S i−1 : ξi−1 = (Φi−1)−1 ◦Φi(ξ̂i),
and find the minimum ξ̂i−1 of U i−1.

©5 Stop if i = 1, return to Step ©4 with i = i− 1 otherwise.

The advantages of this algorithm are clear: each ξ̂i gives a more or less good estimate
of the final result. The estimate is better as i goes down to 0. On the other hand, for
the higher values of i, the corresponding problem is simpler since the state space has
only a few elements.

This scheme is particularly well adapted to the deterministic relaxation methods
which are more sensitive to the initial configuration than the stochastic4 ones.

Another advantage is that the method keeps the Markov property at coarse grids
which is not true for the RGA presented in Section 2.4.1.

2.5.2 A Special Case

In the following, we will focus on a MRF with a first order neighborhood-system (see
Figure 1.9) where the energy function is given by:

U(ω,F) = U1(ω,F) + U2(ω). (2.83)

U1 (resp. U2) denotes the energy of the first order (resp. second order) cliques. The
notation U1(ω,F) means that the first order potentials depend not only on the actual
labeling but also on the given observations.

4Deterministic and stochastic relaxation algorithms will be discussed later in Chapter 3. Here,
we only note that they are used to find a minimum of a non-convex energy function. Deterministic
algorithms are usually faster than stochastic ones but they depend on the initial conditions. Stochastic
algorithms find a global optimum starting from any initial configuration but they are much slower.
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.

Figure 2.7: The two subsets of C in the case
of a first order neighborhood system. a: Ci

k;
b: Ci

k,l.

Figure 2.8: Multiscale relaxation scheme.

We follow the procedure described in Section 2.5.1 to generate a multigrid MRF
model. Let Bi = {bi

1, . . . , b
i
Ni
} denote the set of blocks and Ωi the configuration-space

at scale i (Ωi ⊂ Ωi−1 ⊂ · · · ⊂ Ω0 = Ω). The label associated with block bi
k is denoted

by ωi
k. We can define the same neighborhood structure on Bi as on S:

bi
k and bi

l are neighbors ⇐⇒
{

bi
k ≡ bi

l or
∃C ∈ C | C ∩ bi

k 6= ∅ and C ∩ bi
l 6= ∅ (2.84)

Now, let us partition the original set C into two disjoint subsets {Ci
k} and {Ci

k,l}:

1. cliques which are included in bi
k (see Figure 2.7/a.):

Ci
k = {C ∈ C | C ⊂ bi

k} (2.85)

2. cliques which sit astride two neighboring blocks {bi
k, b

i
l} (see Figure 2.7/b.):

Ci
k,l = {C ∈ C | C ⊂ (bi

k ∪ bi
l) and C ∩ bi

k 6= ∅ and C ∩ bi
l 6= ∅} (2.86)

It is obvious from this partition that our energy function (see Equation (2.83)) can be
decomposed as:

U1(ω,F) =
∑

s∈S
V1(ωs, fs)
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=
∑

bi
k
∈Bi

∑

s∈bi
k

V1(ωs, fs)

︸ ︷︷ ︸
V Bi
1 (ωi

k
,F)

=
∑

bi
k
∈Bi

V Bi

1 (ωi
k,F) (2.87)

and U2(ω) =
∑

C∈C
V2(ωc)

=
∑

bi
k
∈Bi

∑

C∈Ci
k

V2(ωc)

︸ ︷︷ ︸
V Bi

k
(ωi

k
)

+
∑

{bk,bl}neighbors

∑

C∈Ci
k,l

V2(ωc)

︸ ︷︷ ︸
V Bi

k,l
(ωi

k
,ωi

l
)

=
∑

bi
k
∈Bi

V Bi

k (ωi
k) +

∑

{bk,bl}neighbors

V Bi

k,l (ω
i
k, ω

i
l) (2.88)

Now, we can define our pyramid (cf. Figure 2.6) where level i contains the coarse grid
S i which is isomorphic to the scale Bi. The coarse grid has a reduced configuration
space Ξi = ΛNi .

The model on the grids S i (i = 0, . . . , M) defines a set of consistent multiscale
MRF models, whose energy functions are derived from Equations (2.87) and (2.88)

U i(ξi,F) = U i
1(ξ

i,F) + U i
2(ξ

i) (2.89)

= U1(Φ
i(ξi),F) + U2(Φ

i(ξi)) i = 0, . . . ,M

with U i
1(ξ

i,F) =
∑

k∈Si

(V Bi

1 (ωi
k,F) + V Bi

k (ωi
k)) =

∑

k∈Si

V i
1 (ξi

k,F) (2.90)

and U i
2(ξ

i) =
∑

{k,l}neighbors

V Bi

k,l (ω
i
k, ω

i
l) =

∑

Ci∈Ci

V i
2 (ξi

C) (2.91)

where Ci is a second order clique corresponding to the definition in Equation (2.84)
and Ci is the set of cliques on the grid S i.

2.5.3 Application to Image Segmentation

We can easily apply the equations obtained at the previous section to the image seg-
mentation model presented in Section 2.3. For simplicity, the block size is supposed to
be n× n (that is w = h = n). Then, we get [74, 75, 72]:

U i
1(ξ

i,F) =
∑

si∈Si

V i
1 (ξi

si ,F)

where V i
1 (ξi

si ,F) =
∑

s∈bi
si

V1(ωs, fs) +
∑

C∈Ci
si

V2(ωC)
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Find MAP estimates using a top down strategy
(A:minimization ,     B: initialization)

Figure 2.9: Multiscale supervised image segmentation process.
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=
∑

s∈bi
si

(
log(

√
2πσωs) +

(fs − µωs)
2

2σ2
ωs

)
− piβ (2.92)

and U i
2(ξ

i) =
∑

Ci={ri,si}∈Ci

V i
2 (ξi

Ci)

where V i
2 (ξi

Ci) =
∑

{r,s}∈DCi

V2(ωr, ωs) =

{
−qiβ if ωr = ωs

+qiβ if ωr 6= ωs
(2.93)

The values of pi and qi depend on the chosen block size and the neighborhood structure.
pi is the number of cliques included in the same block at scale Bi and qi is the number
of cliques between two neighboring blocks at scale Bi. Considering blocks of n×n and
a first order neighborhood system, we get:

pi = 2ni(ni − 1) (2.94)

qi = ni (2.95)

In Figure 2.9, we give an overview of a supervised multiscale segmentation process.
As in the monogrid case, we have two inputs: the image and the monogrid parameters
Θ ≡ Θ0 defined in Equation (2.53). Then, we build the pyramid and compute the
parameters Θi(i = 1, . . . ,M) at coarse grids obtaining M + 1 energy functions defined
by Equation (2.92)–Equation (2.93). Using a top-down strategy, we minimize these
functions (using the Iterated Conditional Mode algorithm [13], for example) and we
take the labeling at the finest level as the final segmentation.

2.6 The Hierarchical Model

In this section, we propose a new hierarchical MRF model [73, 76, 74, 75, 72]. The
basic idea is to find a better way of communication between the levels than the ini-
tialization used for the multiscale model. Our approach consists in introducing new
interactions between two neighbor grids5 in the pyramid. This scheme permits also
the parallelization of the relaxation algorithm on the whole pyramid. First, we give
a general description of the model, then we study a special case with a first order
neighborhood system.

2.6.1 General Description

5One can imagine interactions between more than two levels but these schemes are too complicated
for practical use.
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Figure 2.10: The functions Ψ and
Ψ−1

Figure 2.11: The neighborhood system V̄ and
the cliques C̄1, C̄2 and C̄3.

We consider hereafter the label pyramid and the whole observation field defined in
the previous section. Let S̄ = {s̄1, . . . , s̄N̄} denote the sites of this pyramid. Obviously,

S̄ =
M⋃

i=0

S i (2.96)

N̄ =
M∑

i=0

Ni.

Ω̄ denotes the configuration-space of the pyramid:

Ω̄ = Ξ0 × Ξ1 × · · · × ΞM

= {ω̄ | ω̄ = (ξ0, ξ1, . . . , ξM)} (2.97)

Let us define the following function Ψ between two neighbor levels, which assigns to
a site of any level the corresponding block of sites at the level below it (that is its
descendants). Ψ−1 assigns its ancestor to a site (see Figure 2.10):

Ψ : S i −→ S i−1

Ψ(s̄) = {r̄ | s̄ ∈ S i ⇒ r̄ ∈ S i−1 and bi−1
r̄ ⊂ bi

s̄} (2.98)
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Now, we can define on these sites the following neighborhood-system (see Figure 2.11):

V̄ = (
M⋃

i=0

Vi) ∪ {Ψ−1(s̄) ∪Ψ(s̄) | s̄ ∈ S̄} (2.99)

where Vi is the neighborhood structure of the ith level, and we have the following
cliques:

C̄ = (
M⋃

i=0

Ci) ∪ C∗ (2.100)

where C∗ denotes the new cliques siting astride two neighbor grids. We can easily
estimate the degree of the new cliques since it depends on the block size: Each site
interacts with its ancestor (there is one) and its descendants (there are wh), thus:

deg(C∗) = max
C∗∈C∗

| C∗ |= wh + 2 (2.101)

and deg(C̄) = deg(C) + deg(C∗)− 1. (2.102)

Furthermore, let X̄ be a MRF over V̄ with an energy function Ū and potentials
{V̄C̄}C̄∈C̄. The energy function is of the following form:

Ū(ω̄) =
∑

C̄∈C̄
V̄C̄(ω̄)

=
M∑

i=0

∑

C̄∈Ci

V i
C̄(ω̄) +

∑

C̄∈C∗
V̄C̄(ω̄)

=
M∑

i=0

∑

Ci∈Ci

V i
Ci(ξi) +

∑

C∗∈C∗
V̄C∗(ω̄)

=
M∑

i=0

U i(ξi) + U∗(ω̄) (2.103)

It turns out from the above equation, that the energy function consists of two terms.
The first one corresponds to the sum of the energy functions of the grids defined in the
previous section and the second one (U∗(ω̄)) is the energy over the new cliques located
between neighbor grids.

Since we have defined a MRF on the whole pyramid, the MAP estimate of the
label field is obtained by minimizing the Hamiltonian defined in Equation (2.103). The
algorithms are essentially the same as in the monogrid case but in the parallelization,
we can take benefit of the pyramidal structure and define a new annealing technique
as we will see later in Chapter 3. The final result is the labeling obtained at the finest
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level as in the multiscale method. However an important difference is that the resulting
labeling is not related to the MAP estimate of the finest level (without the pyramid).
Intuitively, it can be seen as the MAP estimate of an MRF model (defined on the finest
scale) with larger neighborhoods.

2.6.2 A Special Case

In this section, we study the model in the case of a first order neighborhood system.
We will consider herein only first and second order cliques. Clique-potentials for the
other cliques are supposed to be 0. The cliques can be partitioned into three disjoint
subsets C̄1, C̄2, C̄3 corresponding to first order cliques, second order cliques which are on
the same level and second order cliques which sit astride two neighboring levels (see
Figure 2.11). Using this partition, we can derive the following energy function:

Ū(ω̄,F) = Ū1(ω̄,F) + Ū2(ω̄) (2.104)

Ū1(ω̄,F) =
∑

s̄∈S̄
V̄1(ω̄s̄,F)

=
M∑

i=0

∑

si∈Si

V i
1 (ξi

si ,F) =
M∑

i=0

U i
1(ξ

i,F) (2.105)

Ū2(ω̄) =
∑

C∈C̄2
V̄2(ω̄C) +

∑

C∈C̄3
V̄2(ω̄C)

=
M∑

i=0

∑

C∈Ci

V i
2 (ξi

C) +
∑

C∈C̄3
V̄2(ω̄C)

=
M∑

i=0

U i
2(ξ

i) +
∑

C∈C̄3
V̄2(ω̄C) (2.106)

2.6.3 Complexity

In this section, we study the complexity of the optimization of the hierarchical model
in terms of the required memory (or number of processors in the parallel SIMD imple-
mentation) and the required communication compared to the monogrid model.

Memory/processor Let us suppose that our image is of size W ×H. Following the
procedure described in Section 2.6.1, we generate a pyramid containing M + 1 levels.
Without loss of generality, we can assume that W/w ≤ H/h, where w× h is the block
size, both w and h are greater than or equal to two. The hierarchical model requires
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W

H

W/w

w

h

Figure 2.12: Memory complexity of the hi-
erarchical model

Figure 2.13: Communication scheme of the
hierarchical model

a maximum of (1 + 1/w)WH processors (cf. Equation (2.107)), since all levels must
be stored at the same time. The memory (or number of processors) required for the
storage of these levels (see Figure 2.12), considering a rectangular shape, is given by:

WH +
WH

wh
+

WH

(wh)2
+ · · ·+ WH

(wh)M
= WH

M∑

i=0

1

(wh)i
<

(
1 +

1

w

)
WH (2.107)

Communication Considering only the first and second order cliques (mostly used
in practice, see Figure 2.13), it is clear that we have (wh + 1) more communications
per processor. Each site interacts with its ancestor (there is one) and its descendants
(there are wh).

It turns out that the new model requires more processors and more computing time
than a monogrid model. However, as we will see later in Section 2.7, experiments show
that the results obtained by the hierarchical model are usually better.

2.6.4 A Hierarchical Segmentation Model

Considering the segmentation model presented in Section 2.3, its hierarchical equivalent
can be derived from Equation (2.105) and Equation (2.106) [74, 75, 73]:

Ū1(ω̄,F) =
M∑

i=0

∑

si∈Si

V i
1 (ξi,F) (2.108)
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Parameters Θ

Hierarchical image segmentation model

Find MAP estimate 

Figure 2.14: Hierarchical supervised segmentation process.
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and Ū2(ω̄) =
M∑

i=0

∑

Ci∈Ci

V i
2 (ξi

Ci) +
∑

C∈C̄3
V̄2(ω̄c) (2.109)

where V̄2(ω̄c) = V̄{s̄,r̄}(ω̄s̄, ω̄r̄) =

{
−γ if ω̄s̄ = ω̄r̄

+γ if ω̄s̄ 6= ω̄r̄
(2.110)

where V i
1 and V i

2 are defined in Equation (2.92) and Equation (2.93). We have a new
model parameter γ which favors similar classes between a site, its ancestor and its
descendants. Thus, taking into account the new parameter, Equation (2.53) can be
rewritten as

Θ̄ =




ϑ̄0

ϑ̄1
...

ϑ̄2L+1



≡




µ0

µ1
...

µL−1

σ0
...

σL−1

β
γ




(2.111)

In Figure 2.14, we give an overview of a hierarchical image segmentation process.
We have two inputs: the image itself and the parameters Θ̄. After building the label-
pyramid, they give an energy function defined in Equation (2.108)–Equation (2.110).
To find the minimum of this function (that is the MAP estimate of the label-pyramid),
we essentially use the same algorithms as in the monogrid case (Iterated Conditional
Mode on Figure 2.14). The resulting image is the labeling at lowest level of the pyramid.

2.7 Experimental Results

We compare the Gibbs sampler [46] and Iterated Conditional Mode [13, 69] using
three models for each algorithm (monogrid, multiscale and hierarchical). All tests
have been conducted on a Connection Machine CM200 [65] with 8K processors. In the
tables (see Appendix 2.B), we give for each model and for each method the number of
levels in the pyramid (for the monogrid model, this is 1), the Virtual Processor Ratio
(VPR) [65], the initial temperature (for the hierarchical model, this is not the same at
each level, using the new MTA6 schedule!), the number of iterations, the computing

6Multi-Temperature Annealing. A new annealing scheme for the energy minimization of hierarchi-
cal models. It assigns different temperatures to different levels. For more details about the algorithm,
see Chapter 3.
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processor

North and West communication

Figure 2.15: NEWS communication
scheme on the Connection Machine.

Figure 2.16: Flat pyramid on the Con-
nection Machine.

time, the classification error (= the number of misclassified pixels) and the parameter
β (see Equations (2.52), (2.92), (2.93)) and γ (see Equation (2.110)). In all cases,
the execution has been stoped when the energy change ∆U was less than 0.1% of the
current value of U .

Before comparing the models, we briefly describe the architecture of the Connection
Machine and point out its limitations in the case of the hierarchical model.

2.7.1 The Connection Machine

The Connection Machine [65, 109] is a data parallel (Single Instruction Multiple
Data—SIMD) computing system associating one processor with each pixel. This com-
puting style is well adapted to early vision problems where a large mass of data need
to be processed. On the other hand, algorithms usually require the same local compu-
tations on a small neighborhood of each pixel.

An important feature of the Connection Machine is the virtual processor facility.
This means that a program can assume to be available any appropriate number of
processors (virtual processors) and the machine will map it onto physical processors.
The Virtual Processor Ratio (VPR) indicates how many times each physical processor
must perform a task in order to simulate the appropriate number of virtual processors.
Indeed, the greater the VPR, the more time consuming the computation.

As MRF models require computation over a small neighborhood of each pixel, fast
interprocessor communication capability is especially important. The Connection Ma-
chine offers an efficient nearest-neighbor communication called NEWS (“North, East,
West, South”, see Figure 2.15). Thanks to a specialized hardware support, NEWS grids
of any dimension can be handled with great speed. If we are working with monogrid or
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Figure 2.17: Histogram of the “as-
salmer” image with 6 classes

Figure 2.18: Histogram of the “holland”
image with 10 classes

multigrid models, we use this type of communication. If we have no such regularity in
the model, we have to use the general communication via the router. In this case, each
processor can send data to or receive data from any other processor. Of course, the
time required to deliver the message is much larger than in the previous case. For the
hierarchical model, we must use this type of communications for the inter-level interac-
tions. This is the main reason of the high computer time needed for the optimization
of the associated energy function (see Appendix 2.B). The pyramid is mapped into
the virtual processors as a flat pyramid shown in Figure 2.16. We could achieve better
computer times using a pyramid computer (for some examples, see [71]).

2.7.2 Comparison of the Models

First, we have tested the models on noisy synthetic images of size 128 × 128. The
first one is a checkerboard image (see Figure 2.19, Table 2.3) with 2 classes and a
SNR (see Equation (1.65) for its definition) equals to −5dB. Note that the multiscale
model gives better results than the monogrid one, especially with the ICM algorithm.
This type of image is well adapted for the multiscale model, because the image has
a rectangular structure similar to the model itself. The hierarchical model gives the
best results with both algorithms but the computing time is much greater than for the
multiscale or monogrid model. The reason is that in the hierarchical case, the whole
pyramid is stored at the same time yielding a greater VPR ratio. On the other hand,
we cannot use the fast “NEWS” communication scheme [65] as in the other cases.

In the second image, we have added different geometrical forms (circle and triangle)
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to the checkerboard image(see Figure 2.20, Table 2.4). In this case, we studied the
geometrical sensitivity of the models. The Gibbs sampler gives nearly the same result
in all cases. However the ICM is more sensitive to initial conditions. The multiscale
model gives better result than the monogrid one but the result is not fine in the triangle
and the circle. These forms have a different structure from the block structure of the
model, the initialization was wrong in these regions and the ICM was not able to correct
these errors. In the hierarchical case, we have a real time communication between the
levels which is able to give results closed to the ones obtained with the Gibbs sampler.
Of course, this model requires more computing time than the other ones.

The third image is a checkerboard image with 16 classes (see Figure 2.21 and
Table 2.5). For ICM, there is a significant improvement but for the Gibbs Sampler, we
observe only a slight improvement for the multiscale and hierarchical cases.

In Figures 2.22, 2.23 and 2.24, we show some real images of size 256×256: a SPOT
image with 4 classes (see Figure 2.22, Table 2.6), an indoor scene with 4 classes (see
Figure 2.23) and a medical image with 3 classes (see Figure 2.24).

Next, we present a SPOT image of size 512 × 512 (see Figure 2.25) with ground
truth data (see Figure 2.26). In the following table (Table 2.1), we give the mean (µ)
and the variance (σ2) for each class (we have 6 classes).

class 1 2 3 4 5 6

µ 65.3 81.3 75.4 98.5 82.5 129.0
σ2 6.4 12.7 14.9 16.8 9.46 183.2

Table 2.1: Parameters of the “assalmer” image.

As we can see, the classes 2 and 5 have nearly the same parameters, it is difficult
to distinguish between them. Figure 2.17 shows the histogram of the original image.
We can clearly distinguish three peaks (at about 64, 80, and 120) but the other classes
are quite mixed. Figure 2.27 (resp. Figure 2.28) shows the results obtained with
the ICM (resp. the Gibbs Sampler). For these results, we give a map drawn by an
expert (ground truth data, see Figure 2.26). The classes 1 − 6 correspond to the
regions B3c, B3b, B3d, a2, hc and 92a on the map. For the hierarchical model a slight
improvement can be noticed for the results of the Gibbs sampler, however, for the
ICM, the improvement is more significant. In Table 2.7 we give the parameters and
the computing time for each model and each method.

Finally, we present another SPOT image with 10 classes (Figure 2.29 – Figure 2.32,
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Table 2.8). The ground truth data is showed on each images7. In the following table
(Table 2.2), we give the mean (µ) and the variance (σ2) for each class. Figure 2.18
shows the histogram of the original image. As for the previous image, the results are
slightly better for the hierarchical model.

class 1 2 3 4 5 6 7 8 9 10
µ 54.61 73.57 159.96 122.84 129.90 146.65 82.56 100.57 93.85 182.34
σ2 93.10 4.10 31.31 8.90 37.42 15.83 35.58 308.86 93.71 73.18

Table 2.2: Parameters of the “holland” image.

7The regions are drawn by an expert. Unfortunately, they are shifted up by some pixels. Please
take it into account when evaluating the results.
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2.A Images
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ICM with monogrid model

Gibbs with monogrid model

Original image

ICM with multiscale model

Gibbs with multiscale model

Noisy image (SNR = −5dB)

ICM with hierarchical model

Gibbs with hierarchical model

Figure 2.19: Results on the “checkerboard” image with 2 classes.
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ICM with monogrid model

Gibbs with monogrid model

Original image

ICM with multiscale model

Gibbs with multiscale model

Noisy image (SNR = 3dB)

ICM with hierarchical model

Gibbs with hierarchical model

Figure 2.20: Results on the “triangle” image with 4 classes.
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ICM with monogrid model

Gibbs with monogrid model

Original image

ICM with multiscale model

Gibbs with multiscale model

Noisy image (SNR = 10dB)

ICM with hierarchical model

Gibbs with hierarchical model

Figure 2.21: Results on the “grey-scale” image with 16 classes.
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ICM with monogrid model

Gibbs with monogrid model

ICM with multiscale model

Gibbs with multiscale model

Original image

ICM with hierarchical model

Gibbs with hierarchical model

Figure 2.22: Results on the “SPOT” image with 4 classes.
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ICM with monogrid model

Gibbs with monogrid model

ICM with multiscale model

Gibbs with multiscale model

Original image

ICM with hierarchical model

Gibbs with hierarchical model

Figure 2.23: Results on an indoor scene (“couloir”) with 4 classes.
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ICM with monogrid model

Gibbs with monogrid model

ICM with multiscale model

Gibbs with multiscale model

Original image

ICM with hierarchical model

Gibbs with hierarchical model

Figure 2.24: Results on a medical image (“muscle”) with 3 classes.
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Figure 2.25: Original SPOT image “assalmer” with 6 classes.
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Figure 2.26: Ground truth data.
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Monogrid model Ground truth data

Multiscale model Hierarchical model

Figure 2.27: Results of the ICM algorithm. Comparison with ground truth data.
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Monogrid model Ground truth data

Multiscale model Hierarchical model

Figure 2.28: Results of the Gibbs Sampler. Comparison with ground truth data.
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Figure 2.29: Original SPOT image “holland”.
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Figure 2.30: Monogrid segmentation result with 10 classes (ICM).
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Figure 2.31: Multiscale segmentation result with 10 classes (ICM).
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Figure 2.32: Hierarchical segmentation result with 10 classes (ICM).
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2.B Tables

monogrid levels VPR T0 iter. total time time/iter. error β γ

Gibbs 1 2 4 62 1.91 sec. 0.03 sec. 260 (1.59%) 0.9 —
ICM 1 2 1 8 0.077 sec. 0.009 sec. 1547 (9.44%) 0.9 —
multiscale — — — — — — — — —
Gibbs 4 1,2 4 136 3.25sec. 0.02 sec. 236 (1.44%) 0.7 —
ICM 4 1,2 1 18 0.14 sec. 0.008 sec. 465 (2.83%) 0.7 —
hierarchical — — — — — — — — —
Gibbs 4 4 4,3,2,1 23 50.1 sec. 2.18 sec. 115 (0.7%) 0.7 0.3
ICM 4 4 1 11 16.6 sec. 1.5 sec. 300 (1.83%) 0.7 0.3

Table 2.3: Results on the “checkerboard” image (128× 128) with 2 classes.

monogrid levels VPR T0 iter. total time time/iter. error β γ

Gibbs 1 2 4 68 3.01 sec. 0.04 sec. 183 (1.12%) 1.0 —
ICM 1 2 1 9 0.15 sec. 0.02 sec. 2948 (17.99%) 1.0 —
multiscale — — — — — — — — —
Gibbs 4 1,2 4 101 3.85sec. 0.04 sec. 176 (1.07%) 1.0 —
ICM 4 1,2 1 17 0.22 sec. 0.01 sec. 1657 (10.11%) 0.9 —
hierarchical — — — — — — — — —
Gibbs 4 4 4,3,2,1 41 141.97 sec. 3.46 sec. 191 (1.16%) 0.7 0.1
ICM 4 4 1 11 30.17 sec. 2.74 sec. 293 (1.78%) 0.8 0.5

Table 2.4: Results on the “triangle” image (128× 128) with 4 classes.
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monogrid levels VPR T0 iter. total time time/iter. error β γ

Gibbs 1 2 4 201 22.96 sec. 0.12 sec. 340 (2.08%) 1.0 —
ICM 1 2 1 10 0.55 sec. 0.05 sec. 8721 (53.22%) 1.0 —
multiscale — — — — — — — — —
Gibbs 4 1,2 4 337 32.97sec. 0.1 sec. 331 (2.02%) 1.0 —
ICM 4 1,2 1 15 0.68 sec. 0.05 sec. 5198 (31.73%) 1.0 —
hierarchical — — — — — — — — —
Gibbs 4 4 4,3,2,1 107 1169.46 sec. 10.93 sec. 316 (1.93%) 1.0 0.2
ICM 4 4 1 16 162.87 sec. 10.18 sec. 795 (4.85%) 1.0 0.5

Table 2.5: Results on the “grey-scale” image (128× 128) with 16 classes.

monogrid levels VPR T0 iter. total time time/iter. β γ

Gibbs 1 8 4 64 9.06 sec. 0.14 sec. 2.0 —
ICM 1 8 1 7 0.33 sec. 0.047 sec. 2.0 —
multiscale — — — — — — — —
Gibbs 4 1-8 4 106 10.22 sec. 0.09 sec. 2.0 —
ICM 4 1-8 1 37 1.14 sec. 0.03 sec. 1.0 —
hierarchical — — — — — — — —
Gibbs 4 16 4,3,2,1 29 353.54 sec. 12.19 sec. 2.0 0.4
ICM 4 16 1 6 58.59 sec. 9.76 sec. 0.5 0.6

Table 2.6: Results on the “SPOT” image (256× 256) with 4 classes.

monogrid levels VPR T0 iter. total time time/iter. β γ

Gibbs 1 32 4 234 163.18 sec. 0.69 sec. 1.5 —
ICM 1 32 1 8 2.03 sec. 0.25 sec. 1.5 —
multiscale — — — — — — — —
Gibbs 5 1-32 4 580 180.17 sec. 0.31 sec. 1.5 —
ICM 5 1-32 1 36 5.15 sec. 0.14 sec. 0.3 —
hierarchical — — — — — — — —
Gibbs 5 64 4,3,2,1 154 9629.33 sec. 62.53 sec. 0.7 0.1
ICM 5 64 1 16 915.99 sec. 57.25 sec. 1.0 0.2

Table 2.7: Results on the “assalmer” image (512× 512) with 6 classes.
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ICM levels VPR iter. total time time/iter. β γ

monogrid 1 32 9 3.56 sec. 0.39 sec. 0.5 —
multiscale 5 1-32 47 10.14 sec. 0.22 sec. 0.5 —
hierarchical 5 64 21 1900.83 sec. 90.52 sec. 0.8 0.4

Table 2.8: Results on the “holland” image (512× 512) with 10 classes.
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3.
Optimization

B ayesian methods coupled with Marko-
vian modelization usually result in a non-

convex cost (or energy) function. In order
to find an estimate, one has to optimize this
function. Unfortunately, this is a very hard
computational problem known as combinato-
rial optimization. For example, considering
an image 16 × 16 with only two possible la-
bels at each pixel, we obtain a configuration
space of 2256 elements. It is then impossible
to find the optimum by computing the possi-
ble values of the cost function. On the other
hand, due to the non-convexity classical gra-
dient descent methods cannot be used since
they get stuck in a local minimum.

The idea of the solution comes again from
the statistical physics: In 1953, Metropolis et al.
[93] proposed a Monte-Carlo simulation to find
equilibrium states of thermodynamical systems.
It was realized in the early 80’s, independently
by Černy [24] and Kirkpatrick et al. [82],
that there is an analogy between minimizing

the cost function of a combinatorial optimiza-
tion problem and finding energy minima of
thermodynamical systems by slowly cooling a
solid until equilibrium is reached. They have
substituted the energy function of the solid by
the cost function and executed the Metropolis
algorithm at a sequence of slowly decreasing
“temperature”. The so defined combinatorial
optimization algorithm was named Simulated
Annealing (SA) [83, 104, 44].

The research in the field has rapidly grown
up resulting in a variety of contributions to the
original SA. The most important is probably
the Gibbs Sampler proposed by Geman and
Geman in [46]. While SA algorithms find the
global optimum, they require a large amount
of computation. To avoid this drawback, two
solutions have been proposed: One of them
deals with the possible parallelization of SA
algorithms [5]. Another solution is to use de-
terministic algorithms which are suboptimal
but converge in a few iterations requiring less
computing time [13, 79].
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3.1 Equilibrium State and the Metropolis Algo-
rithm

For historical reasons, we begin this chapter by the original formulation of the Metropo-
lis algorithm, as it was proposed by Metropolis et al. Following [93], we are given N
particles on a square. If the positions of the particles are known, we can easily calculate
the potential energy of the system:

E =
1

2

N∑

i=1

N∑

j=1,j 6=i

V (δij), (3.1)

where V is the potential between molecules and δij is the distance between particles i
and j. To calculate the equilibrium value of any quantity F , the following integral has
to be computed [93]:

F̄ =

∫
F exp

(
−E
kT

)
d2Npd2Nq

∫
exp

(
−E
kT

)
d2Npd2Nq

(3.2)

where d2Npd2Nq is a volume element in the 4N -dimensional phase space.

To compute this integral, the following procedure has been

2α

2α

Figure 3.1: Mov-
ing particles according
to the Metropolis algo-
rithm.

suggested: Place the N particles in any configuration in a
lattice where each particle is represented by its coordinates
(x, y). According to the following rules, we move each particles
within a square of side 2α centered about its original position
(see Figure 3.1):

xnew = x + αξ1 (3.3)

ynew = y + αξ2 (3.4)

where ξ1 and ξ2 are uniform random numbers in the range
[−1, 1]. Then, we compute the energy-change ∆E of the sys-
tem caused by the move. If the move brings the system to
a state of lower energy (i.e. if ∆E < 0), then the particle is
placed in its new position. If ∆E > 0, we accept the new po-

sition with probability exp(−∆E/kT ): Let ξ3 be a random number in the range [0, 1].
If ξ3 < exp(−∆E/kT ), we move the particle to (xnew, ynew). Otherwise, we keep its
old position. The integral in Equation (3.2) is then approximated by

F̄ =
1

M

N∑

i=1

Fi, (3.5)
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where Fi is the property F of the system after the ith move has been carried out. It has
been proved in [93] that the above procedure generates configurations with probability
exp(−E/kT ).

3.2 Combinatorial Optimization and Simulated An-
nealing

The classic example of a combinatorial optimization problem is the traveling salesman
problem:

Example 3.2.1 Given N cities and the distances Dij between the cities i and j repre-
senting the cost of traveling. One has to plan the sales-man’s optimal route which will pass
through each city once and return finally to the starting point, minimizing the total length.

The above example belongs to the class of NP-complete problems. As it is well known,
there is no method to find an exact solution of such a problem with a computing effort
bounded by a power of N . SA is one of the heuristics proposed to solve the traveling
salesman problem.

As we have said in the introduction, SA algorithm is based on the analogy between
the simulation of the annealing of solids and the solving of combinatorial optimization
problems. This is why the algorithm proposed by Černy [24] and Kirkpatrick et al.
[82] became known as Simulated Annealing.

In physics, annealing means heating up a solid to a maximum value at which all
particles randomly arrange themselves in the liquid phase then slowly cooling it down.
In this way, all particles arrange themselves in the low energy state of a corresponding
lattice. At each temperature T , the solid is allowed to reach a thermal equilibrium
which is characterized by the Boltzmann distribution:

P (ω) =
1

Z(T )
exp

(
−U(ω)

kT

)
, (3.6)

where U(ω) is the energy of the state, Z(T ) is the partition function depending on T
and k is the Boltzmann constant. For a fixed T , the above equation is nothing else
but a Gibbs distribution. Clearly, as the temperature decreases, the above distribution
concentrates on the states with lower energy and when the temperature approaches
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zero, only the minimum states have a non-zero probability. Decreasing the temperature
is crucial: It has been pointed out in [82] that if the cooling is too rapid and the system
is not allowed to reach thermal equilibrium for each temperature, a global minimum
cannot be reached.

For a fixed temperature, the evolution to thermal equilibrium is simulated by the
Metropolis algorithm [93] presented in Section 3.1. Here, the algorithm is used to gen-
erate sequences of configurations of a combinatorial optimization problem. SA is then
a sequence of Metropolis algorithms evaluated at a sequence of decreasing temperatures
such that equilibrium is reached at each temperature1.

Now, it is time to give an exact definition of the SA algorithm in its original for-
mulation: Let us denote by ω, η, . . . the configurations of a combinatorial optimization
problem (they correspond to the states of a solid) and let U(ω) denotes the cost (also
called energy) of the configuration ω (it corresponds to the energy of the state ω
in a thermodynamical system.). The elements of the configurations are indexed by
S = {s1, s2, . . . , sN} and the common state space is denoted by Λ = {0, 1, . . . , L− 1}.
The set of all possible configurations is denoted by Ω. Since ∀s ∈ S : ωs ∈ Λ, Ω = ΛN .

Algorithm 3.2.1 (Simulated Annealing)

©1 Set k = 0 and initialize ω randomly. Choose a sufficiently high initial temperature
T = T0.

©2 Construct a trial perturbation η from the current configuration ω such that η
differs only in one element from ω.

©3 (Metropolis criteria) Compute ∆U = U(η) − U(ω) and accept η if ∆U < 0
else accept with probability exp(−∆U/T ) (analogy with thermodynamics):

ω =





η if ∆U ≤ 0,
η if ∆U > 0 and ξ < exp(−∆U/T ),
ω otherwise

(3.7)

where ξ is a uniform random number in [0, 1).

©4 Goto Step ©2 until equilibrium is reached.

©5 Decrease the temperature: T = Tk+1 and goto Step ©2 with k = k + 1 until the
system is frozen.

1This is the original formulation of the SA which is practically not used nowadays. We will discuss
later more recent SA variants.
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The above algorithm is also called homogeneous annealing since it is described by a
sequence of homogeneous Markov chains. If the temperature is decreased after each
transition, the algorithm is described by an inhomogeneous Markov chain thus it is
referred to as inhomogeneous annealing. This is the most often used form of annealing.
We obtain such an algorithm if we withdraw Step ©4 from Algorithm 3.2.1.

3.2.1 Mathematical Model

The mathematical model of the Simulated Annealing was extensively studied by Aarts
and van Laarhoven in [83]. We briefly describe this model:

The SA generates a sequence of configurations which constitutes a Markov chain.
Pω,η(k − 1, k) is the probability that the configuration obtained after k transitions is
η given the previous configuration ω. Furthermore, let X(k) denote the state reached
after the kth transition. The probability of this event is given by:

P (X(k) = ω) =
∑

ζ

P (X(k − 1) = ζ)Pζ,ω(k − 1, k) k = 1, 2, . . . (3.8)

If the transition probability Pω,η(k−1, k) does not depend on k, the corresponding chain
is homogeneous, otherwise it is inhomogeneous. The transition probabilities depend
also on the temperature parameter T . Thus, if T is kept constant, the chain will be
homogeneous and the transition matrix P = P (T ) can be written as:

Pω,η(T ) =

{
Gω,η(T )Aω,η(T ) ∀η 6= ω
1−∑

ζ Gω,ζ(T )Aω,ζ(T ) η = ω
(3.9)

Where Gω,η(T ) is the generation probability of generating η from ω and Aω,η(T ) is
the acceptance probability of configuration η, once it has been generated from ω. It is
clear from the definition in Equation (3.9) that P (T ) is a stochastic matrix:

∀ω :
∑

ζ

Pω,ζ(T ) = 1 (3.10)

In the original formulation of the algorithm, Gω,η(T ) is given by the uniform distri-
bution on the configurations η which differs from ω only for one component. A(T ) is
given by the Metropolis criterion:

Aω,η(T ) = min(1, exp(−(U(η)− U(ω))/T )) (3.11)

where U(ω) is the cost or energy function.

PhD thesis, 1994



104 Chapter 3. Optimization

x
200018001600140012001000800600400200

5

4

3

2

1

x
200018001600140012001000800600400200

0

3.5

3

2.5

2

1.5

1

0.5

0

Figure 3.2: Logarithmic cooling schedule
(4/ ln(k)).

Figure 3.3: Exponential cooling schedule
(0.95k · 4).

3.2.1.1 More on Cooling Schedules

In Section 3.3, it will be shown that SA converges with probability one to a globally
optimal configuration if certain conditions hold for the temperature schedule. Namely,
that Tk goes towards 0 not faster than C/ ln(k) for some constant C independent
of k (inhomogeneous annealing). For the homogeneous annealing, there are other
conditions, but we will focus on the inhomogeneous annealing since it is the most
commonly used schedule.

It is clear that the above theoretical schedule cannot be implemented since it is too
slow. Thus, we have to approximate it. Due to this approximation, the algorithm is
no longer guaranteed to find a global optimum.

Initial Temperature The initial temperature T0 must be so high that virtually all
transitions are accepted. It is extremely difficult to determine such a value since it is re-
lated to the maximum and minimum values of the energy function to be minimized [46].
There are some heuristics to get a reasonably estimate of the initial temperature [82, 83]
but usually one set T0 to a relatively low value resulting in a faster execution of the
algorithm. In [46] for example, T0 = 4 has been suggested, and we have used the same
value throughout the simulations presented in this book.

Final Temperature Obviously, limk→∞Tk = 0 can only be approximated in a finite
number of values for Tk. Thus, we need a stoping criteria determining the final value of
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3.2. Combinatorial Optimization and Simulated Annealing 105

Coding sets:

Figure 3.4: Example of a raster scan gen-
eration mechanism.

Figure 3.5: Coding sets in the case of a
first order MRF.

the temperature. We can simply fix the number of values Tk or terminate the execution
of the algorithm if the last few configurations obtained by SA have nearly the same
energy (i.e. ∆U is less than a certain threshold).

Cooling Schedule The most important point is a decreasing rule of the temperature.
Logarithmic rules (cf. Figure 3.2) are usually too slow for practical use. Instead,
exponential rules (cf. Figure 3.3) are the most frequently used:

Tk+1 = c · Tk, k = 0, 1, 2, . . . (3.12)

where c < 1 is a constant close to 1. This rule was first proposed in [82] with c = 0.95
and it became widely used by others. We have also used this rule in our experiments.

3.2.1.2 More on Generation Matrixes

In some cases, there may be better ways of generating configurations than the uniform
distribution. Hereafter, we discuss some improvements in the generation mechanism.

In image processing, the most convenient implementation is a raster scan where the
pixels of the image are visited for update in order (0, 0), (0, 1), . . . , (1, 0), (1, 1) . . . (see
Figure 3.4). At each site, a new state is chosen with a uniform probability among the
possible states different from the current one.

To speed up the algorithm, one can use synchronous update (that is updating
each pixel at the same time) but convergence can no longer be guaranteed in this
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case. A good compromise is a partially synchronous scheme: update only conditionally
independent pixels at the same time. These pixels form a so-called coding set [13] (see
Figure 3.5 for an example). The number of coding sets depends on the order of the MRF
used as an image model. These techniques are mostly used in parallel implementation
but one can also use them on a sequential machine.

A more interesting improvement is to use a non-uniform generation mechanism.
For example, at high temperatures, it would be helpful to bias the generation of con-
figurations to favor large transitions [83]. Large transitions often help the system to
reach equilibrium faster because a single transition of length l can be implemented at
a less computational cost than l transitions of length 1.

For rejection-less methods [83], the acceptance matrix is incorporated in the gener-
ation matrix and all transitions are accepted once they are generated. Considering the
Metropolis criterion, the probability of generating ω from η is given by

Gω,η =
min(1,−(U(η)− U(ω)))∑
ξ min(1,−(U(ξ)− U(ω)))

, (3.13)

where ξ differs only in one element from ω. One can prove that the algorithm also
converges towards a global optimum. The problem is that after each transition, we
have to compute all Gω,η’s.

In [27], the updating order depends on a local stability measure. At each step, only
the least stable site is changed. The stability of a site is measured by the energy-loss
or energy-gain which would be caused by changing the current state of the site. The
larger the negative value of this measure, the more confidence we have to change the
state of the site. Thus, the sites with strong evidence in favor of a label are visited
early. This method is called Highest Confidence First (HCF).

3.2.1.3 More on Acceptance Matrixes — The Gibbs Sampler

A more elaborated acceptance matrix has been proposed by D. Geman and S. Ge-
man in [46]. Coupled with an inhomogeneous annealing schedule, it became the most
popular SA algorithm known as Gibbs Sampler:

Zoltan Kato



3.3. Convergence Study 107

Algorithm 3.2.2 (Gibbs Sampler)

©1 Set k = 0, assign an arbitrary initial configuration ω and let T = T0 be a
sufficiently high initial temperature.

©2 For each configuration which differs at most in one element from the current
configuration ω (they are denoted by Nω), compute the energy U(η) (η ∈ Nω).

©3 (Gibbs Sampler) From the configurations in Nω, a sample is drawn such that
η is accepted with probability

exp(−U(η))∑
ζ∈Nω

exp(−U(ζ))
(3.14)

as the new configuration.

©4 Decrease the temperature: T = Tk+1 and goto Step ©2 with k = k + 1 until the
system is frozen.

In the case of a two state system such as the Ising model, the Gibbs Sampler is equiva-
lent to the Metropolis algorithm. Notice that the generation matrix is simply Gω,η = 1
for all ω and η ∈ Nω, 0 otherwise.

3.3 Convergence Study

The SA algorithm obtains a global minimum if, after K transitions (K sufficiently
large), the following holds:

P (X(K) ∈ Ωopt) = 1 (3.15)

where Ωopt is the set of globally minimal configurations. In the following sections,
we give the conditions on the matrices A(T ) and G(T ) described by Aarts and van
Laarhoven in [83] to ensure the convergence:

lim
T↘0

( lim
K→∞

P (X(K) ∈ Ωopt)) = 1 (3.16)

3.3.1 Homogeneous Annealing

In this case, configurations are generated at a fixed temperature until equilibrium is
reached. What does it mean from the point of view of the generated sequence of
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states? They constitute an homogeneous Markov chain with transition matrix given
by Equation (3.9). After the equilibrium is reached, the temperature is lowered and
configurations are generated at this temperature etc. . . Thus, the algorithm is described
by a sequence of homogeneous Markov chains. Each chain is generated at a fixed value
of T and T is decreased in between subsequent chains.

First, conditions are given on the existence of the stationary distribution of the
chain, then further conditions are imposed to assure the convergence of the stationary
distribution.

Theorem 3.3.1 (Feller) The stationary distribution q of a finite homogeneous Markov
chain exists if the Markov chain is irreducible and aperiodic. Furthermore, the vector
q is uniquely determined by the following equations:

∀ω : qω > 0,
∑
ω

qω = 1, (3.17)

∀ω : qω =
∑
η

qηPη,ω. (3.18)

Since ∀ω, η, T > 0 : Aω,η(T ) > 0 (see Equation (3.11)), and ∀ω, η(ω 6= η), T > 0 :
Gω,η(T ) > 0 (G(T ) is uniform), irreducibility is satisfied. To establish aperiodicity, the
following theorem is used:

Theorem 3.3.2 An irreducible Markov chain is aperiodic if the following condition
is satisfied:

∀T > 0 : ∃ωT ∈ Ω : PωT ,ωT
(T ) > 0. (3.19)

Thus, for aperiodicity it is sufficient to assume that

∀T > 0 : ∃ωT , ηT ∈ Ω : AωT ,ηT
< 1 (3.20)

which is always satisfied by setting, for all T > 0, ωT ∈ Ωopt, ηT 6∈ Ωopt.

Now, further conditions are imposed to ensure the convergence of the stationary
distribution (for more details, see [83]):

1. ∀ω, η ∈ Ω : Gη,ω = Gω,η (3.21)

2. ∀ω, η, κ ∈ Ω : U(ω) ≤ U(η) ≤ U(κ) ⇒ Aω,κ(T ) = Aω,η(T )Aη,κ(T ) (3.22)

3. ∀ω, η ∈ Ω : U(ω) ≥ U(η) ⇒ Aω,η(T ) = 1 (3.23)

4. ∀ω, η ∈ Ω, T > 0 : U(ω) < U(η) ⇒ Aω,η(T ) < 1 (3.24)

5. ∀ω, η ∈ Ω : U(ω) < U(η) ⇒ limT↘0 Aω,η(T ) = 0 (3.25)
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It is clear, that the condition 1. is satisfied in our case, since G(T) is uniform, its
diagonal is 0 and the other elements are equals. The conditions 2. − 5. are implied
by the definition of A(T ) in Equation (3.11). These conditions are sufficient but not
necessary to ensure the convergence. In this case, the stationary distribution is given
by:

qω(T ) =
exp(−(U(ω)− Uopt)/T )∑

η∈Ω exp(−(U(ω)− Uopt)/T )
(3.26)

3.3.2 Inhomogeneous Annealing

In this case, configurations are generated such that after each transition, T is lowered.
The obtained sequence of configurations constitutes an inhomogeneous Markov chain
whose transition matrix P (k − 1, k) is defined by:

Pω,η(k − 1, k) =

{
Gω,η(Tk)Aω,η(Tk) ∀η 6= ω
1−∑

ζ 6=ω Gω,ζ(Tk)Aω,ζ(Tk) η = ω
(3.27)

Since T is changed in between subsequent transitions, the conditions of the convergence
not only relate to the matrices G(Tk) and A(Tk) but also impose restrictions on the
way of changing the control parameter T . The following assumptions are made:

1. limk→∞ Tk = 0 (3.28)

2. Tk ≥ Tk+1, k = 0, 1 . . . (3.29)

Theorem 3.3.3 (Seneta) An inhomogeneous Markov chain is weakly ergodic iff
there is a strictly increasing sequence of positive numbers kl such that

∞∑

l=1

(1− τ1(P (kl, kl+1))) = ∞; (3.30)

where τ1(P ), the coefficient of ergodicity of P , is defined as

τ1(P ) = 1−min
ω,η

∑

ζ

min(Pω,ζ , Pη,ζ). (3.31)
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Theorem 3.3.4 (Isaacson and Madsen) An inhomogeneous Markov chain is strongly
ergodic if it is weakly ergodic and if for all k there exists a vector π(k) such that
π(k) is an eigenvector with eigenvalue 1 of P (k − 1, k),

∑
ω | πω(k) |= 1 and

∞∑

k=1

∑

ω∈Ω

| πω(k)− πω(k + 1) |< ∞. (3.32)

Moreover, if π = limk→∞ Pω,η(m, k), then π is the vector in Definition 1.7.11 satis-
fying Equation (1.102).

Under the assumptions on A(T ) and G(T ) described in the previous section , there
exists an eigenvector q(Tk) of P (k − 1, k) for each k ≥ 0, namely the stationary dis-
tribution of the homogeneous Markov chain. Using Theorem 3.3.4 with π(k) = q(Tk),
strong ergodicity can be proved by showing that the following conditions are satisfied:

1. The Markov chain is weakly ergodic

2. The q(Tk) satisfy Equation (3.32).

D. Geman and S. Geman were the first researchers to ob-

H
aj

ek
G

em
an

Figure 3.6: Geman’s
and Hajek’s condition.

tain such conditions. The validity of Equation (3.32) is shown
in [46] and they proved that

Tk ≥ Γ

ln(k)
(3.33)

with

Γ > max
ω∈Ω

U(ω)−min
ω∈Ω

U(ω) (3.34)

must hold to obtain weak ergodicity.

This condition has been refined by B. Hajek in [58, 59] to derive a necessary and
sufficient condition. In Figure 3.6, we compare the meaning of Geman’s and Hajek’s
conditions.

3.3.2.1 Hajek’s Necessary and Sufficient Condition

Following [59], we first define the reachability of a configuration:
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Definition 3.3.1 A configuration ω is reachable at height H from a configuration η
if there is a sequence of configurations η = ζ0, ζ1, . . . , ζp = ω such that

∀k : 0 ≤ k < p : G(ζk, ζk+1) > 0 (3.35)

and
∀k : 0 ≤ k ≤ p : U(ζk) ≤ H (3.36)

A configuration ω is said to be a local minimum if there is no η with U(η) < U(ω)
which is reachable from ω at height U(ω).

Definition 3.3.2 (Cup) A cup is a set Υ of configurations such that, for some
number H, the following is true:

∀ω ∈ Υ : Υ = {η ∈ Ω : η is reachable from ω at height H} (3.37)

Furthermore, let

Υsup = max
ω∈Υ

U(ω) (3.38)

Υinf = min
ω∈Υ

U(ω) (3.39)

The depth of a cup is defined as d(Υ) = Υsup −Υinf .

The depth of a local minimum ω is the smallest number d(ω) such that there is a
configuration η with U(η) < U(ω) reachable from ω at height U(ω) + d(ω). For a
global minimum, the depth is set to ∞. Considering the Markov chain X generated
by the SA, we have the following constraints to assure the convergence [59]:

Theorem 3.3.5 (Hajek) Assume that X is irreducible and for any ω and η, ω is
reachable at height H from η if and only if η is reachable from ω at height H (weak
reversibility). Assume furthermore that Equation (3.28) and Equation (3.29) hold.
Then

lim
k→∞

P (Xk ∈ Ωopt) = 1 (3.40)

if and only if
∞∑

k=1

exp

(
−d?

Tk

)
= ∞ (3.41)

where d? is the maximum of depths of all configurations which are local but not
global minima.

While Geman’s condition says that Γ in Equation (3.33) must be larger than the
difference between the maximum and minimum energy, Hajek’s condition claims that
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it is sufficient that Γ is larger than the largest depth of any cup.

3.4 Multi-Temperature Annealing

The main purpose and study of this section is a new Multi-Temperature Annealing
(MTA) schedule [73, 76, 117]. In this case, the configurations are generated at different
temperatures at different sites. The temperature is then lowered after each transition
according to the MTA schedule (see Theorem 3.4.1). More generally, we have the
following problem:

Let S = {s1, s2, . . . , sN} be a set of sites, V some neighborhood system with cliques
C and X a MRF over these sites with energy function U . We define an annealing
scheme where the temperature T depends on the iteration k and on the cliques C. Let
® denotes the following operation:

U(ω)® T (k, C) =
∑

C∈C

VC(ω)

T (k, C)
(3.42)

P (X = ω) = πT (k,C)(ω) =
exp(−U(ω)® T (k, C))

Z
(3.43)

Let us suppose that the sites are visited for updating in the order {n1, n2, . . .} ⊂ S. The
resulting stochastic process is denoted by {X(k), k = 0, 1, 2, . . .}, where X(0) is the
initial configuration. X(k) is an inhomogeneous Markov chain with transition matrix:

Pω,η(k − 1, k) =

{
Gω,η(T (k, C))Aω,η(T (k, C)) ∀η 6= ω
1−∑

ζ 6=ω Gω,ζ(T (k, C))Aω,ζ(T (k, C)) η = ω
(3.44)

Considering the Gibbs sampler, the generation matrix Gω,η(T (k, C)) and acceptation
matrix Aω,η(T (k, C)) are given by:

Gω,η(T (k, C)) = Gω,η(k) =

{
1, if η = ω|ωnk

=λ for someλ ∈ Λ

0, otherwise
(3.45)

Aω,η(T (k, C)) = πT (k,C)(Xnk
= ωnk

| Xs = ωs, s 6= nk) (3.46)

Notice that the acceptance is governed by the local characteristics. πT (k,C)(Xnk
= ωnk

|
Xs = ωs, s 6= nk) has a slightly different meaning than πT (k,C)(ω) in Equation (3.43):

πT (k,C)(Xs = ωs | Xr = ωr, s 6= r) =
1

Zs

exp

(
−

∑
C∈C:s∈C VC(ω)

T (k, C)

)
(3.47)

with Zs =
∑

λ∈Λ

exp

(
−

∑
C∈C:s∈C VC(ω|ωs=λ)

T (k, C)

)
(3.48)
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The transition matrix at time k is then of the following form:

Pω,η(k) =

{
πT (k,C)(Xnk

= ηnk
| Xs = ηs, s 6= nk), if η = ω|ωnk

=λ for some λ ∈ Λ

0, otherwise
(3.49)

Let Ωopt be the set of globally optimal configurations:

Ωopt = {ω ∈ Ω : U(ω) = min
η∈Ω

U(η)} (3.50)

Let π0 be the uniform distribution on Ωopt, and define:

U sup = max
ω∈Ω

U(ω), (3.51)

U inf = min
ω∈Ω

U(ω), (3.52)

and ∆ = U sup − U inf . (3.53)

Let us examine the decomposition of U(ω) ® T (k, C) defined in Equation (3.42). Let
ω′ ∈ Ωopt be a globally optimal configuration (U(ω′) = U inf ). Furthermore, let ω ∈
Ω \ Ωopt be any other non-optimal configuration. Obviously, U(ω) − U(ω′) > 0. In
the case of a classical annealing, dividing by a constant temperature does not change
this relation (∀k: (U(ω) − U(ω′))/Tk is still positive). But it is not necessarily true
that (U(ω) − U(ω′)) ® T (k, C) is also positive! Because choosing sufficiently small
temperatures for the cliques where ω′C is locally not optimal (i.e. strengthening the
cliques where VC(ω)− VC(ω′) < 0) and choosing sufficiently high temperatures for the
cliques where ω′C is locally optimal (i.e. weakening the cliques where VC(ω)−VC(ω′) ≥
0), we obtain (U(ω) − U(ω′)) ® T (k, C) < 0, meaning that ω′ is no longer globally
optimal with respect to U ® T (k, C).

Thus, we have to impose further conditions on the temperature to assure the con-
vergence towards the original optimum of U . First, let us examine the decomposition
over the cliques of U(ω)− U(η) for arbitrary ω and η, ω 6= η:

U(ω)− U(η) =
∑

C∈C
(VC(ω)− VC(η)). (3.54)

Indeed, there may be negative and positive members in the decomposition. According
to this fact, we have the following subsums:

∑

C∈C
(VC(ω)− VC(η))

=
∑

C∈C:(VC(ω)−VC(η))<0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ−(ω,η)

+
∑

C∈C:(VC(ω)−VC(η))≥0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ+(ω,η)

. (3.55)
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Now, let us examine ∆ defined in Equation (3.53). If we want to decompose ∆ as
defined above, we have to choose some configuration ω′ with a maximum energy (i.e.
U(ω′) = U sup) and another configuration ω′′ with a minimum energy (i.e. U(ω′′) =
U inf ). Obviously, there may be more than one decomposition depending on the number
of globally optimal configurations (| Ωopt |) and the number of configurations with
maximal global energy (| Ωsup |). Thus, the decomposition of ∆ for a given (ω′, ω′′) is
of the following form:

∆ = Σ−(ω′, ω′′) + Σ+(ω′, ω′′) (3.56)

Furthermore, let us define Σ+
∆ as:

Σ+
∆ = min

ω′ ∈ Ωsup

ω′′ ∈ Ωopt

Σ+(ω′, ω′′). (3.57)

Obviously ∆ ≤ Σ+
∆. The following theorem gives an annealing schedule,

basically the same as in [46]. However, the temperature here is a function of k and
C ∈ C.

Theorem 3.4.1 (Multi-Temperature Annealing) Assume that there exists an
integer κ ≥ N such that for every k = 0, 1, 2, . . ., S ⊆ {nk+1, nk+2, . . . , nk+κ}. For
all C ∈ C, let T (k, C) be any decreasing sequence of temperatures in k for which

(i) limk→∞ T (k, C) = 0.
Let us denote respectively by T inf

k and T sup
k the maximum and minimum of the

temperature function at k (∀C ∈ C: T inf
k ≤ T (k, C) ≤ T sup

k ).

(ii) For all k ≥ k0, for some integer k0 ≥ 2: T inf
k ≥ NΣ+

∆/ ln(k).

(iii) If Σ−(ω, ω′) 6= 0 for some ω ∈ Ω \ Ωopt, ω′ ∈ Ωopt then a further condition must
be imposed:

For all k:
T sup

k
−T inf

k

T inf
k

≤ R with

R = min
ω ∈ Ω \ Ωopt

ω′ ∈ Ωopt

Σ−(ω, ω′) 6= 0

U(ω)− U inf

| Σ−(ω, ω′) | . (3.58)

Then for any starting configuration η ∈ Ω and for every ω ∈ Ω:

lim
k→∞

P (X(k) = ω | X(0) = η) = π0(ω). (3.59)
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The proof of this theorem appears in Appendix 3.A.

Remarks:

1 In practice, we cannot determine R and Σ+
∆, as we cannot compute ∆ either.

2 Considering Σ+
∆ in condition 3.4.1/ii, we have the same problem as in the case of

a classical annealing. The only difference is that in a classical annealing, we have
∆ instead of Σ+

∆. Consequently, the same solutions may be used: an exponential
schedule with a sufficiently high initial temperature.

3 The factor R is more interesting. We propose herein two possibilities which can be
used for practical implementations of the method: Either we choose a sufficiently
small interval [T inf

0 , T sup
0 ] and suppose that it satisfies the condition 3.4.1/iii (we

have used this technique in the simulations), or we use a more strict but easily
verifiable condition [117] instead of condition 3.4.1/iii, namely:

lim
k→∞

T sup
k − T inf

k

T inf
k

= 0. (3.60)

4 What happens if Σ−(ω, ω′) is zero for all ω and ω′ in condition 3.4.1/iii and thus
R is not defined? This is the best case because it means that all globally optimal
configurations are also locally optimal. That is we have no restriction on the inter-
val [T inf

k , T sup
k ], thus any local temperature schedule satisfying conditions 3.4.1/i–

3.4.1/ii is good.

To illustrate a MTA schedule, we have done a computer simulation with the following
example:

Example 3.4.1 Consider the cost function:

U(X) = cos(X1) + (arctan(X1)− sin(X2))− arctan(X2)

where X = (X1, X2) is a MRF with cliques {X1}, {X2} and {X1, X2}. The state space is
simply {0, 1, . . . , 9}. Since the energy function is simple, we can compute it for each possible
configuration (cf. Table 3.1). We obtain R = 0.145387, ∆ = 4.542564 and Σ+

∆ = 4.542564.
Now, let us define a temperature schedule according to Theorem 3.4.1:

T (k, {X1}) =
1 · 5 ·N
ln(k)

,

T (k, {X1, X2}) =
1.1 · 5 ·N

ln(k)
,

T (k, {X2}) =
1.14 · 5 ·N

ln(k)
,
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yielding the following energy function:

UMTA(X, k) =
(

cos(X1) +
arctan(X1)− sin(X2)

1.1
+

arctan(X2)
1.14

)
ln(k)
5 ·N ,

which is nothing else but a conventional annealing with the

Figure 3.7: Landscape of the
energy function with continu-
ous state space.

modified energy function

U ′(X) = cos(X1) +
arctan(X1)− sin(X2)

1.1
+

arctan(X2)
1.14

.

The values of U ′ have also been computed as shown in Ta-
ble 3.2. Clearly, we obtain the same minimum as for the
original function U , that is X = (3, 8). Notice, however,
that the obtained minimum value is not the same! Clearly,
the MTA schedule modifies the original energy function, but
the modified function has the same minima. This is what we
have proved in Theorem 3.4.1.

X1\X2 0 1 2 3 4 5 6 7 8 9

0 1.00 -0.63 -1.02 -0.39 0.43 0.59 -0.13 -1.09 -1.44 -0.87
1 1.33 -0.30 -0.69 -0.06 0.76 0.91 0.20 -0.76 -1.11 -0.55
2 0.69 -0.94 -1.33 -0.70 0.12 0.28 -0.44 -1.39 -1.74 -1.18

3 0.26 -1.37 -1.76 -1.13 -0.31 -0.16 -0.87 -1.83 -2.18 -1.61
4 0.67 -0.95 -1.34 -0.72 0.10 0.26 -0.45 -1.41 -1.76 -1.20
5 1.66 0.03 -0.36 0.27 1.09 1.24 0.53 -0.43 -0.78 -0.22
6 2.37 0.74 0.35 0.98 1.80 1.95 1.24 0.28 -0.07 0.49
7 2.18 0.56 0.17 0.79 1.61 1.77 1.06 0.10 -0.25 0.31
8 1.30 -0.33 -0.72 -0.09 0.73 0.89 0.17 -0.78 -1.13 -0.57
9 0.55 -1.08 -1.47 -0.84 -0.02 0.13 -0.58 -1.54 -1.89 -1.32

Table 3.1: Original energy function U .
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X1\X2 0 1 2 3 4 5 6 7 8 9

0 1.00 -0.45 -0.80 -0.22 0.53 0.67 0.02 -0.85 -1.17 -0.66
1 1.25 -0.20 -0.54 0.03 0.78 0.92 0.28 -0.60 -0.91 -0.40
2 0.59 -0.86 -1.21 -0.63 0.12 0.26 -0.39 -1.26 -1.58 -1.07

3 0.15 -1.31 -1.65 -1.08 -0.33 -0.19 -0.83 -1.71 -2.02 -1.51
4 0.55 -0.90 -1.25 -0.67 0.08 0.22 -0.43 -1.30 -1.62 -1.10
5 1.53 0.08 -0.27 0.31 1.06 1.20 0.55 -0.32 -0.64 -0.12
6 2.24 0.78 0.44 1.01 1.76 1.91 1.26 0.39 0.07 0.58
7 2.05 0.60 0.26 0.83 1.58 1.72 1.07 0.20 -0.12 0.40
8 1.17 -0.28 -0.63 -0.05 0.69 0.84 0.19 -0.68 -1.00 -0.49
9 0.42 -1.04 -1.38 -0.81 -0.06 0.08 -0.56 -1.43 -1.75 -1.24

Table 3.2: Modified energy function U ′.

3.4.1 Application to Hierarchical Markov Models

Hierarchical models usually require much more commu-
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updating sets:

Figure 3.8: Relaxation
scheme on the pyramid.

nication per pixel than monogrid ones. This is why clas-
sical annealing schemes are too slow even on a parallel
machine to minimize the energy associated with such a
model. However, taking benefit of the pyramidal struc-
ture of the model, we can define a MTA scheme, which
consists of associating higher temperatures to higher lev-
els, in order to be less sensitive to local minima at coarser
grids (see Figure 3.8). For the cliques siting between two
levels, we use either the temperature of the lower level
or the higher level (but once chosen, we always keep the
same level throughout the algorithm). In Section 3.7,
we will compare the MTA schedule with a classical in-
homogeneous scheme. Tests have shown that the MTA
algorithm converges much faster than the classical SA.

3.5 Deterministic Relaxation

SA algorithms reach a global minimum but they require a large amount of computation.
On the other hand, a global optimum is obtained only theoretically. In practice, we
always implement an approximation of the SA and the convergence towards the global
optimum is no longer guaranteed.

To speed up the convergence, many authors propose deterministic algorithms [13,
15, 79, 78, 80]. While the essence of every stochastic relaxation is that transitions with
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energy increase are permitted, deterministic relaxation allows only transitions with
energy decrease.

Let us begin the discussion with the most popular deterministic algorithm: the
Iterated Conditional Modes (ICM) [13].

3.5.1 Iterated Conditional Modes (ICM)

If we have a reasonably good initial configuration then an extremely rapid convergence
can be obtained by the ICM method proposed by Besag in [13]. The quality of the final
result strongly depends on the initialization since ICM realizes only a descent in the
nearest energy-valley. Of course, the obtained minimum is only local but convergence
towards this minimum is obtained usually in a few iterations (less then 10 in our
experiments).

Algorithm 3.5.1 (ICM)

©1 Start at a “good” initial configuration ω0 and set k = 0.

©2 For each configuration which differs at most in one element from the current
configuration ωk (they are denoted by Nωk), compute the energy U(η) (η ∈ Nωk).

©3 From the configurations in Nωk , select the one which has a minimal energy:

ωk+1 = arg min
η∈N

ωk

U(η). (3.61)

©4 Goto Step ©2 with k = k + 1 until convergence is obtained (for example, the
energy change is less than a certain threshold).

Notice that in the ICM algorithm there is no temperature parameter and thus there is
no annealing. On the other hand, Step ©3 is nothing else but the acceptance rule of the
Gibbs Sampler (see Algorithm 3.2.2) at T = 0. Thus, the ICM algorithm corresponds
to a purely deterministic “frozen” Gibbs Sampler.

The initialization method depends on the problem which we are trying to solve. For
image labeling, one normally adopts the conventional maximum likelihood estimator
which ignores spatial dependence of one pixel on the others. Other examples can be
found in [13].
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3.5.2 Graduated Non-Convexity (GNC)

The idea behind GNC [15] is to approximate the non-convex energy function U by
a new function U? which is convex and hence can only have one minimum. In the
simplest case, this minimum may also be the global minimum of the original function
U . Generally, we need a sequence of functions Up (0 ≤ p ≤ 1) such that U0 = U
and U1 = U?. In between, Up changes in a continuous way, between U and U?. The
algorithm itself consists of minimize the sequence Up (p = 1 → p = 0) using the result
of one optimization as the starting point for the next. The main inconvenient of the
method is that there is no exact formula how to choose a convex approximation. It
depends on the original function U . Some examples can be found in [15].

Algorithm 3.5.2 (GNC)

©1 Define a convex approximation U? of U . Set up a sequence of approximations
Upi , ∀i = 1 . . . P : 0 ≤ pi ≤ 1 such that U0 = U and U1 = U?. Initialize i = 1.

©2 Find the minimum ω̂i of Upi (by a direct descent or gradient descent method, for
example).

©3 Goto Step ©2 with ω̂i as the initial configuration and i = i + 1 until i < P .

3.5.3 Deterministic Pseudo Annealing (DPA)

DPA is a GNC-like algorithm proposed by M. Berthod et al. in [10]. It is also related
to relaxation labeling algorithms [67, 38]. The basic idea is to extend the probability of
a discrete labeling of pixels in an image to a merit function defined on continuous label-
ings which is a polynomial with non-negative coefficients. Under certain constraints,
the only extrema of this function is a discrete labeling. DPA consists of changing
these constraints to convexify the merit function, find its global maximum, and then
track down the solution until the original constraints are restored yielding an optimal
discrete labeling of the original problem.

Let us consider the energy function of a discrete labeling ω:

U(ω) =
∑

C∈C
VC(ω). (3.62)

To obtain optimal labeling, we have to minimize this function function, or equivalently,
maximize the negative energy:

− U(ω) =
∑

C∈C
−VC(ω) =

∑

C∈C
WC(ω). (3.63)
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It is possible to shift all WC ’s so that they all become positive, without changing
the solution. Now, this combinatorial optimization problem is transformed into a
maximization problem in a compact subset of <NL (N is the number of sites and L
is the number of elements in the common state space). Following [10], we define the
following real function:

f(X) =
∑

C∈C

∑

ω∈ΩC

WC(ω)
deg(C)∏

i=1

xCi,ωCi
, (3.64)

where Ci denotes the ith site of clique C and ΩC denotes the set of all possible labelings
of the sites of clique C. Indeed, f is a polynomial in xi,j’s, its degree is the maximum
degree of the cliques (deg(C)). If f is restricted to a compact subset PNL of <NL:

∀i, j : xi,j ≥ 0 and ∀i :
L∑

j=1

xi,j = 1. (3.65)

The maximum of f on PNL is on the border:

∀i∃j : xi,j = 1 and ∀k 6= j : xi,k = 0. (3.66)

Thus any maxima on PNL directly yields a discrete labeling. To find the global maxi-
mum on PNL, DPA proceeds in the following way: Maximize f on a subset QNL,d:

∀i∃j : xi,j = 1 and ∀k 6= j : xi,k = 0 (3.67)

on which it is concave and track down the maximum by slowly restoring the original
subset PNL. As claimed in [10], one can prove that f has a unique maximum on QNL,d.
Maximization is performed by the iterative power method.

Algorithm 3.5.3 (DPA)

©1 Set d = 2 and initialize X by some X0.

©2 Find X̂ which maximizes f on QNL,d using the iterative power method:

Xn+1 = (∇f(Xn))
1

d−1 n = 0, 1, 2, . . . (3.68)

©3 Decrease d by some quantity and project X̂ on the new QNL,d. Goto Step ©2
with X0 equals to the projection of X̂ until d > 1.

©4 For each site i, select the label j for which xi,j = 1.
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This iterative decrease of d can be compared, up to a point to a cooling schedule, or
better to a Graduated Non-Convexity strategy [15].

Geometrically, Step ©2 simply means that at each iteration, we select on the pseudo-
sphere of degree d the point where the normal is parallel to the gradient of f . This
cannot be applied when d = 1, as claimed in [10], the procedure must stop for some
d slightly larger than 1. The convergence of the algorithm has not been proved but
experiments show [80, 75, 11] that on real problems a very good solution is reached.

3.5.4 Game Strategy Annealing (GSA)

Based on the game theory, Liu-Yu proposes a relaxation scheme called Game Strategy
Approach [87]. Herein, we give a slightly modified version of the original algorithm [113].
The algorithm is essentially a Metropolis algorithm with deterministic acceptance rule
and modified generation mechanism depending on local energies2.

Algorithm 3.5.4 (GSA)

©1 Choose an initial configuration ω0 and set k = 0.

©2 For each element ωk
s (s ∈ S) of ωk, select a state ω′s ∈ Λ such that

ω′s = arg min
λ∈Λ\{ωk

s }
Us(λ) (3.69)

where Us(λ) is the local energy in s when s is in state λ. That is, we select at
each site the state with minimal energy, locally.

©3 Accept ω′s at s as the new state with probability α if Us(ω
′
s) < Us(ω

k
s ). More

precisely:

ωk+1
s =

{
ω′s if Us(ω

′
s) < Us(ω

k
s ) and α ≤ exp(−U(ωk)− U(ωk|ωk

s =ω′s))
ωk

s otherwise
(3.70)

where α is constant chosen at the beginning of the algorithm.

©4 Goto Step ©2 with k = k + 1 until convergence is obtained.

Notice that in the algorithm, there is no temperature parameter thus there is no an-
nealing. However, we can use an annealing schedule in Equation (3.70). According to

2The local energy can be problem-dependent. For image processing, it may be the sum of potentials
over the cliques containing a site s.

PhD thesis, 1994



122 Chapter 3. Optimization

our experience, annealing may speed up the convergence of GSA (see Section 3.7).

3.5.5 Modified Metropolis Dynamics (MMD)

Here, we propose a pseudo-stochastic variation of the Metropolis Dynamics [79, 78, 80].
At high temperature, the behavior of our algorithm is similar to the stochastic tech-
niques. However, if the temperature is less than a certain threshold, it becomes de-
terministic. The “length” of the “pseudo-stochastic” phase is controlled by a constant
threshold used in the modified Dynamics. The difference between the Metropolis dy-
namics and our approach is the choice of ξ in Step ©3 of Algorithm 3.2.1. For the
original method, ξ is chosen randomly at each iteration, however for our algorithm, ξ
is a constant threshold, say α, chosen at the beginning of the algorithm. This simply
means that the jump to η is allowed if this does not increase excessively the energy.
The threshold α controls this increasing of energy.

Algorithm 3.5.5 (MMD)

©1 Pick up randomly an initial configuration ω0, with k = 0 and T = T0.

©2 Using a uniform distribution, pick up a global state η which differs only in one
element from ωk.

©3 (Modified Metropolis Dynamics) Compute ∆U = U(η) − U(ω) and accept
η according to the following rule:

ωk+1 =





η if ∆U ≤ 0,

η if ∆U > 0 and ln(α) ≤
(
−∆U

T

)
,

ωk otherwise

(3.71)

where α is a constant threshold (α ∈ (0, 1)), chosen at the beginning of the
algorithm.

©4 Decrease the temperature T = Tk+1 and goto Step ©2 until convergence is ob-
tained (∆U less than a certain threshold, for example).

The MMD algorithm is much faster than the original Metropolis as we will see in
Section 3.7. Because for MMD, in Step ©2 , we have only to compute ∆U/T and
compare it to ln(α) which is a constant computed at the beginning of the algorithm.
However for the original Metropolis dynamics, we have to compute exp(−∆U/T ) at
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each iteration since it is compared to a random value which is not constant. The
behavior of our algorithm is as follows. We can separate two phases:

Pseudo-Stochastic Phase: At high temperature, the energy increase is permitted.
The behavior of our algorithm is similar to the stochastic techniques.

Deterministic Phase: If the temperature is less than a certain threshold then only
the jumps to configurations of lower energy are allowed. The behavior is thus
similar to the deterministic algorithms and it converges to a local minimum.

The initialization is not as crucial as for the ICM algorithm because the pseudo-
stochastic phase results in a good initialization for the deterministic phase. There
is no explicit formula to get the threshold α. In practice, α is determined by an ad-hoc
way depending on the landscape of the energy function. If it is smooth enough, a
shorter “stochastic” phase is sufficient thus α is chosen nearly equal to one.

The following theorem provides a more precise characterization of these phases.

Theorem 3.5.1 (MMD) For any α ∈ (0, 1), there exists a temperature threshold

Tα = −∆Umin

ln(α)
(3.72)

where ∆Umin = min
ω, η ∈ Ω

U(ω) 6= U(η)

| U(ω)− U(η) | (3.73)

such that if Tk < Tα then only configurations with lower energy will be accepted and
thus the algorithm converges towards a local minimum.

If Tk = Γ/ ln(k) then Tk < Tα if and only if k > Kα where Kα is a threshold given by:

Kα = exp

(
−Γ · ln(α)

∆Umin

)
. (3.74)

In other words, after Kα iterations, the MMD algorithm enters the deterministic phase
accepting only configurations with an energy decrease. The proof of the above theorem
can be found in Appendix 3.B.

3.6 Parallelization Techniques

In the previous section, we have discussed a variety of deterministic algorithms pro-
posed by different authors as an alternative to minimize non-convex functions. In this
section, we deal with parallelization techniques adapted for stochastic as well as for
deterministic methods.

PhD thesis, 1994



124 Chapter 3. Optimization

3.6.1 Data Parallelism

As a natural parallelization method in a lot of image processing problem, we have
already mentioned the coding scheme [13] in Section 3.2.1.2. It consists of constructing
coding sets such that pixels belonging to the same set are conditionally independent,
thus they can be updated at the same time (see Figure 3.5 for an example). The main
advantage of this technique is that it does not violate the convergence.

Another interesting method has been proposed by Azencott in [4]: At each iteration
k, each site belongs to the active set Ak with probability τ (τ ∈ (0, 1] is fixed). The
updating is then carried out simultaneously at the active sites in Ak. By convention,
τ = 0 denotes the sequential algorithm and τ = 1 corresponds to the fully parallel
scheme where all sites are updated at the same time. For τ ∈ (0, 1), Trouvé has proved
in [110] that using an appropriate cooling schedule (see Section 3.3), the generated
Markov chain converges:

lim
k→∞

P (Xk = ω) = πτ (ω). (3.75)

The main result of Trouvé is that partially parallelized algorithms are equivalent with
respect to their limiting distribution:

∀τ : 0 < τ < 1: πτ ≡ Π. (3.76)

However, it is not shown whether Π ≡ π0 (π0 denotes the stationary distribution of
the sequential annealing which is known to coincide with the uniform distribution over
the optimal configurations) but the experimental study in [41] seems to confirm this
equivalence. On the other hand, many examples can be constructed where π1 is not
equivalent to π0.

The parallelization schemes described here assume that the configuration space
can be partitioned (in image processing, it is usually true). On the other hand, the
optimization algorithm itself is still sequential since transitions are carried out one after
the other which is typically a sequential process. We have only changed the generation
mechanism. In the followings, we will study parallel implementations where Markov
chains are generated simultaneously.

3.6.2 Parallel Simulated Annealing

Essentially, there are two approaches [83, 5]. The first one, called systolic algorithm,
aims at generating multiple Markov chains with possible interactions between them.
In the other approach, called clustered algorithm, all processors are used to generate
cooperatively the same Markov chain.
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Figure 3.9: Systolic parallelization scheme. Figure 3.10: Clustered parallelization
scheme.

3.6.2.1 Systolic Algorithm

The basic idea is to generate n Markov chains simultaneously [83, 5, 53] (cf. Figure 3.9).
Obviously, if the chains are independent and the temperature T is fixed (in Figure 3.9,
T0 = T1 = · · · = T4), they generate the same Markov chain. According to the conver-
gence results presented in Section 3.3, after an infinite number of iterations we obtain
n realizations of the same chain. One possibility is to select the optimum among the
n realizations. In [54], it has been shown that if the stationary distribution of the
sequential homogeneous algorithm is denoted by q(T ) then, using n processors, the
stationary distribution of the above defined parallel homogeneous algorithm is given
by q(T/n). Since the convergence rate of SA increases exponentially when T goes to
0, it is obvious that using n processors may considerably speed up the convergence.

A more general scheme is to allow communications between the processors at regular
time intervals. The interactions may consist of selecting the best configuration among
the n configurations or one can use a probabilistic rule (the acceptance rule of the Gibbs
Sampler in Equation (3.14), for example). Surprisingly, this scheme is asymptotically
less efficient than the independent scheme if each processor is executing the same
annealing algorithm. As claimed in [4], performing interactions between n processors
executing the same annealing is only a waste of computing time. It might as well be
replaced by a single interaction at the end to select the best final configuration. The
mathematical study of this method is provided in [53, 6] and experimental results can
be found in [53, 54]. We mention here a conjecture from [54]:
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Conjecture 3.6.1 (Graffigne) Consider n processors generating the same homoge-
neous Markov chain at temperature T interacting after l, 2l, 3l . . . iterations. The re-
sulting stochastic process is a nonhomogeneous Markov chain Xk = (X1

k , X2
k , . . . , Xn

k ).
If l is sufficiently large to allow reaching each configuration in maximum l transitions
then the asymptotic law of Xn(T ) is close to q(T/n). This means that there is no
need to add extra interactions before the last one.

Finally, let us discuss a more interesting scheme. The approach is exactly the same
as before but the temperature now varies for each processor. The processors generate
different Markov chains at different temperatures. Usually, the first processor is set
to a high temperature, the last processor is set to a temperature close to 0 and the
other processors are set to intermediate temperatures uniformly distributed between
the highest and lowest ones (cf. Figure 3.9 with T0 > T1 > · · · > T4). The behavior of
the algorithm is as follows: The first processor, at a high temperature, will randomly
explore the energy landscape with large moves. The lower temperatures allows to
investigate a selected energy-valley and the last processor, with temperature close to
zero, will find the local minima. The convergence of the algorithm has not been proved
but the experimental results presented in [54] are very promising.

We have used the idea of performing relaxation at different temperatures in our
Multi-Temperature Annealing schedule (see Section 3.4) but, in our case, the conver-
gence has been proved (see Appendix 3.A).

3.6.2.2 Clustered Algorithm

Here, all processors are used to carry out a transition of the same Markov chain (see
Figure 3.10). Then the new configuration will be selected among the n configurations
according to a deterministic or probabilistic rule as in the previous section. In [22], a
detailed mathematical study is provided confirming the convergence of the method.

3.6.3 Parallel Multiscale Algorithms

Herein, we present some parallelization schemes for the multiscale relaxation algo-
rithm described in Algorithm 2.5.1. The most simple method is to use a data parallel
relaxation algorithm (see Section 3.6.1) at each level. In this case, the convergence
of SA towards a global minimum is guaranteed. However, the levels are handled se-
quentially. Full parallelization is not a trivial task since the algorithm is intrinsically
sequential (see Figure 2.8): we need the result of the coarser level to initialize the level
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below it. Many heuristics have been proposed to introduce additional parallelism in
the pyramid. The common problem of these methods is that convergence is no longer
guaranteed. Nevertheless, experimental results seem to give a reasonably support of
the convergence.

In [91, 62] a parallel inter-level strategy has been proposed, sim-

Figure 3.11: Mul-
tiple partition-
ing in a multiscale
model.

ilar to Graffigne’s parallelized Markov chain approach [54, 53]. The
algorithm consists of running a (possibly data parallel) relaxation
algorithm at each level of the pyramid with different initial temper-
atures (the highest temperature is assigned to the coarsest grid).
In regular time intervals, the coarse grids transmit a small block
of labels (an interaction block) to the level below it. The block is
accepted at the finer level if its energy is lower. The energies can be
compared directly (after projection of the interaction block into the
finer grid) due to the consistent definition of the energy functions
at higher levels (they are all related to the energy function of the
finest level as explained in Section 2.5).

Another scheme has been proposed in [92]. Considering the
partition of the original grid S reported in Algorithm 2.5.1, we may
notice that the block partitioning is not unique at a given resolution.
As shown in Figure 3.11, partitions can be obtained by considering
successive shifts of the initial block partition along the horizontal
and vertical directions (we have exactly (wh)l different partitionings
at level l, as pointed out in [92]). Taking benefit of these different partitionings, we
can define a parallel scheme: For each partitioning at a given level, we associate a
relaxation algorithm. Thus we obtain (wh)l algorithm running in parallel. At the
convergence, the configuration of lowest energy is selected among the (wh)l results.

For the ICM algorithm [13] (see Algorithm 3.5.1), a multi-initialization method has
been proposed in [92]. It consists of running multiple ICM algorithm at coarser levels
with different initial configurations. The next level is initialized with the configuration
of minimal energy.

3.6.4 A Parallel Hierarchical Scheme

From the optimization view-point, there is no difference between a hierarchical and
monogrid MRF model: We have a non-convex energy function defined over parti-
tionable configurations. Consequently, the same parallelization techniques may be
used. However, there is a special setup for hierarchical models, namely the Multi-
Temperature Annealing coupled with a coding parallelization scheme. In Section 3.4.1,
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Coding method. τ = 0.5 τ = 0.7 τ = 0.9

Figure 3.12: Results of the Gibbs sampler with different data-parallel implementations.

we have already explained how to implement a MTA relaxation on a hierarchical pyra-
mid (cf. Figure 3.8). The parallelization of this scheme may be done by defining coding
sets as described in Section 3.6.1. Since there are inter-level interactions, we cannot
update each layer at the same time. In Figure 3.8, considering interactions between
two neighboring grids, the levels connected by pointers are updated at the same time.
Of course, at each level, we have to define additional coding sets corresponding to the
intra-level communication scheme. For example, using a first order MRF model, we
have to define 4 coding sets: 2 on the layers and 2 on the pyramid.

3.7 Experimental Results

The goal of this simulation is to evaluate the performances of the algorithms described
in this chapter, in particular on image segmentation problems. The performances are
evaluated in two ways: The reached global minimum of the energy function and the
computer time required to attain this minimum. We remark that in all cases, the
execution has been stoped when the energy change ∆U was less than 0.1% of the
current value of U . In general, stochastic schemes are better regarding the achieved
minimum and deterministic algorithms are better regarding the computer time. The
methods have been tested on a variety of synthetic as well as real data using the
monogrid segmentation model described in Section 2.3.

The MTA schedule has been compared to a classical inhomogeneous annealing using
the hierarchical model described in Section 2.6.4.

All tests have been conducted on a Connection Machine CM200 [65] (see Sec-
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Gibbs Sampler VPR Nb. of Iter Total time Time per It. Energy

Coding 2 342 14.21 sec. 0.042 sec. 44190.63
τ = 0.5 2 333 14.12 sec. 0.042 sec. 44195.77
τ = 0.7 2 337 14.10 sec. 0.041 sec. 44190.28
τ = 0.9 2 366 15.49 sec. 0.042 sec. 44192.86

Table 3.3: Results of the Gibbs sampler with different data-parallel implementations.

tion 2.7.1 for a discussion about it) using a coding method to implement parallelism
(see Section 3.6.1 for more details). We have also tested the parallelization at rate τ
described in Section 3.6.1 but we have obtained practically the same computing time
and global energy as for the coding method. Since the convergence of the latter one is
guaranteed to the same minima as for the sequential case, we decided to use it in the
comparative tests. In Figure 3.12 we show the obtained results on a noisy synthetic
image (the original image can be found in Figure 3.17). In Table 3.3, we give the
computing time and the achieved energy minimum for each method.

3.7.1 Comparison of MTA and Inhomogeneous Annealing

In Figure 3.15, we compare the inhomogeneous and MTA schedules on a noisy synthetic
image using the Gibbs sampler. The energy function of the hierarchical segmentation
model is defined in Section 2.6.4. In both cases, the parameters were strictly the same,
the only difference is the applied schedule: the pyramid contains 4 levels yielding a
VPR equal to 4. The initial temperatures were respectively 4 (at the highest level), 3,
2 and 1 (at the lowest level) for MTA and 4 at each level for inhomogeneous annealing.
The potential β equals to 0.7 and γ equals to 0.1. In Figure 3.14 (resp. 3.13), we show
the global energy (computed at a fixed temperature) versus the number of iterations of
the inhomogeneous (resp. MTA) schedule. Both reach practically the same minimum
(53415.4 for the inhomogeneous and 53421.4 for the MTA), however the inhomogeneous
schedule requires 238 iterations (796.8 sec. CPU time) but the MTA schedule requires
only 100 iterations (340.6 sec. CPU time) for the convergence.

3.7.2 Stochastic and Deterministic Relaxation Algorithms

Herein, we present tests on a variety of images using the algorithms described in this
chapter. For the simulations, we have used a first order MRF image model with the
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Figure 3.13: Energy decrease with the MTA
schedule.

Figure 3.14: Energy decrease with the inho-
mogeneous annealing schedule.

following energy function (see Section 2.3 for more details):

U(ω, f) =
∑

s∈S

(
ln(
√

2πσωs) +
(fs − µωs)

2

2σ2
ωs

)
+

∑

{s,r}∈C
βδ(ωs, ωr) (3.77)

where

δ(ωs, ωr) =

{
−1 if ωs = ωr

+1 if ωs 6= ωr
(3.78)

and β is a model parameter controlling the homogeneity of
Image α

checkerboard 0.3
triangle 0.3
bruit 0.7
SPOT 0.7

Table 3.4: The α pa-
rameter for MMD and
GSA.

the regions. Each class λ ∈ Λ is represented by its mean value
µλ and its deviation σλ. ωs ∈ Λ denotes the label attributed
to the pixel s ∈ S and fs stands for the grey-level value at
pixel s. The model parameters are supposed to be known (cf.
Table 3.5 in Appendix 3.D).

The initial temperature for the algorithms using annealing
(that is Gibbs Sampler, Metropolis, MMD, GSA) was T0 = 4
and the schedule is given by Tk+1 = 0.95 · Tk. For MMD and
GSA, the parameter α has been chosen according to Table 3.4.

For noisier synthetic images, we have chosen a smaller α to get the best result. For
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Noisy image (SNR = 3dB) Inhomogeneous schedule MTA schedule

Figure 3.15: Results of the Gibbs sampler on a synthetic image with inhomogeneous and
MTA schedules.

MMD, this means that we need a longer stochastic phase in order to get a better
initialization for the deterministic phase. ICM and DPA was initialized by using only
the Gaussian term of the energy function (for ICM, this means the maximum likelihood
estimate of the labels). As for the other methods, random initial values were assigned
to the labels. ICM is very sensitive to the initial conditions and may be better results
could have been obtained with another initialization. Nevertheless the DPA and ICM
algorithms have been initialized with the same data for the simulation.

The obtained results are presented in Appendix 3.C. In Appendix 3.D, we give
for each image and each algorithm the Virtual Processor Ratio (VPR), the number of
iterations, the computer time, and the reached energy minimum. As these results show,
stochastic methods give the lowest energy values but they are slower than deterministic
methods. ICM is the fastest but the reached minimum is much higher than for the other
methods (as mentioned earlier, another initialization may lead to a better result, but
more elaborated initialization usually increases the computer time). DPA, MMD and
GSA seem to be a good compromise between quality and execution time. Sometimes,
the results obtained by these algorithms are very close to the ones of stochastic methods.
Another advantage is that they are far less dependent on the initialization than ICM.

PhD thesis, 1994





Appendix

133



134 Chapter 3. Optimization

3.A Proof of The Multi-Temperature-Annealing
Theorem

We follow the proof of the annealing theorem given by Geman and Geman in [46].
Essentially, we can apply the same proof, only a slight modification is needed.

3.A.1 Notations

We recall a few notations: S = {s1, s2, . . . , sN} denotes the set of sites, Λ = {0, 1, . . . , L−
1} is a common state space and ω, η, η′ . . . ∈ Ω denote configurations, where Ω = ΛN is
finite. The sites are updated in the order {n1, n2, . . .} ⊂ S. The generated configura-
tions constitute an inhomogeneous Markov chain {X(k), k = 0, 1, 2, . . .}, where X(0)
is the initial configuration. The transition X(k−1) → X(k) is controlled by the Gibbs
distribution πT (k,C) according to the transition matrix at time k:

Pω,η(k) ==

{
πT (k,C)(Xnk

= ηnk
| Xs = ηs, s 6= nk), if η = ω|ωnk

=λ for some λ ∈ Λ

0, otherwise
(3.79)

πT (k,C)(ω) denotes the Gibbs distribution at iteration k

πT (k,C)(ω) =
exp(−U(ω)® T (k, C))

Z
(3.80)

with U(ω)® T (k, C) =
∑

C∈C

VC(ω)

T (k, C)
. (3.81)

The local characteristics of the above distribution are denoted by:

πT (k,C)(Xs = ωs | Xr = ωr, s 6= r) =
1

Zs

exp

(
− ∑

C∈C:s∈C

VC(ω)

T (k, C)

)
(3.82)

with Zs =
∑

λ∈Λ

exp

(
− ∑

C∈C:s∈C

VC(ω|ωs=λ)

T (k, C)

)
(3.83)

The decomposition of U(ω)− U(η) for arbitrary ω and η, ω 6= η is given by:

U(ω)− U(η) =
∑

C∈C
(VC(ω)− VC(η)). (3.84)

Denoting respectively by Σ+(ω, η) and Σ−(ω, η) the sum over the positive and negative
cliques, we get: ∑

C∈C
(VC(ω)− VC(η))
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=
∑

C∈C:(VC(ω)−VC(η))<0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ−(ω,η)

+
∑

C∈C:(VC(ω)−VC(η))≥0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ+(ω,η)

. (3.85)

Furthermore, let

U sup = max
ω∈Ω

U(ω), (3.86)

U inf = min
ω∈Ω

U(ω), (3.87)

and ∆ = U sup − U inf . (3.88)

and define Σ+
∆ as the minimum of positive sums:

Σ+
∆ = min

ω′ ∈ Ωsup

ω′′ ∈ Ωopt

Σ+(ω′, ω′′). (3.89)

Obviously ∆ ≤ Σ+
∆.

Given any starting distribution µ0, the distribution of X(k) is given by the vector
µ0

∏k
i=1 P (i):

Pµ0(X(k) = ω) =

(
µ0

k∏

i=1

P (i)

)∣∣∣∣∣
ω

(3.90)

=
∑
η

P (X(k) = ω|X(0) = η)µ0(η) (3.91)

We use the following notation for transitions: ∀l < k and ω, η ∈ Ω:

P (k, ω|l, η) = P (X(k) = ω|X(l) = η),

and for any distribution µ on Ω:

P (k, ω|l, µ) =
∑
η

P (X(k) = ω|X(l) = η)µ(η).

Sometimes, we use this notation as P (k, ·|l, µ), where “·” means any configuration
from Ω. Finally, let ‖µ− ν‖ denotes the following distance between two distributions
on Ω:

‖µ− ν‖ =
∑
ω

|µ(ω)− ν(ω)| .

It is clear, that limn→∞ µn = µ in distribution (i.e. ∀ω : µn(ω) → µ(ω)) if and only if
‖µn − µ‖ → 0.
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3.A.2 Proof of the Theorem

First, we state two lemmas which imply Theorem 3.4.1:

Lemma 3.A.1 For every k0 = 0, 1, 2 . . .:

lim
k→∞

sup
ω,η′,η′′

|P (X(k) = ω|X(k0) = η′)− P (X(k) = ω|X(k0) = η′′)| = 0. (3.92)

Proof of Lemma 3.A.1:
Fix k0 = 0, 1, 2, . . ., define Kl = k0 + lκ, l = 0, 1, 2, . . ., where κ is the number of transi-
tions necessary for a full sweep of S (for every k = 0, 1, 2, . . .: S ⊆ {nk+1, nk+2, . . . , nk+κ}).
Let δ(k) be the smallest probability among the local characteristics:

δ(k) = inf
1≤i≤N

ω∈Ω

πT (k,C)(Xsi
= ωsi

|Xsj
= ωsj

, j 6= i).

A lower bound for δ(k) is given by:

δ(k) ≥ exp(−U sup ® T (k, C))

L exp(−U inf ® T (k, C))
=

exp(−∆® T (k, C))

L
≥ 1

L
exp(−Σ+

∆ ® T (k, C)

≥ 1

L
exp(−Σ+

∆/T inf
k ) ,

where L =| Λ | is the number of possible states at a site. Now fix l and define mi as the
time of the last replacement of site si before Kl + 1 (that is before the lth full sweep):

∀i: 1 ≤ i ≤ N : mi = sup{k : k ≤ Kl, nk = si}.

Without loss of generality, we can assume that m1 > m2 · · · > mN (otherwise relabel
the sites). Then:

P (X(Kl) = ω|X(Kl−1) = ω′)

= P (Xs1(m1) = ωs1 , Xs2(m2) = ωs2 , . . . , XsN
(mN) = ωsN

|X(Kl−1) = ω′)

=
N−1∏

i=1

P (Xsi
(mi) = ωsi

|Xsi+1
(mi+1) = ωsi+1

, . . . , XsN
(mN) = ωsN

, X(Kl−1) = ω′)

≥
N∏

i=1

δ(mi) ≥ L−N
N∏

i=1

exp(−∆/T inf
mi

) ≥ L−N exp


− Σ+

∆N

T inf
k0+lκ


 (3.93)
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since mi ≤ Kl = k0 + lκ, i = 1, 2 . . . , N and T inf
k is decreasing. If k0 + lκ is sufficiently

large then T inf
k0+lκ ≥ NΣ+

∆/ ln(k0+lκ) according to condition 3.4.1/ii and Equation (3.93)
can be continued as:

P (X(Kl) = ω|X(Kl−1) = ω′) ≥ L−N exp

(
− Σ+

∆N

NΣ+
∆/ ln(k0 + lκ)

)
= L−N(k0 + lκ)−1.

Hence, for a sufficiently small constant Γ (0 < Γ ≤ 1), we can assume that

inf
ω,ω′

P (X(Kl) = ω|X(Kl−1) = ω′) ≥ ΓL−N

k0 + lκ
(3.94)

for every k0 = 0, 1, 2, . . . and l = 1, 2, . . ., keeping in mind that Kl depends on k0.

Consider now the limit given in Equation (3.92) and for each k > k0, define
Ksup(k) = sup{l : Kl < k} (the last sweep before the kth transition) so that limk→∞ Ksup(k) =
∞. Fix k > K1:

sup
ω,η′,η′′

|P (X(k) = ω|X(0) = η′)− P (X(k) = ω|X(0) = η′′)|

= sup
ω

(
sup

η
P (X(k) = ω|X(0) = η)− inf

η
P (X(k) = ω|X(0) = η)

)

= sup
ω

(
sup

η

∑

ω′
P (X(k) = ω|X(K1) = ω′)P (X(K1) = ω′|X(0) = η)

− inf
η

∑

ω′
P (X(k) = ω|X(K1) = ω′)P (X(K1) = ω′|X(0) = η)

)

.
= sup

ω
Q(k, ω).

Furthermore, for each ω ∈ Ω:

sup
η

∑

ω′
P (X(k) = ω|X(K1) = ω′)P (X(K1) = ω′|X(0) = η)

≤ sup
µ

∑

ω′
P (X(k) = ω|X(K1) = ω′)µ(ω′),

where µ is any probability measure on Ω. Using Equation (3.94), we get:

µ(ω′) ≥ ΓL−N

k0 + lκ
.
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Suppose that P (X(k) = ω|X(K1) = ω′) is maximized at ω′ = ωsup and minimized at
ω′ = ωinf . Then we get:

sup
µ

∑

ω′
P (X(k) = ω|X(K1) = ω′)µ(ω′) ≤

(
1− (LN − 1)

ΓL−N

k0 + lκ

)
P (X(k) = ω|X(K1) = ωsup)

+
ΓL−N

k0 + lκ

∑

ω′ 6=ωsup

P (X(k) = ω|X(K1) = ω′)

︸ ︷︷ ︸
P (X(k)=ω|X(K1)=ωinf )+

∑
ω′ 6=ωsup,ωinf P (X(k)=ω|X(K1)=ω′)

,

and in a similar way:

inf
µ

∑

ω′
P (X(k) = ω|X(K1) = ω′)µ(ω′) ≥

(
1− (LN − 1)

ΓL−N

k0 + lκ

)
P (X(k) = ω|X(K1) = ωinf )

+
ΓL−N

k0 + lκ

∑

ω′ 6=ωinf

P (X(k) = ω|X(K1) = ω′)

︸ ︷︷ ︸
P (X(k)=ω|X(K1)=ωsup)+

∑
ω′ 6=ωsup,ωinf P (X(k)=ω|X(K1)=ω′)

.

Then, it is clear that

Q(k, ω) ≤
(
1− Γ

k0 + lκ

) (
P (X(k) = ω|X(K1) = ωsup)− P (X(k) = ω|X(K1) = ωinf )

)
,

hence:
sup

ω,η′,η′′
|P (X(k) = ω|X(0) = η′)− P (X(k) = ω|X(0) = η′′)| ≤

(
1− Γ

k0 + lκ

)
sup

ω,η′,η′′
|P (X(k) = ω|X(K1) = η′)− P (X(k) = ω|X(K1) = η′′)| ≤

(
1− Γ

k0 + lκ

) ((
1− Γ

k0 + lκ

)
sup

ω,η′,η′′

∣∣P (X(k) = ω|X(K2) = η′)− P (X(k) = ω|X(K2) = η′′)
∣∣
)

Proceeding this way, we have the following bound:

≤
Ksup(k)∏

k=1

(
1− Γ

k0 + lκ

)
sup

ω,η′,η′′

∣∣∣P (X(k) = ω|X(KKsup(k)) = η′)
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−P (X(k) = ω|X(KKsup(k)) = η′′)
∣∣∣

and finally, since the the possible maximal value of the supremum is 1:

sup
ω,η′,η′′

|P (X(k) = ω|X(0) = η′)− P (X(k) = ω|X(0) = η′′)| ≤
Ksup(k)∏

k=1

(
1− Γ

k0 + lκ

)
.

It is then sufficient to show that

lim
m→∞

m∏

k=1

(
1− Γ

k0 + lκ

)
= 0.

which is a well known consequence of the divergence of the series

∑

l

(k0 + lκ)−1

for all k0 and κ. This completes the proof of Lemma 3.A.1. Q.E.D.

Lemma 3.A.2
lim

k0→∞
sup
k≥k0

‖ P (k, ·|k0, π0)− π0 ‖= 0. (3.95)

Proof of Lemma 3.A.2:
In the following, let Pk0,k(·) stand for P (k, ·|k0, π0), so that for any k ≥ k0 > 0:

Pk0,k(ω) =
∑
η

P (X(k) = ω|X(k0) = η)π0(η).

First, we show that for any k > k0 ≥ 0:

‖Pk0,k − πT (k,C)‖ ≤ ‖Pk0,k−1 − πT (k,C)‖. (3.96)

We can assume for convenience that nk = s1. Then

‖Pk0,k − πT (k,C)‖ =

∑

(ωs1 ,...ωsN
)

∣∣∣πT (k,C)(Xs1 = ωs1|Xs = ωs, s 6= s1)Pk0,k−1(Xs = ωs, s 6= s1)

−πT (k,C)(Xs = ωs, s ∈ S)
∣∣∣

=
∑

(ωs2 ,...ωsN
)


 ∑

ωs1∈Λ

πT (k,C)(Xs1 = ωs1|Xs = ωs, s 6= s1) |Pk0,k−1(Xs = ωs, s 6= s1)
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−πT (k,C)(Xs = ωs, s 6= s1)
∣∣∣
)

=
∑

(ωs2 ,...ωsN
)

∣∣∣Pk0,k−1(Xs = ωs, s 6= s1)− πT (k,C)(Xs = ωs, s 6= s1)
∣∣∣

=
∑

(ωs2 ,...ωsN
)

∣∣∣∣∣∣
∑
ωs1

(Pk0,k−1(Xs = ωs, s ∈ S)− πT (k,C)(Xs = ωs, s ∈ S))

∣∣∣∣∣∣

≤ ∑

(ωs1 ,...ωsN
)

∣∣∣Pk0,k−1(Xs = ωs, s ∈ S)− πT (k,C)(Xs = ωs, s ∈ S)
∣∣∣

= ‖Pk0,k−1 − πT (k,C)‖.
Second, we prove that πT (k,C) converges to π0 (the uniform distribution on Ωopt):

lim
k→∞

‖π0 − πT (k,C)‖ = 0.

To see this, let |Ωopt| be the number of globally optimal configurations. Then

lim
k→∞

πT (k,C)(ω)

= lim
k→∞

exp(−U(ω)® T (k, C))∑
ω′∈Ωopt

exp(−U(ω′)® T (k, C)) +
∑

ω′ 6∈Ωopt
exp(−U(ω′)® T (k, C))

= lim
k→∞

exp(−(U(ω)− U inf )® T (k, C))

|Ωopt|+ ∑
ω′ 6∈Ωopt

exp(−(U(ω)− U inf )® T (k, C))
=

{
0 ω /∈ Ωopt
1

|Ωopt| ω ∈ Ωopt

(3.97)
The above equation is true if (U(ω)−U inf )®T (k, C) ≥ 0. Let us rewrite this inequality
as

∑

C∈C

VC(ω)− VC(ω′)
T (k, C)

≥ 0 (3.98)

where ω′ is any globally optimal configuration (i.e. ω′ ∈ Ωopt). While VC(ω)− VC(ω′)
may be negative, U(ω)−U inf is always positive or zero. We denote by Σ(ω) the energy
difference in Equation (3.98) without the temperature. Obviously, it is non-negative:

Σ(ω) =
∑

C∈C
VC(ω)− VC(ω′) = U(ω)− U inf ≥ 0

Then, let us decompose Σ(ω) according to Equation (3.55):

Σ(ω) = Σ+(ω, ω′) + Σ−(ω, ω′).
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From which:
Σ+(ω, ω′) = Σ(ω)− Σ−(ω, ω′).

Now, we consider Equation (3.98):

∑

C∈C

VC(ω)− VC(ω′)
T (k, C)

= Σ−(ω, ω′)® T (k, C) + Σ+(ω, ω′)® T (k, C)

≥ Σ−(ω, ω′)/T inf
k + Σ+(ω, ω′)/T sup

k =
Σ−(ω, ω′) · T sup

k + Σ+(ω, ω′) · T inf
k

T inf
k T sup

k

≥ 0

Furthermore:

Σ−(ω, ω′) · T sup
k + Σ+(ω, ω′) · T inf

k = Σ−(ω, ω′) · T sup
k + (Σ(ω)− Σ−(ω, ω′))T inf

k

Therefore:
Σ−(ω, ω′)(T sup

k − T inf
k )− Σ(ω) · T inf

k ≥ 0

Dividing by Σ−(ω, ω′) which is negative, we get:

T sup
k − T inf

k ≤ Σ(ω)

| Σ−(ω, ω′) |T
inf
k

Which is true due to condition 3.4.1/iii of the theorem.

Finally, we can prove that

∞∑

k=1

∥∥∥πT (k,C) − πT (k+1,C)

∥∥∥ < ∞ (3.99)

since ∞∑

k=1

∥∥∥πT (k,C) − πT (k+1,C)

∥∥∥ =
∑
ω

∞∑

k=1

∣∣∣πT (k,C)(ω)− πT (k+1,C)(ω)
∣∣∣

and since
∀ω : πT (k,C)(ω) −→ π0(ω),

it is enough to show that πT (ω) is monotonous for every ω. However it is clear from
Equation (3.97) that

• if ω /∈ Ωopt then πT (ω) is strictly increasing for 0 < T ≤ ε for some sufficiently
small ε,

• if ω ∈ Ωopt then πT (ω) is strictly decreasing for all T > 0.
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Fix k > k0 ≥ 0. From Equation (3.96) and Equation (3.99), we obtain:

‖Pk0,k − π0‖ ≤ ‖Pk0,k − πT (k,C)‖+ ‖πT (k,C) − π0‖

≤ ‖Pk0,k−1 − πT (k,C)‖+ ‖πT (k,C) − π0‖ by Equation (3.96)

≤ ‖Pk0,k−1 − πT (k−1,C)‖+ ‖πT (k−1,C) − πT (k,C)‖+ ‖πT (k,C) − π0‖

≤ ‖Pk0,k−2−πT (k−2,C)‖+‖πT (k−2,C)−πT (k−1,C)‖+‖πT (k−1,C)−πT (k,C)‖+‖πT (k,C)−π0‖

≤ · · · ≤ ‖Pk0,k0 − πT (k0,C)‖+
k−1∑

l=k0

‖πT (l,C) − πT (l+1,C)‖+ ‖πT (k,C) − π0‖.

On the other hand,

Pk0,k0 = π0

and

lim
k→∞

‖πT (k,C) − π0‖ = 0.

Then we have

lim
k0→∞

sup
k≥k0

‖Pk0,k − π0‖ ≤ lim
k0→∞

sup
k>k0

k−1∑

l=k0

‖πT (l,C) − πT (l+1,C)‖

= lim
k0→∞

∞∑

l=k0

‖πT (l,C) − πT (l+1,C)‖ = 0

The last term is 0 by (3.99) which completes the proof of Lemma 3.A.1. Q.E.D.
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Theorem 3.4.1 (Multi-Temperature Annealing) Assume that there exists an
integer κ ≥ N such that for every k = 0, 1, 2, . . ., S ⊆ {nk+1, nk+2, . . . , nk+κ}. For
all C ∈ C, let T (k, C) be any decreasing sequence of temperatures in k for which

(i) limk→∞ T (k, C) = 0.
Let us denote respectively by T inf

k and T sup
k the maximum and minimum of the

temperature function at k (∀C ∈ C: T inf
k ≤ T (k, C) ≤ T sup

k ).

(ii) For all k ≥ k0, for some integer k0 ≥ 2: T inf
k ≥ NΣ+

∆/ ln(k).

(iii) If Σ−(ω, ω′) 6= 0 for some ω ∈ Ω \ Ωopt, ω′ ∈ Ωopt then a further condition must
be imposed:

For all k:
T sup

k
−T inf

k

T inf
k

≤ R with

R = min
ω ∈ Ω \ Ωopt

ω′ ∈ Ωopt

Σ−(ω, ω′) 6= 0

U(ω)− U inf

| Σ−(ω, ω′) |

Then for any starting configuration η ∈ Ω and for every ω ∈ Ω:

lim
k→∞

P (X(k) = ω | X(0) = η) = π0(ω). (3.100)

Proof:
Using the above mentioned lemmas, we can easily prove the annealing theorem:

lim
k→∞

‖P (X(k) = ·|X(0) = η)− π0‖ = lim
k0→∞

lim
k→∞
k≥k0

‖∑

η′
P (k, ·|k0, η

′)P (k0, η
′|0, η)− π0‖

≤ lim
k0→∞

lim
k→∞
k≥k0

‖∑

η′
P (k, ·|k0, η

′)P (k0, η
′|0, η)− P (k, ·|k0, π0)‖

+ lim
k0→∞

lim
k→∞
k≥k0

‖P (k, ·|k0, π0)− π0‖ .

The last term is 0 by Lemma 3.A.2. Moreover, P (k0, ·|0, η) and π0 have total mass 1,
thus:

‖∑

η′
P (k, ·|k0, η

′)P (k0, η
′|0, η)− P (k, ·|k0, π0)‖
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=
∑
ω

sup
η′′
|∑

η′
(P (k, ω|k0, η

′)− P (k, ω|k0, η
′′))(P (k0, η

′|0, η)− π0(η
′))|

≤ 2
∑
ω

sup
η′,η′′

|P (k, ω|k0, η
′)− P (k, ω|k0, η

′′)| .

Finally,
lim
k→∞

‖P (X(k) = ·|X(0) = η)− π0‖

≤ 2
∑
ω

lim
k0→∞

lim
k→∞
k≥k0

sup
η′,η′′

|P (k, ω|k0, η
′)− P (k, ω|k0, η

′′)| = 0

The last term is 0 by Lemma 3.A.1 which completes the proof of the annealing theo-
rem. Q.E.D.
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3.B Proof of the MMD Theorem

3.B.1 Notations

Let Ω be the set of all configurations. The elements of Ω are denoted by ω, η, . . ., U(ω)
denotes the energy of ω. A new configuration η is accepted according to the following
rule:

ωk+1 =





η if ∆U ≤ 0,

η if ∆U > 0 and α ≤ exp
(
−∆U

T

)
,

ωk otherwise

(3.101)

where α is a constant threshold (α ∈ (0, 1)). For the convergence, we prove that after
a certain number of iterations only transitions with lower energy are allowed.

3.B.2 Proof of the Theorem
Theorem 3.5.1 (MMD) For any α ∈ (0, 1), there exists a temperature threshold

Tα = −∆Umin

ln(α)
(3.102)

where ∆Umin = min
ω, η ∈ Ω

U(ω) 6= U(η)

| U(ω)− U(η) | (3.103)

such that if Tk < Tα then only configurations with lower energy will be accepted and
thus the algorithm converges towards a local minimum.

Proof:
Let us examine the transition ω → η when U(η) > U(ω). According to the acceptance
rule in Equation (3.101), the jump is allowed if

α ≤ exp

(
−U(η)− U(ω)

T

)
. (3.104)

However, from Equation (3.103)

α ≤ exp

(
−U(η)− U(ω)

T

)
≤ exp

(
−∆Umin

T

)
, (3.105)

On the other hand, T → 0 as k →∞ yielding

lim
k→∞

exp
(
−∆Umin

T

)
= 0. (3.106)
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Therefore, if T < Tα, we get:

exp
(
−∆Umin

T

)
≤ exp

(
−∆Umin

Tα

)
= α. (3.107)

Meaning that configurations with higher energy are no longer accepted. Q.E.D.
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3.C Images
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DPA

ICM

Metropolis

Gibbs Sampler

MMD

GSA

Original image Noisy image (SNR= −5dB) Initialization of ICM and DPA

Figure 3.16: Results on the “checkerboard” image with 2 classes.
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DPA

ICM

Metropolis

Gibbs Sampler

MMD

GSA

Original image Noisy image (SNR= 3dB) Initialization of ICM and DPA

Figure 3.17: Results on the “triangle” image with 4 classes.
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DPA

ICM

Metropolis

Gibbs Sampler

MMD

GSA

Original image Noisy image Initialization of ICM and DPA

Figure 3.18: Results on the “bruit” image with 3 classes.
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DPA

ICM

Metropolis

Gibbs Sampler

MMD

GSA

Original image Initialization of ICM and DPA

Figure 3.19: Results on the “SPOT” image (4 classes).
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3.D Tables

Image β µ1 σ2
1 µ2 σ2

2 µ3 σ2
3 µ4 σ2

4

checkerboard 0.9 119.2 659.5 149.4 691.4 — — — —
triangle 1.0 93.2 560.6 116.1 588.2 139.0 547.6 162.7 495.3
bruit 2.0 99.7 94.2 127.5 99.0 159.7 100.1 — —
SPOT 2.0 30.3 8.2 37.4 4.6 61.3 128.1 98.2 127.1

Table 3.5: Model parameters.

VPR Nb. of Iter Total time Time per It. Energy

ICM 2 8 0.078 sec. 0.009 sec. 52011.35
Metropolis 2 316 7.13 sec. 0.023 sec. 49447.60
Gibbs 2 322 9.38 sec. 0.029 sec. 49442.34
MMD 2 357 4.09 sec. 0.011 sec. 49459.60
GSA 2 357 7.59 sec. 0.021 sec. 49459.60
DPA 2 164 2.82 sec. 0.017 sec. 49458.02

Table 3.6: Results on the “checkerboard” image with 2 classes.

VPR Nb. of Iter Total time Time per It. Energy

ICM 2 9 0.146 sec. 0.016 sec. 49209.07
Metropolis 2 202 7.31 sec. 0.036 sec. 44208.56
Gibbs 2 342 14.21 sec. 0.042 sec. 44190.63
MMD 2 292 7.41 sec. 0.025 sec. 44198.31
GSA 2 191 5.44 sec. 0.028 sec. 44198.88
DPA 2 34 1.13 sec. 0.033 sec. 44237.36

Table 3.7: Results on the “triangle” image with 4 classes.
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VPR Nb. of Iter Total time Time per It. Energy

ICM 2 8 0.302 sec. 0.037 sec. -5552.06
Metropolis 2 287 37.33 sec. 0.130 sec. -6896.59
Gibbs 2 301 35.76 sec. 0.118 sec. -6903.68
MMD 2 118 10.15 sec. 0.086 sec. -6216.50
GSA 2 242 17.84 sec. 0.073 sec. -6256.00
DPA 8 15 1.33 sec. 0.089 sec. -6685.52

Table 3.8: Results on the “bruit” image with 3 classes.

VPR Nb. of Iter Total time Time per It. Energy

ICM 8 8 0.381 sec. 0.048 sec. -52751.71
Metropolis 8 323 42.37 sec. 0.131 sec. -58037.59
Gibbs 8 335 46.73 sec. 0.139 sec. -58237.32
MMD 8 125 10.94 sec. 0.087 sec. -56156.53
GSA 8 273 23.03 sec. 0.084 sec. -56191.61
DPA 8 15 1.78 sec. 0.119 sec. -40647.96

Table 3.9: Results on the “SPOT” image with 4 classes.
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4.
Parameter Estimation

I n real life applications, the model parame-
ters are usually unknown, one has to esti-

mate [8] them only from the observable image.
From a statistical viewpoint, this means that
we want to estimate parameters from random
variables whose joint distribution is a mixture
of distributions. If we have a realization of
the label field then the problem is relatively
easy, we have many standard methods to do
parameter estimation (Maximum Likelihood,
Coding method [13], etc. . . ). Unfortunately,
such a realization is not known, so the direct
use of such estimation algorithm is impossible.
We have to approximate it by some function
of the image data, which is the only observ-
able attribute.

Some nowadays used algorithms are iter-
ative [100, 90, 21], subsequently generating a
labeling, estimating parameters from it, then
generating a new labeling using these param-

eters, etc . . .For such a method, we need a
reasonably good initial value for each param-
eter. Since the classes of a labeling problem
are mostly represented by a Gaussian distri-
bution, the initialization of the mean and the
variance of each class is very important be-
cause of its influence on subsequent labelings
and hence on the final estimates. On the other
hand, it is a classical problem, namely the de-
termination of the modes of a Gaussian mix-
ture without any a priori information. There
are many approaches in this domain: Method
of moments [40], Prony’s Method [32] or ge-
ometrical analysis of the histogram [102], for
instance.

Herein, we will discuss standard parameter
estimation methods applied to monogrid and
hierarchical MRF models. The presented al-
gorithms have been tested on image segmen-
tation problems. Comparative test have been
done on noisy synthetic and real images.
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4.1 The Parameter Estimation Problem

Let us briefly review some notations defined in Section 2.2 and Section 2.3. F =
{Fs : s ∈ S} denotes a set of image data on the sites (or pixels) S = {s1, s2, . . . , sN}.
Furthermore, each of these sites may take a label from Λ = {0, 1, . . . , L − 1}. The
configuration space Ω is the set of all global discrete labelings ω = (ωs1 , . . . , ωsN

), ωs ∈
Λ. The label process is denoted by X .

In parameter estimation problems, F is also called the observed image and X de-
notes the unobserved image attributes (labels). Furthermore, we are given n parameters
forming a vector Θ which appears in the MRF model:

Θ =




ϑ1
...

ϑn


 (4.1)

Up to now, Θ was considered to be known. Therefore, we were looking for the labeling
which maximizes the a posteriori distribution

ω̂ = arg max
ω∈Ω

PΘ(ω | F , Θ). (4.2)

where ω̂ is the MAP estimate of the label field, given F , under the model PΘ (in
the followings, the index Θ will be omitted). If both Θ and ω are unknown, the
maximization problem in Equation (4.2) becomes [45, 84]

(ω̂, Θ̂) = arg max
ω,Θ

P (ω,F | Θ). (4.3)

The pair (ω̂, Θ̂) is the global maximum of the joint probability P (ω,F | Θ). If we regard
Θ as a random variable, the above maximization is an ordinary MAP estimation in the
following way [45]: Let us suppose, that Θ is restricted to a finite volume domain DΘ

and suppose that Θ is uniform on DΘ (that is P (Θ) is constant). Then, we get [45]:

arg max
ω,Θ

P (ω, Θ | F) = arg max
ω,Θ

P (ω,F | Θ)P (Θ)

P (F)
(4.4)

= arg max
ω,Θ

P (ω,F | Θ)∫
DΘ

∑
ω∈Ω P (ω,F | Θ)dΘ

(4.5)

= arg max
ω,Θ

P (ω,F | Θ). (4.6)

However, this maximization is very difficult, having no direct solution. Even SA is
not implementable because the local characteristics with respect to the parameters Θ
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cannot be computed from P (ω,F | Θ). One possible solution is to adopt the following
criterion instead [45, 84]:

ω̂ = arg max
ω

P (ω,F | Θ̂) (4.7)

Θ̂ = arg max
Θ

P (ω̂,F | Θ) (4.8)

Clearly, Equation (4.7) is equivalent to Equation (4.3) for Θ = Θ̂ and Equation (4.8)
is equivalent to Equation (4.3) with ω = ω̂. Furthermore, Equation (4.7) is equivalent
to the MAP estimate of ω in the case of known parameters:

arg max
ω

P (ω,F | Θ̂) = arg max
ω

P (ω | F , Θ̂)P (F | Θ̂) = arg max
ω

P (ω | F , Θ̂). (4.9)

The solution of the MAP estimate has been discussed in details in the previous chapters.

4.2 Parameter Estimation from Fully Observed Data

The main study of this section is concentrated on Equation (4.8): the estimation of the
parameters from a labeled sample. For a fixed labeling ω̂, Equation (4.8) is equivalent
to the so called Maximum Likelihood (ML) estimate of the parameters Θ based on the
labeled sample (F , ω̂):

P (ω̂,F | Θ) = P (F | ω̂, Θ)P (ω̂ | Θ) (4.10)

4.2.1 Maximum Likelihood (ML)

The general form of a likelihood function is given by [8]:

L(Θ) ≡ P (W | Θ) (4.11)

where W denotes the observations. In our case, W = (ω̂,F). A strong argument for
using ML estimate is its consistency and asymptotic efficiency (see [51] for a theoretical
study). Another good reason is the generality and relative ease of application. Since
ln(L(Θ)) is often a simpler function than L(Θ), we shall formulate the problem with
the logarithmic likelihood function.

The likelihood function is an objective function which measures the departure of the
data from the model. We seek the values Θ̂ of the parameters for which the likelihood
function attains its maximum. When the unknown parameters are free to assume any
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values, that is we have no a priori information about the parameters, then the above
mentioned maximization problem is called unconstrained optimization. In the case of
the ML estimate, we usually don’t have a priori information thus we are concerned
with such an optimization.

The following are necessary conditions for Θ̂ to be a maximum of ln(L(Θ)) (and
thus of L(Θ)) [8]:

1. Θ̂ is a stationary point of ln(L(Θ)):

∂ ln(L(Θ))

∂Θ

∣∣∣∣∣
Θ=Θ̂

= 0 (4.12)

2. The Hessian matrix H(Θ) of − ln(L(Θ)) must be positive semidefinite for Θ = Θ̂,
i.e., for any ~y 6= ~0:

~yT H(Θ̂)~y ≥ 0 (4.13)

where H(Θ) =




∂2−ln(L(Θ))
∂2ϑ1

∂2−ln(L(Θ))
∂ϑ1∂ϑ2

· · · ∂2−ln(L(Θ))
∂ϑ1∂ϑn

∂2−ln(L(Θ))
∂ϑ2∂ϑ1

∂2−ln(L(Θ))
∂2ϑ2

· · · ∂2−ln(L(Θ))
∂ϑ2∂ϑn

· · · · · · · · · · · ·
∂2−ln(L(Θ))

∂ϑn∂ϑ1

∂2−ln(L(Θ))
∂ϑn∂ϑ2

· · · ∂2−ln(L(Θ))
∂2ϑn




(4.14)

A sufficient condition for Θ̂ to be a local maximum is that Equation (4.13) holds with
strict inequality (i.e. H(Θ̂) is positive definite). Moreover, if for all Θ, H(Θ) is positive
definite and Θ̂ is a stationary point then Θ̂ is the unique global maximum.

Unfortunately, in MRF models, we cannot compute the likelihood function defined
in Equation (4.10). While the first term is relatively easy to handle in independent
Gaussian cases1[14, 12], the maximization of the second term is usually intractable due
to the presence of the partition function Z(Θ):

P (ω̂ | Θ) =
exp(−U(ω̂, Θ))

Z(Θ)
(4.15)

with Z(Θ) =
∑

ω∈Ω

exp(−U(ω, Θ)). (4.16)

To tackle this problem, various approximations have been proposed [14, 13, 7, 25, 112].
We review herein two techniques: the coding method [14] and the Maximum Pseudo-
Likelihood (MPL) [13, 25].

1The independent Gaussian case will be discussed later in Section 4.5.
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4.2.2 Coding Method

A simple alternative to the ML estimate of P (ω̂ | Θ) is the coding method proposed
by Besag [14]. We have already mentioned this method in an other context: in Sec-
tion 3.6.1, we have used coding sets to implement data parallel optimization algorithms.
The main purpose of the method in both cases is to build disjunct sets such that pixels
belonging to the same set are conditionally independent. Indeed, if the neighborhood
of a site s ∈ S is denoted by Vs then

s ∈ Si ⇐⇒ ∀r ∈ Vs: r 6∈ Si (4.17)

where Si denotes a coding set. The number J of coding sets depends on the order of
the neighborhood system used in the MRF model. In the case of a first order MRF
model, we need two coding sets (cf. Figure 3.5). As a result of this decomposition, the
maximum likelihood estimate of P (ω̂ | Θ) over a coding set Si ⊂ S becomes

P (ω̂ | Θ) =
∏

s∈Si

P (ω̂s | ω̂Vs , Θ), (4.18)

which is a considerably easier task because the partition function is replaced by a local
partition function Zs defined by

Zs =
∑

λ∈Λ

exp(−U(ω̂|ω̂s=λ, Θ)), (4.19)

which is easy to compute. Proceeding in this way, we obtain J estimates of Θ (one for
each coding set), each of them is a reasonably good approximation of the ML estimate.
The main drawback is that the method uses only part of the data and there is no
optimal way to combine the J estimates. The most commonly used method is to take
the average of the J approximations.

4.2.3 Maximum Pseudo-Likelihood (MPL)

A more efficient procedure is the Maximum Pseudo-Likelihood (MPL) [13, 25] estima-
tor. It is simply the extension of Equation (4.18) over all sites in S:

P (ω̂ | Θ) =
∏

s∈S
P (ω̂s | ω̂Vs , Θ). (4.20)

The original likelihood function is approximated by the product of local likelihoods. If
the random variables ωs, s ∈ S are conditionally independent then the above equation
is equivalent to the ML estimate, otherwise it is only an approximation. Many authors
reported that the MPL approximation is more accurate than the coding method [84,
13, 49].
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4.3 Parameter Estimation from Incomplete Data

In real life applications, labeled samples are usually not available. We have to esti-
mate the parameters from an unlabeled sample. In statistics, the problem is known as
the incomplete data problem. A broadly applicable algorithm has been proposed by
Dempster et al. [31], called Expectation – Maximization (EM). The algorithm aims at
determining the ML estimate of the parameters Θ by making use of the estimation of
the missing data (i.e. the label field X ). Hereafter, we are also describing a few other
estimation methods [26, 23, 45, 90, 100] available when dealing with incomplete data.

4.3.1 Expectation – Maximization (EM)

Let us denote the complete data by W = (F , ω), which is the composite of the observed
image F and the unobservable missing labels ω. The EM algorithm is an iterative
procedure containing two steps: At iteration k, the E-step finds the expectation of the
missing data ω̂k given the parameters Θ̂k−1 obtained at the previous iteration. Then
the M-step determines the ML estimate Θ̂k of the parameters using the new estimate
of the complete data, Ŵ k = (F , ω̂k).

Algorithm 4.3.1 (EM)

©1 Set k = 0 and initialize Θ̂0.

©2 (E-step) Estimate the complete data Ŵ k+1 = (F , ω̂k+1) by finding

Ŵ k+1 = E{W | F , Θ̂k} (4.21)

©3 (M-step) Compute Θ̂k+1 as the solution of the equations

E{W | Θ} = Ŵ k+1 (4.22)

©4 Goto Step ©2 until Θ̂ stabilizes.

An application of the method to unsupervised image segmentation can be found in [86].
The novelty of the paper is to adopt the Mean Field approximation to compute es-
timates in the EM algorithm [115]. The main drawbacks of the EM algorithm are
the large dependence on the initialization and also the computer time needed for the
convergence.
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4.3.2 Stochastic Expectation Maximization (SEM)

The SEM algorithm [23, 90] is an improvement of the EM algorithm by adding a
stochastic step. SEM is less dependent on the initialization and convergence is faster
than for the EM algorithm. The goal of the stochastic step is to generate a labeling
ω̂k according to the distribution P (ω | F , Θ̂). In the E-step, we only compute the
posterior distribution of the unobserved label field based on the current estimate of the
parameters:

Algorithm 4.3.2 (SEM)

©1 Set k = 0 and initialize Θ̂0.

©2 (E-step) Define the next distribution P (ω | F , Θ̂k) based on the current param-
eter values Θ̂k.

©3 (S-step) Sample from the label field X according to the distribution P (ω |
F , Θ̂k) and denote the resulting labeling by ω̂k+1.

©4 (M-step) The same as for the EM algorithm: Compute Θ̂k+1 as the solution of
the equations

E{W | Θ} = Ŵ k+1 (4.23)

with Ŵ k+1 = (F , ω̂k+1).

©5 Goto Step ©2 with k = k + 1 until Θ̂ stabilizes.

While EM is a deterministic algorithm, SEM is a stochastic algorithm using a stochastic
sampling instead of the fully deterministic E-step of EM. For SEM, the E-step only
defines the next distribution which controls the sampling in the S-step. As claimed
in [90, 21], the main advantage of the SEM algorithm compared to the classical EM is
to avoid the local maxima of the likelihood function, resulting in a better estimate of
the parameters.

4.3.3 Adaptive Simulated Annealing (ASA)

Another EM-like algorithm has been proposed by Geman in [45], whis is called Adap-
tive Simulated Annealing (ASA). The algorithm was adapted to image segmentation
problems in [84], where the convergence of ASA has also been proved. The ASA algo-
rithm is very similar to the SEM, it may be seen as a special case where the S-step is
implemented by a Simulated Annealing.
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Algorithm 4.3.3 (ASA)

©1 Set k = 0 and initialize Θ̂0.

©2 Do n iterations (n ≥ 1) of SA sampling from P (ω | F , Θ̂k). The resulting labeling
is denoted by ω̂k+1.

©3 Update the current estimate of the parameters, Θ̂k+1 to the ML estimate based
on the current labeling ω̂k+1.

©4 Goto Step ©2 with k = k + 1 until Θ̂ stabilizes.

If ML estimate is not tractable, which is often the case when dealing with MRF models,
one can use an approximation (MPL, for instance). We remark that a similar algorithm
has been reported in [13]. It uses ICM instead of SA in Step ©2 .

4.3.4 Iterative Conditional Estimation (ICE)

Finally, we present a solution to the incomplete data problem proposed by Pieczyn-
ski et al. [100, 19, 1]. Let us consider an estimator EΘ(F , ω) of Θ (ML, for instance).
Since the current state of the label field is unknown, the direct use of EΘ(F , ω) is
impossible, we have to approximate it. The best approximation, in the mean-square
sense, is the conditional expectation. Since E{EΘ | F , ω} depends on the parameters
Θ, we need a parameter Θ̂k previously defined by some way. This defines an iterative
procedure, called ICE [100, 19, 101]:

Algorithm 4.3.4 (ICE)

©1 Set k = 0 and initialize Θ̂0.

©2 Generate n realizations (n is fixed a priori) ω̂i(1 ≤ i ≤ n) of the label field based
on Θ̂k.

©3 Based on the sample ω̂i(1 ≤ i ≤ n), Θ̂k+1 is obtained as the conditional expec-
tation

Θ̂k+1 = E{EΘ | X = ω} ≈ 1

n

n∑

i=1

EΘ(F , ω̂i). (4.24)

©4 Goto Step ©2 until Θ̂ stabilizes.
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Compared to the EM algorithm, ICE results in a better estimate of the parameters
and the convergence is faster [19, 1].

4.4 Gaussian Mixture Identification

In image labeling problems, the classes are often modeled by a Gaussian distribution.
What we observe is a mixture of Gaussian distributions and we have to determine the
modes of this mixture corresponding to the classes. The problem is to estimate the
parameters of these modes from an unlabeled sample. The methods, presented in the
previous section (EM, SEM, etc. . . ), can also be adapted to this problem. Herein, we
are interested in non-iterative methods.

4.4.1 Geometrical Identification

In [102], a geometrical analysis of the mixture density function is used: First, let us
consider a n-dimensional normal density function f(~x) (defined in Equation (1.46)) and
review the relationships between the geometrical characteristics of the concave domain
of f(~x) and its mean vector ~µ and covariance matrix Σ (see Section 1.4 for more details
about normal distributions). Considering a zero-mean density,

f(~x) =
1√

(2π)n|Σ|
exp

(
−1

2
~xT Σ−1~x

)
. (4.25)

Let us denote by Q the following quadratic form:

Q = ~xT Σ−1~x (4.26)

Using a change of basis ~x = M~y, where M is an n × n orthogonal transformation
matrix to be precised later, we get

Q = ~yT MT Σ−1M~y. (4.27)

MT Σ−1M can be further simplified: Since Σ−1 is real and symmetric, it can always
be diagonalized by an appropriate orthogonal transformation. Choosing M as the
eigenvectors of the matrix Σ−1 yields the following form:

Q = ~yT Λ~y with Λ =




λ1

λ2 0
. . .0 λn




, (4.28)
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where Λ is a diagonal matrix with eigenvalues in its diagonal. After this transformation,
Equation (4.25) is of the following form:

f(~x) =
1√

(2π)n|Σ|
exp

(
−1

2
~yT Λ~y

)
. (4.29)

In [102], it is shown that the domain in which f(~x) is concave is the interior of the
quadratic surface defined by

~yT Λ~y = 1. (4.30)

This is a hyperellipsoid, as already discussed in Sec-

x
D(x)i

Figure 4.1: Concave do-
mains of an univariate Gaus-
sian mixture.

tion 1.4 (see Figure 1.3 and Equation (1.50)). Its center
is the mean vector ~µ and its principal axes coincide with
the eigenvectors of Σ−1. Furthermore, there is a rela-
tionship between the length `i of each principal axis and
the corresponding eigenvalue λi:

`i =
2√
λi

(4.31)

A concave domain of f(~x) is identified in the following
way: To each point ~x is associated a family of domains
centered at ~x (for example a sequence of larger and larger
hypercubes). They are denoted by Di(~x). The mean

value of f(~x) within Di(~x) is defined as:

E{Di(~x)} =

∫
Di(~x) f(ξ)dξ
∫
Di(~x) dξ

. (4.32)

The test of convexity is based on the fact that E{Di(~x)} is monotonic decreasing
function of i for any family of domains Di(~x) standing in a concave region of f(~x).

The above described technique is used to determine the modes (that is the concave
domains) of the image histogram (regarded as a mixture of normal distributions) and
then to compute their parameters. Now, we examine these equations in the case of
an univariate mixture (n = 1) which is the most interesting for image segmentation
problems. Let us denote the histogram values of an image by h0, h1, . . . , hG (hx ∈ [0, 1]),
where G is the number of possible grey-levels. The domains Di(x) are simply line
segments centered at x (see Figure 4.1). The computer algorithm, which computes the
modes of the histogram, is the following:
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Algorithm 4.4.1 (Gaussian Mixture Identification)

©1 Define a small neighborhood D1 and a larger one D2 at each point x ∈ [0, G].
Compute E{D1(x)} and E{D2(x)} by approximating Equation (4.32) through

E{Di(x)} ≈
∑

ξ∈Di(x) hξ

l(Di(x))
(4.33)

where l(Di(x)) is the length of the line segment Di. Compute δ(x) = E{D2(x)}−
E{D1(x)} at each x. If δ(x) ≤ 0 then the histogram is concave in the correspond-
ing domain D1(x).

©2 All adjacent domains, where the histogram is found concave, have to be aggre-
gated. The so-obtained domains D̂k(k = 1, . . . , L) characterize the modes of the
mixture and L is the number of modes or classes.

©3 The mean µk of mode k is the center of the domain D̂k and σk equals to the
length of D̂k. Representing the concave domains D̂k by (xk

1, x
k
2), we get:

µk =
xk

2 − xk
1

2
and σk = xk

2 − xk
1. (4.34)

In Step ©2 , we obtain not only the concave domains but also the number of modes
corresponding to the number of classes. Usually, we obtain too many classes since the
convexity test in Step ©1 is too sensitive to local irregularities. Consequently, we have
to eliminate some classes, in particular classes with small a priori probability which
can be approximated by

Pk ∝
∑

x∈D̂k

hx (4.35)

Another method would be to a priori fix the number of classes L and then to keep the
L most likely domains (we have used this technique in the simulations).

4.4.2 Method of Moments

Another non geometrical method is the method of moments [40]. This approach is
based on equating the sample moments computed from the data to the corresponding
mixture moments. Let us suppose that the mixture consists of L univariate normal
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distributions with parameters µi and σi. The mixture density is given by

f(x) =
L∑

i=1

Pifi(x) (4.36)

where fi(x) is the ith normal density function and Pi(1 ≤ i ≤ L) is the weight or a
priori probability of the ith component. The method of moments consists in generating
equations

m̂k = mk(P1, . . . , PL; µ1, . . . , µL; σ1, . . . , σL) (4.37)

=
L∑

i=1

Pim
i
k(µi, σi) (4.38)

where m̂k is the kth sample moment, mk is the mixture moment and mi
k is the moment

of the ith Gaussian component. As we already explained in Section 1.4, the moments
of a Gaussian random variable can be expressed by a recursive formula in terms of its
mean value µ and its deviation σ (see Equation (1.52) – Equation (1.56)). For each
moment, Equation (4.38) yields a nonlinear equation which has to be solved in order
to get the estimates of the unknown parameters. The solution of these equations [40]
is so complicated that it is practically unusable for a more than two component case.

If the component distributions have equal means or equal variances, the nonlinear
moment equations can be transformed into a set of linear equations using Prony’s
method [32]. The solution is then feasible for more than two components.

4.5 Unsupervised Image Segmentation

Herein, we consider the monogrid MRF segmentation model presented in Section 2.3
but with unknown parameters [77]. Let us first review the model. We are given the
grey-levels F of an image S = {s1, s2, . . . , sN}, which is the only observable attribute.
Moreover, we are given a set of labels denoted by Λ = {0, 1, . . . , L− 1}. The problem
is to estimate the model parameters Θ and find the MAP estimate of the label field
X among the possible discrete labelings Ω = ΛN = {ω = (ωs1 , . . . , ωsN

): ωs ∈ Λ}. As
explained in Section 4.2, in the case of unknown parameters, the maximization problem
becomes (cf. Equation (4.3)):

(ω̂, Θ̂) = arg max
ω,Θ

P (ω,F | Θ). (4.39)

Since this maximization is not tractable, we use instead Equation (4.7) and Equa-
tion (4.8). For the maximization problem in Equation (4.7), which is the ordinary
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MAP estimate with known parameters, we refer to Section 2.3. Herein, we are inter-
ested in the solution of the ML estimation using Equation (4.8):

Θ̂ = arg max
Θ

P (ω̂,F | Θ) (4.40)

According to Equation (4.10), the probability at the right hand side can be written as

P (ω̂,F | Θ) = P (F | ω̂, Θ)P (ω̂ | Θ) (4.41)

Using the model defined in Section 2.3, the first term is a product of independent
Gaussian densities and the second term is a first order MRF, also known as the Potts
model in statistical mechanics:

P (ω̂,F | Θ) =
∏

s∈S

1√
2πσω̂s

exp


−(fs − µω̂s

)2

2σ2
ω̂s




·exp(−2β
∑
{s,r}∈C δ(ω̂s, ω̂r))

Z(β)
(4.42)

with Z(β) =
∑

ω∈Ω

exp


−2β

∑

{s,r}∈C
δ(ωs, ωr)


 (4.43)

and δ(ω̂s, ω̂r) =

{
0 if ω̂s = ω̂r

1 otherwise
(4.44)

We have 2L + 1 parameters (two for each class and one hyperparameter β):

Θ =




µ0

µ1
...

µL−1

σ0
...

σL−1

β




(4.45)

The first 2L parameters are estimated from the Gaussian term and the last one is
computed from the Markovian term. Instead of the likelihood function defined in
Equation (4.42), we consider the simpler logarithmic likelihood:

ln(L(Θ)) =
∑

s∈S


− ln(

√
2πσω̂s

)− (fs − µω̂s
)2

2σ2
ω̂s
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−2β
∑

{s,r}∈C
δ(ω̂s, ω̂r)− ln(Z(β)) (4.46)

=
∑

λ∈Λ

∑

s∈Sλ

(
− ln(

√
2πσλ)− (fs − µλ)

2

2σ2
λ

)

︸ ︷︷ ︸
G(µλ,σλ)

−2β
∑

{s,r}∈C
δ(ω̂s, ω̂r)− ln(Z(β))

︸ ︷︷ ︸
M(β)

(4.47)

where Sλ is the set of pixels where ω̂ = λ. Using the results reported in Section 4.2.1, the
estimate Θ̂ must satisfy Equation (4.12) and Equation (4.13). From Equation (4.12),
we obtain the following equations:

∀λ ∈ Λ:
∂G(µλ, σλ)

∂µλ

= 0 (4.48)

∂G(µλ, σλ)

∂σλ

= 0 (4.49)

and
∂M(β)

∂β
= 0 (4.50)

The solution of the above system for µλ and σλ is simply the empirical mean and
variance:

∀λ ∈ Λ: µλ =
1

| Sλ |
∑

s∈Sλ

fs,

σ2
λ =

1

| Sλ |
∑

s∈Sλ

(fs − µλ)
2. (4.51)

The solution for β, however, is not as easy. Let us consider the derivative of M(β):

∂

∂β

(
−2βN ih(ω̂)− ln

(∑

ω∈Ω

exp(−2βN ih(ω))

))

= −N ih(ω̂) +

∑
ω∈Ω N ih(ω) exp(−2βN ih(ω))∑

ω∈Ω exp(−2βN ih(ω))
= 0 (4.52)

with N ih(ω̂) =
∑
{s,r}∈C δ(ω̂s, ω̂r) is the number of inhomogeneous cliques in ω̂. From

Equation (4.52), we get

N ih(ω̂) =

∑
ω∈Ω N ih(ω) exp(−2βN ih(ω))∑

ω∈Ω exp(−2βN ih(ω))
(4.53)
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The right hand side is also called the energy mean. Since ln(Z(β)) is convex in Θ [9, 45],
the gradient can be approximated by stochastic relaxation [45]:

Algorithm 4.5.1 (Hyperparameter Estimation)

©1 Set k = 0, initialize β̂0 and let N ih(ω̂) denote the number of inhomogeneous
cliques in the estimate of the labeling.

©2 Using SA at a fixed temperature T , generate a new labeling η, sampling from

P (X = ω) =
exp

(
− β̂k

T

∑
{s,r}∈S δ(ωs, ωr)

)

Z(β̂k)
. (4.54)

Compute the number of inhomogeneous cliques N ih(η) in η.

©3 If N ih(η) ≈ N ih(ω̂) then stop, else k = k + 1. If N ih(η) < N ih(ω̂) then decrease
β̂k, if N ih(η) > N ih(ω̂) then increase β̂k, and goto Step ©2 .

The complete parameter estimation process is the following: Given an image F , com-
pute the histogram and initialize the mean and the deviation of the classes, using
Algorithm 4.4.1 for instance. Then, using one of the iterative algorithms described in
Section 4.3, estimate Θ. Once the final estimate Θ̂ of the parameters is obtained, one
proceeds to the ordinary segmentation with known parameters. A possible formulation
of an unsupervised segmentation algorithm (the one used for the simulations) is the
following:

Algorithm 4.5.2 (Unsupervised Segmentation)

©1 Given an image F , compute its histogram and for each λ ∈ Λ, initialize µλ and
σλ using Algorithm 4.4.1. β is initialized in an ad-hoc way.

©2 (Estimation) Using Algorithm 4.3.4 (ICE), get an estimate Θ̂ of the parameters.

©3 (Segmentation) Given the parameters Θ̂, do an ordinary supervised segmen-
tation to get the MAP estimate of the label field given F and Θ̂.
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4.5.1 Parameter Estimation of a Hierarchical MRF Model

Considering the segmentation model presented in Section 2.6.4, we have the following
logarithmic likelihood function:

M∑

i=0

∑

si∈Si

∑

s∈bi
si

(
− ln(

√
2πσωs)−

(fs − µωs)
2

2σ2
ωs

)

− 2β
M∑

i=0

qi
∑

Ci∈Ci

δ(ω̂Ci)

︸ ︷︷ ︸
N ih(ω̂)

−2γ
∑

C∈C̄3
δ(ω̂C)

︸ ︷︷ ︸
N̄ ih(ω̂)

− ln(Z(β, γ)) (4.55)

where qi is the number of cliques between two neighboring blocks at scale Bi (for more
details, see Section 2.5.3). N ih(ω̂) denotes the number of inhomogeneous cliques siting
at the same scale and N̄ ih(ω̂) denotes the number of inhomogeneous cliques siting
astride two neighboring levels in the pyramid. First, let us consider the first term:

M∑

i=0

∑

si∈Si

∑

s∈bi
si

(
− ln(

√
2πσωs)−

(fs − µωs)
2

2σ2
ωs

)

=
∑

λ∈Λ

M∑

i=0

∑

si∈Si
λ

∑

s∈bi
si

(
− ln(

√
2πσλ)− (fs − µλ)

2

2σ2
λ

)
(4.56)

where S i
λ is the set of sites at level i where ω̂si = λ. Derivating with respect to µλ and

σλ, we get:

∀λ ∈ Λ: µλ =
1

∑M
i=0 | S i

λ |
M∑

i=0

∑

si∈Si
λ

∑

s∈bi
si

fs

σ2
λ =

1
∑M

i=0 | S i
λ |

M∑

i=0

∑

si∈Si
λ

∑

s∈bi
si

(fs − µλ)
2 (4.57)

Notice that a grey-level value fs may be considered several times. More precisely, fs is
considered m-times in the above sum for a given λ if there is m scale where ω̂ assigns
the label λ to the site s. m can also be seen as a weight. Obviously, the more s has
been labeled by λ at different levels, the more is probable that s belongs to class λ
and hence its grey-level value fs characterizes better the class λ. The derivate of the
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logarithmic likelihood function with respect to β and γ is given by

∂

∂β

(
−2βN ih(ω̂)− ln(Z(β, γ))

)
= −N ih(ω̂)− ∂

∂β
ln(Z(β, γ)) (4.58)

∂

∂γ

(
−2γN̄ ih(ω̂)− ln(Z(β, γ))

)
= −N̄ ih(ω̂)− ∂

∂γ
ln(Z(β, γ)) (4.59)

From which, we get

N ih(ω̂) =

∑
ω∈Ω N ih(ω) exp(−2βN ih(ω)− 2γN̄ ih(ω))∑

ω∈Ω exp(−2βN ih(ω)− 2γN̄ ih(ω))
(4.60)

N̄ ih(ω̂) =

∑
ω∈Ω N̄ ih(ω) exp(−2βN ih(ω)− 2γN̄ ih(ω))∑

ω∈Ω exp(−2βN ih(ω)− 2γN̄ ih(ω))
(4.61)

The solution of the above equations, as in the monogrid case, can be obtained using
Algorithm 4.5.1 with some modifications:

Algorithm 4.5.3 (Hierarchical Hyperparameter Estimation)

©1 Set k = 0 and initialize β̂0 and γ̂0. Furthermore, let N ih(ω̂) denote the number
of inhomogeneous cliques at the same scale and N̄ ih(ω̂) denotes the number of
inhomogeneous cliques between levels.

©2 Using SA at a fixed temperature T , generate a new labeling η sampling from

P (X = ω) =
exp

(
− β̂k

T

∑M
i=0

∑
{s,r}∈Ci δ(ωs, ωr) + γ̂k

T

∑
{s,r}∈C̄ δ(ωs, ωr)

)

Z(β̂k, γ̂k)
. (4.62)

Compute the number of inhomogeneous cliques N ih(η) and N̄ ih(η) in η.

©3 If N ih(η) ≈ N ih(ω̂) and N̄ ih(η) ≈ N̄ ih(ω̂) then stop, else k = k + 1. If N ih(η) <
N ih(ω̂) then decrease β̂k, if N ih(η) > N ih(ω̂) then increase β̂k. γ̂k is obtained in
the same way. Continue Step ©2 with (β̂k, γ̂k).

Algorithm 4.5.2 can also be applied to the hierarchical model with trivial modifications.
Here we give the algorithm used for the simulations:
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Algorithm 4.5.4 (Unsupervised Hierarchical Segmentation)

©1 Given an image F , compute its histogram and for each λ ∈ Λ, initialize µλ and
σλ using Algorithm 4.4.1. β and γ is initialized in an ad-hoc way.

©2 (Estimation) Using Algorithm 4.3.3 (ASA), get an estimate Θ̂ of the parame-
ters.

©3 (Segmentation) Given the parameters Θ̂, do an ordinary supervised segmen-
tation to get the MAP estimate of the label field given F and Θ̂.

We remark, that in Step ©2 , the Gaussian parameters were computed considering only
the finest level (cf. Equation (4.51)) and not the entire pyramid (cf. Equation (4.57)).

4.6 Experimental Results

We have tested the proposed monogrid and hierarchical unsupervised algorithms on
noisy synthetic and real images. The algorithms were implemented on a Connection
Machine CM200 [65] (for more details, see Section 2.7.1). We have compared the ob-
tained parameters and segmentation results to the supervised results already presented
in Chapter 2. In general, the quality of unsupervised results are as good, or sometimes
slightly better, than the results of supervised segmentation. We observed, however,
that the unsupervised algorithm is more sensitive to noise than the supervised one.
This is due to the initialization, in particular the initialization of the mean and the
variance of the classes (the initialization of β and γ are not crucial). For example, in
the case of the “triangle” image with SNR= 3dB one class has been lost, but with
SNR= 5dB the result is as good as for the supervised algorithm.

Before evaluating the results, let us explain some important points of the imple-
mentation. The only parameter which has to be defined by the user is the number of
classes (or regions). All the other parameters are estimated automatically from the
data. Essentially, we have followed Algorithm 4.5.2: First, the initial values of the
mean and variance have been estimated using Algorithm 4.4.1. For the hyperparam-
eters, we have chosen as initial values β = 0.7 and γ = 0.1. Experiments show that
these initial values are not vital, practically any value between 0.5 and 1 is good for β
and a value close to zero is good for γ.

In the next step (Step ©2 of Algorithm 4.5.2), we use the ICE algorithm (see Algo-
rithm 4.3.4) to iteratively reestimate the parameters. We have chosen ICM to generate

Zoltan Kato



4.6. Experimental Results 173

labelings because of its rapidity: Given the parameters Θ̂n, the ICM is used to max-
imize the a posteriori probability of the label field ω. Suppose, that ICM converges
in N iterations (N is typically less than 10) given N realizations of ω. Using these
labelings, we have to compute N ML estimates of Θ (see Algorithm 4.3.4 for more
details).

For the hierarchical model, however, we have used ASA (cf. Algorithm 4.5.4),
because the ICE algorithm would be too slow with the hierarchical model: Using ICM,
we maximize the a posteriori probability of ω, given the parameter estimates Θ̂n. Then
the ML estimate is computed based on the obtained labeling. Another modification
is that the Gaussian parameters were computed considering only the finest level and
not the entire pyramid as explained in Section 4.5.1. This is because the variances
obtained with the original algorithm were to large. This modification also reduces the
computing time.

Once the sequence Θ̂n becomes steady, the estimation step is finished and one
proceeds to the segmentation (with known parameters) using the Gibbs sampler, for
instance.

The algorithms were tested on the “checkerboard” (Figure 4.2), “triangle” (Fig-
ure 4.3) and “holland” (Figure 4.4–Figure 4.6) images. For the synthetic images, we
also give the histogram, since the initial estimates are based on it (the histogram of the
“holland” image can be found in Figure 2.18). In Table 4.2, Table 4.4 and Table 4.6,
we compare the parameters obtained by the unsupervised algorithm to the ones used
for the supervised segmentation. We remark that the parameters of the supervised
algorithm are not necessarily correct. They have been computed on training sets se-
lected by an expert (cf. Figure 4.4) using the algorithm described in Section 2.3. In
Table 4.3, Table 4.5 and Table 4.7, we give the computer time of the estimation and
segmentation. As we can see, the estimation requires much more time than the seg-
mentation. The hyperparameter estimation requires the biggest part of the computer
time since it consists of generating new labelings by SA in Step ©2 of Algorithm 4.5.1.

Table 4.1 provides an objective comparison of supervised and unsupervised seg-
mentation results based on the number of misclassified pixels. The obtained results
are practically the same for supervised and unsupervised segmentation.

In summary, the presented algorithms provide results comparable to supervised
segmentations, but they require much more computing time, and they are slightly
more sensitive to noise. The main advantage is, of course, that unsupervised methods
are completely data-driven. The only input parameter is the number of regions. We
believe that, for unsupervised methods, the main problem is still the initialization of
the Gaussian parameters. Hence, a natural extension of the work presented in this
chapter would be to look for more efficient initialization techniques.
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4.A Images
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Figure 4.2: Supervised and unsupervised segmentation results on the “checkerboard” image
with 2 classes (Gibbs Sampler).
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Figure 4.3: Supervised and unsupervised segmentation results on the “triangle” image with
4 classes (Gibbs Sampler).
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Figure 4.4: Training areas on the “holland” image.
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Figure 4.5: Supervised segmentation result with 10 classes (Gibbs Sampler).
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Figure 4.6: Unsupervised segmentation result with 10 classes (Gibbs Sampler).
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4.B Tables

Model Image Supervised Unsupervised

Monogrid checkerboard 260 (1.59%) 213 (1.41%)
triangle 112 (0.68%) 103 (0.63%)

Hierarchical checkerboard 115 (0.7%) 147 (0.9%)
triangle 104 (0.63%) 111 (0.68%)

Table 4.1: Comparison of the number of misclasified pixels.

Monogrid model
Unsupervised

Parameter Initial Final Supervised
µ0 123.5 117.3 119.2
σ2

0 256.0 680.0 659.5
µ1 170.0 151.5 149.4
σ2

1 169.0 668.2 691.4
β 0.7 0.7 0.9

Hierarchical model
Unsupervised

Parameter Initial Final Supervised

µ0 123.5 126.7 119.2
σ2

0 256.0 903.4 659.5

µ1 170.0 151.5 149.4
σ2

1 169.0 689.3 691.4

β 0.7 0.7 0.7
γ 0.1 0.1 0.3

Table 4.2: Parameters of the “checkerboard” image.

Model VPR Total CPU time Estimation Segmentation

Monogrid 2 142.73 sec. 133.57 sec. 9.16 sec.
Hierarchical 4 1551.93 sec. 1042.46 sec. 446.52 sec.

Table 4.3: Computer times of the “checkerboard” image.
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Monogrid model
Unsupervised

Parameter Initial Final Supervised
µ0 83.5 84.3 85.48
σ2

0 256.0 480.5 446.60
µ1 100.0 117.3 115.60
σ2

1 169.0 416.3 533.97
µ2 152.5 148.1 146.11
σ2

2 676.0 457.8 540.32
µ3 181.5 178.5 178.01
σ2

3 100.0 490.9 504.34
β 0.7 1.0 1.0

Hierarchical model
Unsupervised

Parameter Initial Final Supervised

µ0 83.5 84.3 85.48
σ2

0 256.0 483.9 446.60

µ1 100.0 115.5 115.60
σ2

1 169.0 444.6 533.97

µ2 152.5 146.7 146.11
σ2

2 676.0 502.1 540.32

µ3 181.5 177.9 178.01
σ2

3 100.0 500.0 504.34

β 0.7 1.0 0.7
γ 0.1 0.1 0.1

Table 4.4: Parameters of the “triangle” image.

Model VPR Total CPU time Estimation Segmentation

Monogrid 2 249.75 sec. 237.00 sec. 12.75 sec.
Hierarchical 4 1762.23 sec. 1232.82 sec. 529.41 sec.

Table 4.5: Computer times of the “triangle” image.
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Unsupervised
Parameter Initial Final Supervised

µ0 51.5 53.1 54.6
σ2

0 36.0 10.3 93.1

µ1 60.0 77.2 73.5
σ2

1 49.0 64.3 4.1

µ2 70.5 89.6 82.5
σ2

2 49.0 30.7 35.5

µ3 80.5 102.5 93.8
σ2

3 64.0 35.7 93.7

µ4 97.5 116.2 100.5
σ2

4 441.0 27.6 308.8

µ5 122.5 127.2 122.8
σ2

5 484.0 18.9 8.9

µ6 136.0 138.6 129.9
σ2

6 1.0 20.2 37.4

µ7 152.5 152.7 146.6
σ2

7 625.0 18.0 15.3

µ8 169.0 162.4 159.9
σ2

8 1.0 7.4 31.3

µ9 181.5 174.2 182.3
σ2

9 25.0 54.1 73.1

β 0.7 1.3 1.0

Table 4.6: Parameters of the “holland” image.

Model VPR Total CPU time Estimation Segmentation

Monogrid 32 3576.58 sec. 3270.78 sec. 305.81 sec.

Table 4.7: Computer times of the “holland” image.
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Conclusion

W e have reviewed the three main steps
of statistical image processing in early

vision: modelization, optimization and param-
eter estimation. We have considered low level
vision tasks in a common framework, called
image labeling, where the problem is reduced
to assigning labels to pixels. Our approach
is probabilistic, using Markov Random Fields
(MRF) and Bayesian estimation, in particu-
lar Maximum A Posteriori (MAP) estimation.
The advantage of MRF modelization is that
a priori information can be “coded” locally
through clique potentials. We have also dis-
cussed pyramidal MRF models, which reduce
the computing time and increase the qual-
ity of final results. Parameter estimation is
an important problem in real-life applications
in order to implement completely data-driven
algorithms. We have adapted some existing
methods to the estimation of monogrid and
hierarchical model-parameters. The prelimi-

nary results are encouraging but there is still
a lot of work to do.

All the MRF models we have considered
result in a non-convex energy function. The
minimization of this function is done by Sim-
ulated Annealing or deterministic relaxation.
We have also discussed the possible paralleliza-
tion techniques of optimization algorithms.

Our main result is a new hierarchical MRF
model and a Multi-Temperature Annealing al-
gorithm proposed for the energy minimization
of the model. The convergence of the MTA
algorithm has been proved towards a global
optimum in the most general case, where each
clique may have its own local temperature sched-
ule. There is still some open problems such
as the relationship between monogrid and hi-
erarchical MAP estimates, implementing the
hierarchical model on a pyramidal computer,
or looking for a faster parameter estimation
method.
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Summary

We have reviewed in this thesis the three main steps of statistical image processing in
early vision:

• Modelization

• Optimization

• Parameter estimation

For the modelization, we have considered a lot of low level vision tasks which can
be formulated in a common framework, called image labeling, where the problem is
reduced to assigning labels to pixels. We have proposed to solve this problem in a
probabilistic framework using Markov Random Fields (MRF) and Bayesian estima-
tion, in particular Maximum A Posteriori (MAP) estimation. The advantage of MRF
modelization is that it requires little a priori information about the “world” model, and
these informations can be defined locally through clique potentials. Another advantage
is that the local behavior of MRF’s permits to develop highly parallel algorithms. Un-
fortunately, even with massively parallel algorithms, finding the MAP estimate is very
time consuming due to the non-convexity of the energy function. To eliminate this
drawback, many authors propose multigrid pyramidal MRF schemes. The advantage
of such an approach is that at coarser resolution, the configuration space is consid-
erably smaller and thus the optimization problem becomes easier. Using a top-down
relaxation strategy in the pyramid, computing time can be considerably reduced and
the quality of final results are increased with respect to monogrid schemes.

In the optimization step, we have to minimize a non-convex energy function in order
to find the MAP estimate. Basically, we have two choices: stochastic or deterministic
relaxation. The former is guaranteed to find global minima but it requires a large
amount of computing time. Deterministic methods aim at finding a reasonably good
approximation of the optimum. The obtained result is always a local minimum, but they
are less time-consuming than stochastic algorithms. Parallelization is another possible
way to speed up optimization algorithms. The convergence of some parallelization
schemes has been proved (especially for such algorithms where the conditions of the
convergence of sequential algorithms have not been violated.) but there are some
interesting scheme for which the convergence has not yet been proved: Graffigne’s
parallelized Markov chains method or massive parallelization at rate τ proposed by
Azencott (in the latter case, convergence is proved but it is not shown that the limit
is a global optimum).
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In real life applications, the parameters are usually unknown, they have to be
estimated from the data. In such cases, the first step is the parameter estimation.
Developing a completely data-driven algorithm is an extremely difficult problem. We
have presented some iterative algorithms and implemented an unsupervised segmenta-
tion algorithm. The first results, presented in Chapter 4 are encouraging but we have
observed that unsupervised algorithms require much more computing time due to the
hyperparameter estimation (β and γ). In the current implementation, they are com-
puted using Simulated Annealing, which is very time-consuming. Another important
point is the initialization of the Gaussian parameters for each class. We have noticed
that unsupervised algorithms are more sensitive to noise than supervised ones. This
sensitivity is due to the bad initialization in the case of noisy images.

Results and Future Research Directions

Our main result is a new hierarchical MRF model and a Multi-Temperature Annealing
algorithm proposed to the energy minimization. The hierarchical model is based on a
multiscale one, proposed by Perez et al. : we use the same procedure to derive coarser
grids but we have introduced a new inter-level communication scheme. The so obtained
model is a fully connected MRF over the whole pyramid. It has some advantages
but also some drawbacks: the new connections allow to propagate local interactions
more efficiently, giving better estimates (in particular for fast deterministic relaxation
algorithms, such as ICM). On the other hand, these interactions make the model more
complex, demanding much more computing time. We note, however, that the model
was implemented on a Connection Machine, which is not an optimal architecture for
pyramidal models (see Section 2.7.1 for more details). We believe that on a pyramid
architecture, better computing times could be achieved. A future work would be to
implement the model on a pyramidal computer.

Another interesting subject would be to study the relationship between the mono-
grid MAP estimate and the hierarchical MAP estimate. An often criticized point of
the proposed model is that the energy function is defined on the whole pyramid but,
at the convergence, we only take the finest level as the final result and there is no
guarantee that it is also optimal. However, defining an energy function over a MRF
and then taking only a part of it as the final result is not a new idea. We can mention
the line process introduced by Geman and Geman in their image restoration model as
an example2. Intuitively, it is clear that the hierarchical model incorporates cliques

2They have defined an energy function both on the line process and the pixel process. Then the
energy function has been optimized but only the pixel process has been taken as the result.
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with far apart sites. Considering a pyramid where the coarsest layer contains only one
pixel, the projection of this pixel to the finest level, keeping all the interactions, would
result in a completely connected monogrid MRF model. It would be interesting to
study this hypothesis in a rigorous mathematical framework.

The Multi-Temperature Annealing has originally been proposed to solve the opti-
mization problem of hierarchical models, but it is a more general scheme. In fact, the
mathematical study of the algorithm is quite general and does not suppose a pyramidal
structure. The convergence of the algorithm has been proved towards a global opti-
mum in the most general case, where each clique may have its own local temperature
schedule. It would be interesting to apply MTA to other, non hierarchical models.

Parameter estimation still requires a lot of work. The results presented in Chapter 4
are only first preliminary results, especially for the hierarchical model. We see two main
problems which have to be studied in details. The first one is to find a better algorithm
to estimate the hyperparameters. The presented algorithm uses Simulated Annealing
which is very time consuming. May be, Mean Field approximation would result in
a faster convergence [86, 115]. Another problem is the initialization of the Gaussian
parameters: The actual implementation is more sensitive to noise than supervised
algorithms. We need a method which is less dependent on the initialization or a better
initialization algorithm to get rid of this weakness in the current algorithm.
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ABSTRACT

T
he main concern of this thesis is Markovian modelization in early vision. We consider low level vision tasks in
a common framework, called image labeling, where the problem is reduced to assigning labels to pixels. Our
approach is probabilistic, using Markov Random Fields (MRF) and Bayesian estimation, in particular Maximum

A Posteriori (MAP) estimation. The advantage of MRF modelization is that a priori information can be “coded” locally
through clique potentials. We also discuss pyramidal MRF models, which reduce the computing time and increase the
quality of final results. Parameter estimation is an important problem in real-life applications in order to implement
completely data-driven algorithms. We apply some methods to the estimation of monogrid model-parameters and
propose a new algorithm for the hierarchical model. The preliminary results are encouraging but there is still a lot of
work to do.

All MRF models result in a non-convex energy function. The minimization of this function is done by Simulated
Annealing or deterministic relaxation. We also discuss the possible parallelization techniques of optimization algorithms.

Our main result is a new hierarchical MRF model and a Multi-Temperature Annealing algorithm proposed for the
energy minimization of the model. The convergence of the MTA algorithm has been proved towards a global optimum
in the most general case, where each clique may have its own local temperature schedule. There are still some open
problems such as the relation between monogrid and hierarchical MAP estimates, implementing the hierarchical model
on a pyramidal computer, or looking for a faster parameter estimation method.

Keywords: computer vision, early vision, Markovian model, multiscale model, hierarchical model, parallel combinato-
rial optimization algorithm, multi-temperature annealing, parameter estimation.

RÉSUMÉ

D
ans cette thèse, nous nous intéressons aux modèles markoviens appliqués aux problèmes de vision pré-attentive.
Nous considerons ces problèmes dans un cadre générale, appellé étiquetage d’images, où le problème consiste
à attribuer des étiquettes aux pixels. Notre approche est fondée sur les champs de Markov et l’estimation

bayesienne, en particulier l’estimation de Maximum A Posteriori (MAP). L’avantage de la modèlisation markovienne
est de fournir un modèle simple qui nous permet de définir les informations a priori par des potentiels locaux. Nous
présentons aussi les modèles pyramidaux qui réduisent le temps de calcul et améliorent le résultat final. L’estimation des
paramètres est un autre problème important pour les applications réelles. Nous appliquons quelques méthodes connues
à l’estimation de paramètres du modèle monogrille et proposon des nouveaux algorithms d’estimation pour le modèle
hiérarchique. Les premiers resultats sont satisfaisantes mais il reste beaucoup de travail à faire sur le sujet.

Tous les modèles markoviens nécessitent la minimisation d’une fonction d’énergie non-convexe. Nous avons deux
choix pour résoudre ce problème: soit par recuit simulé soit par relaxation déterministe. Nous discutons la possibilité
de paralleliser ces algorithmes.

Notre principal résultat est un modèle markovien hiérarchique et un algorithme de récuit multi-température (MTA)
pour la minimisation de la fonction d’énergie du modèle hiérarchique. Pour le MTA, nous avons prouvé la convergence
vers un minimum global dans le cas le plus général où chaque clique a sa propre loi de température. Il reste quelques
problèmes ouverts comme la relation entre les valeurs estimées au sens du MAP pour les modèles monogrille et hiérar-
chique, l’implantation de l’algorithme MTA sur une architecture pyramidale ou bien la mise en œuvre une méthode
beaucoup plus rapide pour l’estimation de paramètres.

Mots clefs: vision par ordinateur, vision pré-attentive, modèlisation markovien, modèle multiéchelle, modèle hiérar-
chique, algorithmes d’optimisation massivement parallèles, recuit multi-température, etimation de paramètres.
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