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Abstract. In this work we propose a new stochastic optimization algorithm for solving the
problem of optimal packing of n non-overlapping equal circles in a square. It will be shown that
our procedure can find most of the optimal solutions for all the problems previously solved and
reported in the literature. Results obtained by our algorithm for up to 100 circles are given in
relevant numerical and graphical form. For n = 32,37,47,62 and 72 the algorithm has obtained
better solutions than those reported on in the literature on packing. In addition, forty new
and unpublished packing results are reported on. The arrangements obtained were validated by
interval arithmetic computations.
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1. Introduction

The packing circles in a unit square problem has been already introduced in details
in the first paper [16]. The version of the problem discussed in this paper is: locate
n points in a unit square, such that the minimum distance m,, between any two
points will be maximal. The problem of maximizing the minimal pairwise distance
of n points, which are contained in a unit square, can be formulated as the following
continuous global optimization problem:
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z,y € [0,1]", n > 1 integer,

where x;,y; are the coordinates of the i-th point.
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The computational results for the packing circles in a unit square problem, re-
ported in the literature, were obtained by using several different procedures. As an
example, the method used by R.L. Graham and B.D. Lubachevsky [3] is based on
billiards simulation, K.J. Nurmela and P.R.J. Ostergard [11] built a minimization
of energy function strategy, standard BFGS quasi-Newton algorithm were used by
R. Peikert et al. [13], nonlinear programming solver (MINOS 5.3) by C.D. Maranas
et al. in [6] or Cabri-Géometre software by M. Mollard and C. Payan in [9].

Most of the algorithmic suggestions used for solving (1) are based on Global Op-
timization stochastic approaches, nevertheless, there have been several papers (
[5], [13]) published with the description of deterministic approaches. Deterministic
methods can ensure that their solutions are optimal solutions for (1), and by apply-
ing these kinds of method optimal solutions for n < 27 have, actually, been found.
The main problem of these deterministic techniques is that as the number of spread
points increases, an explosion of the computational burden occurs. For instance,
for n = 7 a nontrivial procedure involving a serious amount of computations must
run 8 times, but for n = 14 this number is 9,808 and for n = 23 it is 288,873, 270.
Optimal solutions have been found only for up to n = 27 even with the best known
deterministic algorithm. However, for these kinds of algorithms it is also necessary
to a priori know an approximate value or a lower bound of the solution. Thus,
stochastic algorithms are useful, at least for revealing a good lower bound.

The paper is a source of new results to the literature on packing for up to one
hundred circles. Some of our results represent improvements compared to the best
known results; some others confirm some results of the literature and the rest
correspond to unpublished results. All our computational results were obtained by
the stochastic algorithm called TAMSASS-PECS (Threshold Accepting Modified
Single Stochastic Search for Packing Equal Circles in a Square) described in Section
2. Our numerical results are precise in all digits, and they were verified by interval
arithmetic computations. The numerical results and their graphical presentation
in Section 3 show to what extent TAMSASS-PECS is able to find optimal or good
solutions.

2. The TAMSASS-PECS algorithm

The TAMSASS-PECS algorithm is based on the Threshold Accepting method [2]
and on our modified version of SASS (Single Agent Stochastic Search) [4, 7, 8, 14, 15]
(MSASS). The TAMSASS-PECS algorithm has specifically been built to solve the
packing n equal circles in a square problem, but can be easily extended to pack
equal circles in other regular shapes.

The Threshold Accepting framework and the SASS local search algorithm are used
for finding a local maximum of a function defined over a search space. As for all
stochastic local search algorithms, the probability of finding a global solution grows
with the number of trial points. These methods are based on stepwise improvements
of the current solution by movements in the solution space. The following notations
and definitions, as in [10], will be used.
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Definition 1. Let Sp C S be the set of feasible solutions for a maximization
problem and S the search space. We require that S be finite. The goal of the
mazimization problem is to:

maximize f(s) subject tos € S,

where f : S — IR is the objective (cost) function and IR is the set of real numbers.

Definition 2. A move is defined as :
d:S(d) — S,

where S(d) C S is the domain of the move. The set of all the moves of the problem
is D. We claim that the union of the domains for all move sequences in D is the
solution set, thus there is no point in the search space that cannot be reached from
any points by multiplied use of moves.

We denote the application of a move d to a candidate solution s € S by d(s).

Definition 3. A candidate solution s’ is a neighbour of the candidate solution s,
if

s’ = d(s) for some d € D.

The neighbourhood N (s) of a solution s € S(d) is the union of all the neighbours
of s:

N(s) = [ d(s).
deD
Definition 4. A candidate solution s is a global optimum if there is no other

candidate solution s’ in the search space S such that f(s') > f(s). A candidate
solution s is a (weak) local optimum if there is no other candidate solution s’ in
the neighbourhood N(s) of s such that f(s') > f(s). In case all the neighbours of
s have a value of the objective function smaller than f(s), then s is a strong local
optimum.

Formally, the Threshold Accepting algorithm [2] is very similar to the simulated
annealing algorithms. In Threshold Accepting we accept every move that leads to
a new solution not much worse than the current solution. To be more specific if
s is the current solution, the proposed next solution s’ € N(s) is accepted as the
next solution if

A=f(s) = f(s") < Th,

where T}y, > 0 is the threshold level. During the optimization process the threshold
level has been gradually decreased like the temperature in simulated annealing.
In Threshold Accepting a move which would give a solution much worse than the
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Algorithm 1 : The Threshold Accepting Algorithm.

1 Select an initial solution s
while stopping criterion not satisfied do
while inner loop criterion not satisfied do
Select s' € N(s)

2
3
4
5 A=f(s) = f(s)
6
7
8
9

if A LT,
s=s'
Decrease threshold Ty,
return the best found solution

current solution is rejected, unlike in simulated annealing. The convergence of the
Threshold Accepting algorithm has been proved for some cases [1].

The Threshold Accepting method is described in Algorithm 1. The inner loop
is performed a constant L times and the stopping criterion is fulfilled when the
final value of the threshold level is reached. A new candidate solution can be taken
also when A is equal to the threshold level, keeping the sideway moving with the
same function value allowed. In [2] a more adaptive inner loop stopping criterion
is worked with: it ends the inner loop after no improvements were made in the last
steps.

Random optimization is traditionally based on single agent stochastic search
strategies [8]. S.S. Rao [14] and D.C. Karnop [4] used a uniform random vari-
able as the move function, d(s). J. Matyas utilized Gaussian perturbations for the
move function with a bias term to direct the search, £ ~ N(b,oI) [7]. F.J. Solis
and J.B. Wets [15] enhanced this approach by evaluating the objective function at
s’ = s — &s if the evaluation at s’ = s + £s does not improve the current value
of the objective function and incorporated a variable perturbation variance. The
bias term and this additional function evaluation serve as stochastic equivalents to
incorporating momentum and gradient information. The SASS method is given in
Algorithm 2.

The variance of the perturbation size, £, is controlled by the number of repeated
successes and failures, sent and fent, respectively, in selecting a neighbour that
decreases the value of the objective function. Note that conditions in line 4 are
mutually exclusive. The contraction (ct) and expansion (ex) constants as well as
the upper and lower bounds on the standard deviation of the random perturbation
(0sup, Oing) are set by the user. The standard deviation of the perturbation is
increased when it falls below a given lower bound ;s (line 4). The contraction
and expansion of o are performed when the number of successes, sent, or failures,
fent, are greater than the user given constants, Sent and Fent, respectively. The
values 0.4 and 0.2, which modify the bias value are retained from F.J. Solis and
J.B. Wets’s paper [15]. Other values used in [15] are: ex = 2, ¢t = 0.5, Sent = 5,
Fent = 3, 05yp = 1.0 and 04,y = 1075. The standard deviation o specifies the
size of the sphere that most likely contains the perturbation vector and the bias



PACKING EQUAL CIRCLES IN A SQUARE II. 5

Algorithm 2 : The Single Agent Stochastic Search
1 proc SASS(so,ex,ct,Sent, Fent, 0gyp, Oing, NIter)
2 var by:=0; k:=1; sent :=0; fent :=0; o9 := 1;
3 while k£ < NIter do
ex-op_1 1if sent > Sent
ct-op—1 if fent > Fent

4 o) 1= )
Osup 7'f Ok—1 < Oinf
Op_1 otherwise

5 Generate a random vector &, with N (by,oI) distribution;
6 if f(s' = sp 4+ &) > f(sk)

7 then

8 Spt1 = 8';

9 bk+1 = OQbk + 0.4€k;

10 sent = sent + 1;

11 fent .= 0;

12 else
13 if f(s" = sk — &) > f(sk)
14 then

15 Sgt1 := 8';

16 bk+1 = bk — 0.4£k;
17 sent = sent + 1;
18 fent .= 0;

19 else
20 Sk+1 = Sk;
21 bgr1 := 0.5b;
22 fent := fent + 1;
23 sent = 0;
24 k:=k+1;

term b locates the center of the sphere based on directions of a past success. In line
13 a reverse strategy, seeking for a better solution in the opposite direction of the
originally failed move, is performed. The stopping criterion is based on the number
of iterations.

The TAMSASS-PECS algorithm is established on a Threshold Accepting method
and on a modified version of SASS (MSASS), which was particularly designed for
improving the current solution s of the packing equal circles in a square problem.
The objective function returns the minimum distance from the center of a circle
to the other ones, and the problem at hand consists in maximizing this minimum
distance for all centers. Thus, the program iteratively does a maximization of the
minimum distance between circle centers.

MSASS, which is in charge of perturbing the location of a point s;, has been built
on the parameters provided by TAMSASS-PECS. This perturbation is intended to
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Algorithm 3 TAMSASS-PECS: a threshold accepting algorithm adapted to the
packing equal circles in a square problem.

1 Select an initial solution s

2 Select an initial value for Ty,

s Select an initial standard deviation o

4 while 0 > 0¢ipq do

5 while All centers are not visited do

6 s = MSASS(s,0,Th, NextCenter(s))
7 Decrease Ty,

8 Decrease standard deviation o

9 return the best found solution

increase the minimum value of the distances, (d; ;), between s; and any point s;
(1 <j #1i<n). It moves the point s; to a new location s} and computes the value
of the new minimum distance d; ;. Following the Threshold Accepting strategy,
a move is accepted if d; ; — d;,j < d; T}, where d; T}, is the threshold level and
Ty, > 0. New trial locations of point s} are restricted to the neighbourhood of the
current location of the point s;. This neighbourhood is determined by a normal
distribution N(s;,cI) around s;. While the Threshold Accepting condition is not
satisfied, new locations for the point s; should be tested following the classical SASS
algorithm, although the number of trials is limited by a given maximum value (see
Algorithm 4).

The TAMSASS-PECS algorithm starts with a pseudorandom initial solution (the
location of the n points s;, 1 < i < n, which are generated by dividing the square
in t = k x k non-overlapping tiles, where k = [\/n], and [.] indicates the smallest
integer not less than the argument. Notice that the number of points n is less than
or equal to the number of tiles t. The first point is located randomly at the center of
the first or second tile. The following points are located at the center of a tile which
is separated from the previous by one free tile in a row order. The remaining points
are randomly allocated at the free tiles, (one point in one tile). Nevertheless, based
on our experience if the threshold level is not very small, then the initial solution
is not crucial because large random movements are allowed.

The initial value for the threshold level is T}, = 0.02 and the standard deviation
o is equal to the common diameter of the tiles. The TAMSASS-PECS algorithm
tries to improve the current solution by an iterative procedure. At every step, the
MSASS subroutine is executed for all the n points using the same values for both the
standard deviation ¢ and the threshold level T},. The criterion to stop this iterative
procedure is based on the value of the standard deviation, which is decreased by a
factor of 0.99 at every iteration. The threshold level is also decreased by the same
factor.

At every iterative step, MSASS is performed for all the points n in an increasing
order, which is determined by the value of the minimum distance from any point to
the rest of points (d; ;). The value of the minimum distance is updated after every
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Algorithm 4 : The Modified Single Agent Stochastic Search subroutine
1 proc MSASS(s,00,Th,1)
2 var sent :=0; fent :=0; Fent :=3; ¢t :=0.5; 0 := 0y;
3 while fent < 4- Fent A sent =0 do
ct-o if fent > Fent

i e otherwise

5 Generate a random vector £ with N(0,cI) distribution;
6 s'(1) = s(i) + &

7 if f(s(d)) = f(s') < f(s(i))Th

8 then

9 s(i) := §'(i);
10 sent = sent + 1;

11 else
12 s'(i) == s(i) = &

13 if f(s(i)) = f(s') < f(s(i))Th
14 then
15 s(i) := §'(i);
16 sent = sent + 1;

17 else

18 fent := fent + 1;

19 return s

20 end

execution of MSASS. The description of the TAMSASS-PECS method is given in
Algorithms 3 and 4.

3. Computational results

In this section results obtained by carrying out the algorithm suggested in Section 2
will be compared to the best results found previously reported on in the literature.
The programs were coded in C and run under Linux on a Pentium IT PC with 266
Mhz. Since the underlying problems are very hard, sometimes the solution of a
problem required multiple runs, which took CPU time between a few seconds to a
few hours. The numerical results in details together with graphical representations
are available at http://www.inf.u-szeged.hu/~pszabo.

Tables 1-2 show some results of the problem for 2 < n < 100. In the second and
third columns we can see the best results reported on in the literature with their
references for every value of n. The rest of the columns, with headers m,,, ¢,, fn
and p,, refer to the numerical results of our algorithm, where:

my,: the solution of the packing problem found by TAMSASS-PECS,

cn: the number of contacts between circles and between circles and the sides of the
square,
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fn: the number of free circles, and
pn: the density values of the packing.

The definitions of ¢,, f, and p, can be found in the previous paper [16]. The last
column, (*), indicates whether the results obtained by our algorithm are better or
worse than those previously published by other authors or by any chance equal to
them. The meaning of symbols used in this column is as follows

+: our result improves all the previously published results,
—: an earlier result is better than our one,

=: the TAMSASS-PECS algorithm has obtained the same result as the best re-
ported one,

N: it is a new result, previously unpublished.

Let us conclude the results of Table 1 and 2:

e In 20 out of 59 cases we have found the same results as reported on in the
literature. Most of them are optimal solutions of the packing problem.

e In 34 cases our results have been worse than those of other authors. Never-
theless, for several cases our algorithm has obtained similar final geometrical
arrangements, and the difference is only in the accuracy of the calculated nu-
merical values.

e For n = 32,37,47,62, and 72 our results improve all of those previously pub-
lished.

e 40 new results have been generated. In all these cases the value of m,, is better
than or equal to the new lower bound described in [16].

The accuracy of our results is 1074, and the feasibility of these solutions was
verified by interval arithmetic.

On the one hand, there are no better packings in the very close neighbourhood
of the given results according to these tests. However, these interval verification
tests cannot prove global optimality. At the end of this section packing diagrams
of the solutions of problem (1) obtained by the TAMSASS-PECS algorithm are
shown (see Figures 1-5). Geometrical arrangements have been drawn for n = 2 to
n = 100 and for n = 150 just as an example that TAMSASS-PECS is able to give
a solution which is better than the one obtained by the lower bounds described in
[16].
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4.

Summary

There has been a threshold accepting algorithm introduced, which is based on a
modified single agent stochastic search procedure for the solution of the equal circles
packing in the unit square problem. As a result of extensive computational efforts,
we have found improved packings for 5 specific problems, while in 27 cases the
available known packings were confirmed. In addition, forty new and unpublished
packing results are reported on. Since the underlying algorithm does not make
much use of the special structure of the present problem, we expect that it can be
well utilised in other packing problems, too.
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Table 1. Best results of the packing circles in a unit square problem for 2 < n < 50.

n The best result Ref. Our Results
in the literature Mn Cn fn dn *
2 1.41421356237309 [12] 1.41421356237309 5 0 0.53901208445264 =
3 1.03527618041008 [12] 1.03527618041008 7 0 0.60964480874135 =
4 1.00000000000000 [12] 1.00000000000000 12 0 0.78539816339744 =
5 0.70710678118654 [12] 0.70710678118654 12 0 0.67376510556580 =
6 0.60092521257733 [12] 0.60092521257733 13 0 0.66395690946413 =
7 0.53589838486224 [12] 0.53589838486224 14 1 0.66931082684079 =
8 0.51763809020504 [12] 0.51763809020504 20 0 0.73096382525390 =
9 0.50000000000000 [12] 0.50000000000000 24 0 0.78539816339744 =
10 | 0.42127954398390 [3] 0.42127954398390 21 0 0.69003578526417 =
11 | 0.39820731023684 [12] 0.39820731023684 20 2 0.70074157775610 =
12 | 0.38873012632302 [12] 0.38873012632301 25 0 0.73846822388404 -
13 | 0.36609600769643 [12] 0.36609600769623 25 1 0.73326469490355 -
14 | 0.34891526037401 [12] 0.34891526037401 32 1 0.73567925554268 =
15 | 0.34108137740210 [12] 0.34108137740210 36 0 0.76205601092668 =
16 | 0.33333333333333 [12] 0.33333333333333 40 0 0.78539816339744 =
17 | 0.30615398530033 [12] 0.30615398530033 34 1 0.73355026330232 =
18 | 0.30046260628866 [12] 0.30046260628866 38 0 0.75465335787566 =
19 | 0.28954199199498 [12] 0.28954199199356 37 2 0.75230789673638 -
20 | 0.28661165235168 [12] 0.28661165235168 44 0 0.77949368686760 =
21 0.27181225535931 [3] 0.27181168718966 40 2 0.75335522651101 —
22 | 0.26795840155072 [3] 0.26795835833157 42 1 0.77167991577529 -
23 | 0.25881904510252 [3] 0.25881904510252 56 0 0.76363103212612 =
24 | 0.25433309503024 [3] 0.25433309503024 56 0 0.77496325975782 =
25 | 0.25000000000000 [3] 0.25000000000000 60 0 0.78539816339744 =
26 | 0.23873475724122 [3] 0.23873475724121 56 2 0.75846909048393 -
27 | 0.23584952830141 [3] 0.23584952830050 55 0 0.77231145646250 -
28 | 0.23053549364267 [3] 0.23053540627071 56 1 0.77185363595323
29 | 0.22688290074421 [3] 0.22688290074420 65 1 0.77890624177970 -
30 | 0.22450296453109 [3] 0.22450296453108 65 0 0.79201902646073 -
31 | 0.21754729161912 [3] 0.21754726920445 54 4 0.77729734717346 -
32 | 0.21308235294443 [3] 0.21317456258979 63 3 0.77600412447400 +
33 | 0.21132838414326 [3] 0.21132833175032 64 1 0.78885198102597 -
34 | 0.20560464675957 [3] 0.20560464675956 80 0 0.77664906433227
35 | 0.20276360086323 [3] 0.20276360086322 80 0 0.78122721299871 -
36 | 0.20000000000000 [3] 0.20000000000000 84 0 0.78539816339744 =
37 | 0.19623810145141 [3] 0.19642918368533 73 2 0.78330271742989 +
38 | 0.19534230412691 [3] 0.19534202418353 74 0 0.79704064569288 -
39 | 0.19436506316151 [3] 0.19436506314440 80 0 0.81117902717206 -
40 | 0.18817552201832 [3] 0.18817551865770 85 2 0.78797949519086 -
41 | 0.18609951184812 [3] 0.18609948922999 97 1 0.79272373684650
42 | 0.18427707211710 [3] 0.18427707211709 90 0 0.79868427865342 -
43 | 0.18019113545743 [3] 0.18019112440214 83 1 0.78726408457444 -
44 | 0.17863924567120 [3] 0.17863916198187 79 4 0.79384217677293 -
45 | 0.17571631417559 [3] 0.17571631417546 94 3 0.78944426849399
46 | 0.17445936087241 [3] 0.17445933585066 90 1 0.79718693728810 -
47 | 0.17126830721141 [3] 0.17127055746101 93 2 0.78929383201248 +
48 | 0.16938210954876 [3] 0.16938050793544 97 1 0.79094499029400 -
49 | 0.16738607686833 [3] 0.16738607686832 120 1 0.79121698952690 -
50 | 0.16645462588286 [3] 0.16645461022968 102 0 0.79967929970534 -
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Table 2. Best results of the packing circles in a unit square problem for 51 < n < 100.

11

n The best result Ref. Our Results

in the literature M Cn fn dn *
51 0.16561837431260 [3] 0.16561390218764 90 2 0.80861948195609
52 0.16538623796964 [3] 0.16538621483322 103 0 0.82253064459417  —
53 - - 0.16264607633837 93 4 0.81462525898420 N
54 0.15913951630719 [3] 0.15913951414578 109 2 0.79940760435030  —
55 0.15755574752972 [3] 0.15755573439859 105 2 0.80027118200754  —
56 0.15615650046215 [3] 0.15615650046214 119 0 0.80235172950297  —
57 - - 0.15474723074928 107 3 0.80396408840952 N
58 - - 0.15130206629471 109 6 0.78673600284850 N
59 - - 0.15029765718520 118 3 0.79108990822535 N
60 0.14950565404867 [3] 0.14945461308474 125 3 0.79666571193460  —
61 0.14854412669518 [3] 0.14854408720568 119 1 0.80137375361858  —
62 0.14569394327531 [3] 0.14671467098564 114 5 0.79710938267796  +
63 - - 0.14667828199655 118 2 0.80961563357266 N
64 - - 0.14532088220301 132 3 0.80922920583758 N
65 - - 0.14456113665810 112 5 0.81438235586667 N
66 - - 0.14380319561470 120 2 0.81934777745264 N
67 - - 0.14304397643538 118 5 0.82409628091674 N
68 - - 0.14288350731175 115 6 0.83475507341762 N
69 - - 0.13993726983993 117 3 0.81666484211077 N
70 - - 0.13787246738894 114 5 0.80715295095497 N
71 - - 0.13593878298879 133 3 0.79859232191938 N
72 0.13549029317569 [3] 0.13569567607132 129 7 0.80729163319538  +
73 - - 0.13389894938934 135 5 0.79949982777920 N
74 - - 0.13265445602583 141 6 0.79720572964583 N
75 - - 0.13241101073542 108 11  0.80536208356566 N
76 - - 0.13094762506744 127 9 0.80022799448052 N
7 - - 0.13047875975659 120 6 0.80562963362431 N
78 0.13046077259640 [3] 0.13045661660359 157 3 0.81584734690826  —
79 - - 0.12976111574313 131 8 0.81852673455691 N
80 - - 0.12886897358290 147 5 0.81882205826177 N
81 - - 0.12833078028621 170 3 0.82293152331831 N
82 - - 0.12646140351791 145 4 0.81168420885740 N
83 - - 0.12609559154647 167 3 0.81736730901968 N
84 - - 0.12555071002762 152 5 0.82087566500715 N
85 - - 0.12511540460076 146 4 0.82553641420847 N
86 - - 0.12500381019147 123 7 0.83392471939050 N
87 - - 0.12230707667418 158 7 0.81150070836153 N
88 - - 0.12099893725078 162 10  0.80523985787757 N
89 - - 0.12080111590653 140 14  0.81201615746621 N
90 - - 0.11988928132785 160 7 0.81010801424488 N
91 - - 0.11916044953221 172 8 0.81023468623028 N
92 - - 0.11854559378259 175 4 0.81159835604241 N
93 - - 0.11827868195489 167 6 0.81711971813354 N
94 - - 0.11733029717908 158 10  0.81409469757729 N
95 - - 0.11668436071663 174 4 0.81466286707370 N
96 - - 0.11633897630581 192 5 0.81887839722130 N
97 - - 0.11618529717218 179 4 0.82545113090290 N
98 - - 0.11610339843903 170 7 0.83290785939723 N
99 - - 0.11601228667056 193 2 0.84022403037368 N
100 - - 0.11456309641300 184 6 0.82979353948491 N
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Figure 1. The best found packings for 2 — 21 circles (n is the number of circles, ¢ the number of
contacts, f the number of free circles, m the maxmin distance, r the radius of circles, and d is the
density of the packing). The free circles are denoted by dark shading.
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Figure 2. The best found packings for 22 — 41 circles (n is the number of circles, ¢ the number of
contacts, f the number of free circles, m the maxmin distance, r the radius of circles, and d is the
density of the packing). The free circles are denoted by dark shading.
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Figure 3. The best found packings for 42 — 61 circles (n is the number of circles, ¢ the number of
contacts, f the number of free circles, m the maxmin distance, r the radius of circles, and d is the
density of the packing). The free circles are denoted by dark shading.
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Figure 4. The best found packings for 62 — 81 circles (n is the number of circles, ¢ the number of
contacts, f the number of free circles, m the maxmin distance, r the radius of circles, and d is the
density of the packing). The free circles are denoted by dark shading.
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Figure 5. The best found packings for 82 — 100, and 150 circles (n is the number of circles, ¢ the
number of contacts, f the number of free circles, m the maxmin distance, r the radius of circles,
and d is the density of the packing). The free circles are denoted by dark shading.



